Review of CE-CERT's Brake and Tire Programs

14th OSAR Conference 2025

Zisimos Toumasatos, Elizabeth DeFrance, Georgios Karavalakis

Center for Environmental Research and Technology University of California, Riverside

Outline

- Motivation
- Experimental setup
- Results
- Conclusions
- Future Work

Motivation

3

Project Development

- 1st Phase:
 - Funnel system to understand PN generation mechanisms
- 2nd Phase:
 - Development of fully-enclosed sampling system and pilot testing on chassis dyno
- 3rd Phase:
 - On-road testing with fully enclosed sampling system

UCRIVERSITY OF CALIFORNIA

5

Preliminary tire/brake emission testing - setup

HR ELPI+ PN/ PM 6nm

- > Heated line at 50degC, to avoid potential water condensation
- Sampling points at 90deg and 0deg on the periphery of the tire \rightarrow look
- > Sampling point at the center and side of the tire

6

Aggregated emission levels per sampling point

Real-time particle size distribution during the UDDS

- > Real-time particle concentration for CPC and ELPI at 90deg/center location
- > Similar emission findings (high emission performance during 550-800s) were observed for all sampling locations
- > Tire/brake temperature level seems to play a crucial role in particle emission performance

UCRIVERSITY OF CALIFORNIA

Real-time particle size distribution during the UDDS

The role of driving dynamics

- ➤ Red circle area of interest, high emission levels during deacceleration events, potential relation with high brake disk temperature →, higher initial tire rotational speed at those points
- > VA can be utilized to distinguish tire and tire + brake emissions

UCRIVERSITY OF CALIFORNIA

Temperature profile reading and the camber angle effect

- Preliminary temperature findings suggest that tire surface is around 27degC during cruising
- ➤ Temperature surface profile is not uniform around the tire due to camber angle → weight load may affect the camber angle and subsequently the temperature profile
- Hot spot temperature readings reached 29degC in less than 10s during deceleration phases

LDV Preliminary tire/brake emission testing - setup

OBD Signals

UC RIVERSITY OF CALIFORNIA

Real-time particle number conce

- Real-time particle number concentration for CPC and ELPI at different locations
- Significant lower PN emissions compared to the HDV
- No effect of deceleration phase to PN emissions
- High ultrafine particles at the end of the test cycle (volatiles?)

Chassis-dyno brake and tire emissions

13

Light-duty chassis dyno measurements

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UC RIVERSITY OF CALIFORNIA

Preliminary sampling system

- Laboratory version of the brake and tire sampling system
- Initial evaluation operating at 0.0044 m³/s --> 264 lpm > 9.3 SCFM inlet flow
- Volumetric and temperature flow measurement based on the exhaust flow meter (EFM) module

