Assessment of a Candidate Metric for a New Paradigm of In-Use NOx Emissions Compliance for Heavy-duty On-Highway Engines

Matthew Spears, EMA

9th Annual International PEMS Conference Riverside, California March 14, 2019

Key Points

Goals

- Cost-effectively achieve additional NOx reductions

- Focus on what is happening in-use

• This presentation is a status update on work in progress

- Exploratory work; more work needs to be done
- EMA has drawn no conclusions at this time
- EMA is interested in feedback and any new ideas

Background on HDOH Low-NOx

- In 2016 SCAQMD petitioned EPA to set new standards
- CARB initiated technical research and a series of workshops to develop an Omnibus Rulemaking
- In 2018 EPA announced a Cleaner Trucks Initiative
- EMA is engaged with the agencies, NGOs and has funded a multi-million dollar, multi-year program to sponsor technical research
 - WVU, Ramboll, SwRI

EMA's Goals

- Cost-effectively deliver additional in-use NOx reductions from heavy-duty engines
- Maintain or improve product reliability and durability
- Move from prescriptive lab and PEMS procedures and other compliance requirements to performance-based on-board compliance assessments
- Goals for a new paradigm of in-use compliance
 - Leverage on-board sensing, telematics and big data analytics
 - Cover all engine operation in some way—some operation might be unique

Focus on In-Use

- Peak SCR NOx reduction efficiency currently is ~98%
 - Exhaust gas and SCR catalyst temperatures are duty cycle dependent
 - SCR hardware and controls must function as designed
- Due to PEMS capabilities and the costs and effort required to install PEMS to comply with the current HDIUT program, today's compliance approach is only able to sample a very small fraction of engines; might not fully reflect in-use
- Cost-effectively aggregating NOx from a large number of in-use vehicles should better relate compliance to inventory

Preliminary Concepts for a New Paradigm

- Compliance
 - Manufacturer compliance assessed annually, based on aggregate emissions
 - Include an in-use averaging, banking and trading program
- Data flow
 - Each engine's electronics would continuously update its in-use metric data for periodic wireless broadcast to the emissions certificate holder
 - Certificate holder would aggregate data and submit annual compliance reports
 - More frequent reporting could be triggered, based on data
- Oversight
 - Periodic audit processes could be defined
- Remedial action
 - Annual in-use credit balance adjustments
 - Prolonged credit deficits could trigger additional testing and remedial action
 - Complementary in-use I/M could enhance timely maintenance and repair

A New In-Use Paradigm Requires a New Metric

- Some disadvantages of NTE and WBW metrics
 - Brake-specific metrics approach infinite values at low load
 - NTE and WBW metrics fall apart when applied to all operation
 - There always will be some corner-case duty cycle, where insufficient exhaust heat precludes DEF dosing without forming deposits that decrease SCR efficiency
 - Analysis shows that this leads to a de facto engine-out NOx standard
 - That is why the Euro VI WBW approach mandates prescribed driving
- Goals of a new metric
 - Keep it simple
 - Prevent asymptotic metric behavior at low load
 - Cover all operation in some way—some operation might be unique
 - Facilitate data aggregation across a large sample size
 - Collect additional data to separate emissions by duty cycle

High-level Concepts for a New Metric

Sum-over-Sum

- See EMA's 2018 CRC presentation for details
- Numerator is the mass emitted—inventory
- Denominator normalizes; likely fuel- or CO2-based
- Simple to aggregate across an engine family
- If a Sum-over-Sum metric indicates higher emissions, utilize secondary analyses to examine why
- Separating emissions by in-use duty cycle is challenging
 - Should reflect expected engine and aftertreatment response to duty cycles
 - SCR efficiency depends upon the time-history of thermal energy inputs and outputs of the exhaust and aftertreatment system

How to Introduce a Thermal Time-History into a Secondary Analysis?

Preliminary concepts

- Introduce a time-history within the normalizing denominator
- Start simple and add complexity only as necessary
- Heat transfer: from exhaust gas to DEF and catalyst, then to ambient
- Discretization of the differential heat equation leads to an equation similar to an exponentially-weighted moving average ("EWMA")
- Fuel (CO₂) rate can represent the potential for thermal energy input
- Time constant, τ , seems to be on the order of 60 s (See Appendix)

Heat: $T_{\text{new}} = T_{\text{old}} + (T_{\text{oldadjacent}} - T_{\text{old}})^* \Delta t / \tau$ EWMA: $CO_{2\text{ewmanew}} = CO_{2\text{ewmaold}} + (CO_{2\text{inew}} - CO_{2\text{ewmaold}})^* \alpha$

Observations and Next Steps

- EWMA secondary analysis seems to separate duty cycles – Low load, moderate load, high load after low load...
- Next steps
 - Incorporate ambient temperature into secondary analyses
 - Investigate distributional assumptions to strengthen statistics
 - NOx data appears log-normal, might be log-skew-normal
 - Analyze larger datasets and aggregate data across many engines
 - Consider a unique emissions rate-based metric for idle
 - Like CARB's clean idle standard
- EMA invites feedback and additional ideas

Examples of In-Use Tractor Data

- Description of the following three charts
 - These are **<u>NOT</u>** metric charts; they're secondary analyses
 - Data are from single HDIUT shift-days; not aggregated across engines
 - 1Hz NOx mass rate versus CO_{2ewma} mass rate, $\tau = 60s$
 - CO_{2ewma} rate converted to "Power" using constant 525 gCO2/hp-hr
 - This value is only used as a placeholder for a characteristic engine family-specific value
 - Brake-specific NOx lines are plotted only for reference to a familiar historical metric
 - Same for CARB clean idle standard (30 g/hr)
 - Data was binned into 10% data increments; same amount of time per bin
 - NOx rate data appears log-normal within bins and overall
 - Log-normal statistics used to present arithmetic means
 - 10th and 90th percentile values based on log-normal statistics
 - To aggregate this analysis across different engine ratings, axes ultimately would be replaced by flow-weighted average concentration and % of maximum power
 - These only differ by dividing the axes presented by a constant
 - Horizontal axis scaling factor would be engine sub-family maximum mapped power (per 40 CFR Part 1065); vertical would be exhaust flow rate at maximum mapped power.

HDIUT Example 1 Tractor (50 mph ave, 4% idle time, 9% off, 32-53F)

HDIUT Example 2 Tractor (48 mph ave, 12% idle time, 0% off, 52-66F)

HDIUT Example 3 Tractor (27 mph ave, 23% idle time, 19% off, 62-97F)

Appendix: τ

Heat: $T_{\text{new}} = T_{\text{old}} + (T_{\text{oldadiacent}} - T_{\text{old}})^* \Delta t / \tau$ $CO_{2ewmanew} = CO_{2ewmanld} + (CO_{2inew} - CO_{2ewmanld})^* \alpha$ EWMA: α is equal to $\Delta t / \tau$, for α not "too close" to 1 $\tau = C_{m} * m * I / (k * A)$ $C_{\rm m}$ = specific heat of material; steel, ceramics = ~600 J/kg*K m = mass; "1-box" aftertreatment = ~ 65 kg (~ 143 lb) I = length; average of mass as a single wall = 0.015 m (9/16") k = thermal conductivity, very rough average = 13 W/m*K A = surface area; average of mass as a single wall = 0.63 m^2 $\tau = \sim 71$ s; probably within an order of magnitude τ (1/ α) that looked best "by eye" for separating duty cycles = 60 s

