

NH₃ Cross-Sensitivity of a NO_X sensor and NH₃ Measurements of Newer-Model Gasoline Light-Duty Vehicles

Gloria Pak, Aiko Matsunaga, Shobna Sahni, Richard Ling March 14, 2019 | CE-CERT | UC Riverside 2019 PEMS Conference

Introduction

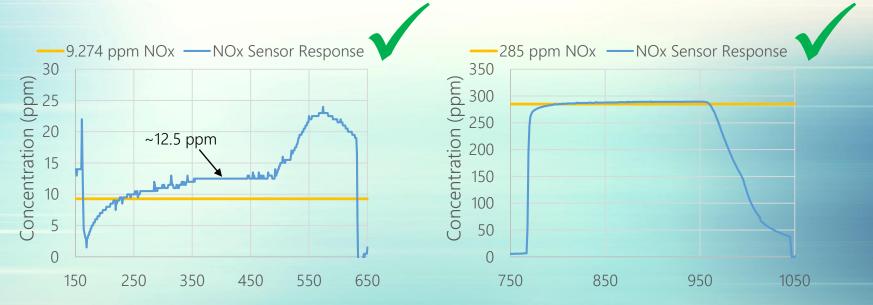
- A screening project revealed unexpectedly high on-road NO_X emissions from gasoline LDVs measured by a mini-PEMS NO_X sensor.
- The NO_X sensor's cross-sensitivity to NH_3 was evaluated in a bench study.
- Dynamometer testing was conducted on gasoline LDVs to confirm NH₃ emissions.

Objectives

- 1. To evaluate the cross-sensitivity of a NO_X sensor to NH_3
- 2. Collect NO_X and NH₃ for gasoline LDVs on the dynamometer

Set-up:

- Adequate calibration of the NO_x sensor was verified using low and high concentrations of NO reference gases
- The NO_X sensor was fed NH_3 reference gases of concentrations ranging from 20 parts per million (ppm) to about 900 ppm
- Sampling chamber was purged with zero air between readings for at least 120 seconds
- Sampling chamber was heated by NO_x sensor heating (minimum sensor operating temperature is 190° C); however, gas temperature in chamber was not measured
- Gas flowrate was not measured


Reference gases

	Concentrations (ppm)	Balance gas
NO	9.274	N_2
	285	L
NH ₃	20.31	
	100.0	
	480.0	
	898.0	

NO_X sensor calibration check

Results

Results shown here are stabilized portions of the sensor readings. Sensor response concentrations are reported as NO_X by the mini-PEMS.

Results

Average NO_X sensor readings were taken from the most stabilized portions of the test – 40 seconds for the 20 ppm NH_3 test, to 140 seconds for the 100 ppm NH_3 test.

The NO_X sensor's cross-sensitivity to NH_3 appears to be significant.

NOx Sensor							
NH3 Cross-sensitivity							
NH3 reference gas	Average Reading	Percent Reading					
(ppm)	(ppm)	5					
20	12	62%					
100	61	61%					
480	362	75%					
898	643	72%					

NH3 From Gasoline Vehicles

- NH₃ from gasoline vehicles produced during reduction reactions of NO in the TWC.¹
- $2NO + 2CO + 3H_2 \rightarrow 2NH_3 + 2CO_2$
- $2NO + 5H_2 \rightarrow 2NH_3 + 2H_2O$
- NH₃ concentrations were observed to increase during fuel-rich combustion (λ <
 1) when TWC conditions are more reductive and when increased concentrations of CO and H2 are also present.²

¹Harley, R., CARB, 2008. On-road measurements of light-duty gasoline and heavy-duty diesel vehicle emissions. Contract No. 05-309 ²Suarez-Bertoa, R., et. al., 2014. Ammonia exhaust from spark ignition vehicles over the New European Driving Cycle. Atmospheric Environment, 97, 43-53

Validation in the Dynamometer

Measurement Methods

Emission Component	Test Instrument	Measurement Principle
NO _X	NGK/NTK Compact Emission Meter (NCEM mini-PEMS)	Amperometry
	Horiba MEXA-7200LE CLA-750LE / AVL AMA-4000	Chemiluminescence
NH ₃	AVL SESAM FT	Fourier-transform infrared spectroscopy

- Laboratory measurements taken to further assess suitability of NO_X sensor in gasoline LDV applications
- NO_X measured by test cell analyzer
- NO_X sensor used for one vehicle
- NH₃ measured by FTIR

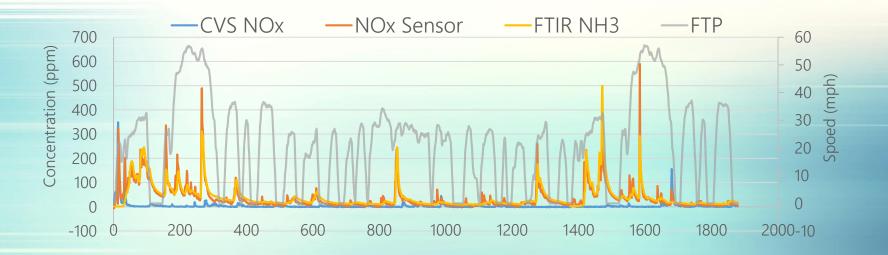
Dynamometer Testing

Testing Notes

Prior to testing, all vehicles were:

- Checked for OBD diagnostic codes
- Drained and filled with commercial phase 3 gasoline
- Driven on a prep cycle

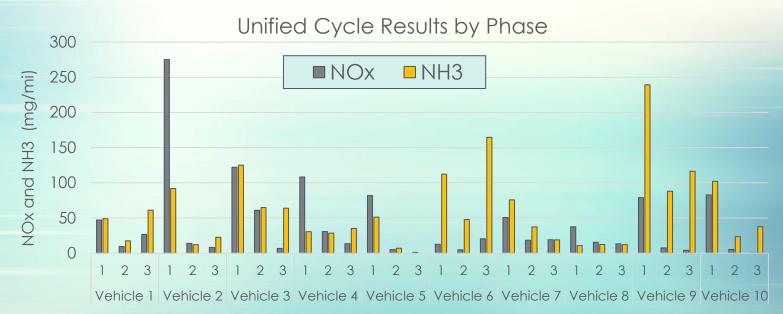
All UC and FTP tests were:


- Cold-start tests
- Conducted in the same dynamometer lab with the same equipment

Test Vehicles

Vehicle	Model year / Vehicle Type	Displace- ment	Emission Standard	Mileage	Technology
1	2018 LDT4	5.3 L	LEV3 ULEV125	17,549	Cylinder deac., GDI
2	2017 PC	2.5 L	LEV2 ULEV	32,948	PFI
3	2016 PC	2.4 L	LEV3 SULEV30	41,260	PFI
4	2018 LDT2	3.6 L	LEV2 ULEV	814	PFI
5	2018 PC	2.0 L	LEV3 SULEV30	16,486	PFI
6	2018 PC	2.5 L	LEV3 SULEV30	11,219	PFI, EGR
7	2017 PC	2.0 L	LEV3 ULEV70	8,600	GDI, TC
8	2017 PC	2.0 L	LEV3 SULEV30	36,768	GDI
9	2018 PC	2.0 L	LEV3 ULEV 70	16,457	GDI, TC
10	2018 PC	2.0 L	LEV3 SULEV30	15,543	GDI, TC

Preliminary Evaluation



FTIR readings in the dyno identify NH₃ emissions previously reported by the sensor as NO_X emissions during on-road screening.

Dynamometer Testing

Results

Conclusion

Results identified a need for:

- Addressing the NH₃ cross-sensitivity for NO_X sensors in gasoline exhaust measurement applications in order to support continued improvement of on-road, real-world emissions screening, and
- 2. Further investigation of NH₃ emissions from gasoline LDVs for the purpose of updating the mobile source NH₃ emissions inventory in California.

THANK YOU

GLORIA.PAK@ARB.CA.GOV

ACKNOWLEDGEMENTS Wayne McMahon, Tom DeSimone, Tuyen Dinh, Jose Armas, William Wu, Nhut (Matt) Do, Hyun Ji (Julie) Lee, John Kim, Linda Davis, Kevin Sothy, Brian Jung

DISCLAIMER

The statements and opinions expressed in this poster are solely the authors' and do not represent the official position of the California Air Resources Board (CARB). The mention of trade names, products and organizations does not constitute endorsement or recommendation for use.