15

Particle losses evaluation

Aggregated emissions levels

							Tire						
		Test cycle	Sampling	Tire		Measurem	temperature			CPC3007	CPC3022	ELPI PN	ELPI PM
Number	Date	number	system	condition	Test cycle	ent type	state	Vehicle	Vehicle load	[p/mile]	[p/mile]	[p/mile]	[mg/mile]
1	20-Jun	SS2		Old	Steady State	Tire	HS	Silverado	Normal				
2	21-Jun	SS1	Probe	Old	Steady State	Tire	CS	Silverado	Normal	1.56E+09	3.84E+09	2.47E+09	0.030
3	21-Jun	SS2	Probe	Old	Steady State	Tire	HS	Silverado	Normal	2.08E+11	1.92E+11	1.84E+11	0.876
4	25-Jun	SS1	Probe	Old	Steady State	Tire	CS	Leaf	Normal	3.32E+09	3.36E+09	2.76E+09	0.026
5	28-Jun	SS1	Funnel	Old	Steady State	Tire	CS	Mitsubishi	Normal	1.04E+08	1.37E+08	9.39E+07	0.001
6	28-Jun	SS2	Funnel	Old	Steady State	Tire	HS	Mitsubishi	Normal	1.43E+10	1.82E+10	1.24E+10	0.087
7	28-Jun	SS3	Funnel	Old	Steady State	Tire	HS	Mitsubishi	Normal	1.14E+10	1.29E+10	1.13E+10	0.061
8	28-Jun	SS4	Funnel	Old	Steady State	Tire	HS	Mitsubishi	Normal	6.55E+09	7.14E+09	6.46E+09	0.048
9	28-Jun	SS5	Funnel	Old	Steady State	Tire	HS	Mitsubishi	Normal	7.86E+09	9.05E+09	1.11E+10	0.024
10	2-Jul	SS1	Funnel	Old	Steady State	Tire	CS	Mitsubishi	Normal + 450 lbs	8.71E+09	1.01E+10	8.68E+09	0.076
11	2-Jul	SS2	Funnel	Old	Steady State	Tire	HS	Mitsubishi	Dyno load change + 450 lbs	9.31E+10	1.09E+11	2.07E+11	0.260
12	2-Jul	T1	Funnel	Old	UDDS	Tire	HS	Mitsubishi		4.71E+09	6.08E+09	4.58E+09	0.080
13	2-Jul	T2	Funnel	Old	UDDS	Tire	HS	Mitsubishi		4.96E+08	5.66E+09	1.31E+10	0.120
15	3-Jul	T1	Funnel	Old	UDDS	Brake	CS	Mitsubishi	Dyno load change + 450 lbs	2.33E+09	3.12E+09	4.24E+09	0.053
16	3-Jul	T2	Funnel	Old	UDDS	Brake	HS	Mitsubishi	Dyno load change + 450 lbs	7.53E+08	8.99E+09	6.24E+09	0.085
17	3-Jul	ТЗ	Funnel	Old	UDDS	Brake	HS	Mitsubishi	Dyno load change + 450 lbs	7.73E+09	9.61E+09	7.05E+09	0.102
18	9-Jul	T1	Funnel	Old	UDDS	Brake	CS	Mitsubishi	Dyno load change + 450 lbs	7.38E+09	8.80E+09	5.58E+09	0.074
19	9-Jul	T2	Funnel	Old	60 mph/ Idle cycle	Brake	HS	Mitsubishi	Dyno load change + 450 lbs	1.39E+10	2.05E+10	1.80E+10	0.081
20	17-Jul	T1	Funnel	Old	50 mph/ Idle cycle	Brake	CS	Mitsubishi	Dyno load change + 450 lbs			2.33E+11	0.493
21	17-Jul	T2	Funnel	Old	50 mph/ Idle cycle	Brake	HS	Mitsubishi	Dyno load change + 450 lbs	8.82E+09	9.54E+09	7.87E+09	0.222
22	17-Jul	ТЗ	Funnel	Old	50 mph/ Idle cycle	Brake	HS	Mitsubishi	Dyno load change + 450 lbs	3.29E+10	4.82E+10	3.03E+10	1.084
23	30-Jul	SS1	Funnel	New	Steady State	Tire	CS	Mitsubishi		1.37E+10	3.90E+10	3.12E+10	0.069
24	30-Jul	SS2	Funnel	New	Steady State	Tire	HS	Mitsubishi		2.98E+09	1.10E+10	9.21E+09	0.040
25	30-Jul	T1	Funnel	New	UDDS	Tire	HS	Mitsubishi	Dyno load change + 450 lbs	2.26E+09	6.96E+09	5.97E+09	0.040
26	16-Aug	T1	Funnel	New	UDDS	Tire	CS	Mitsubishi	Dyno load change + 450 lbs	2.09E+08	1.05E+09	3.16E+09	0.018
27	16-Aug	T2	Funnel	New	UDDS	Tire	HS	Mitsubishi	Dyno load change + 450 lbs	1.15E+09	5.83E+09	4.68E+09	0.039
28	16-Aug	Т3	Funnel	New	WLTC	Tire	HS	Mitsubishi	Dyno load change + 450 lbs	1.30E+09	6.32E+09	5.11E+09	0.026
29	16-Aug	T4	Funnel	New	US06	Tire	HS	Mitsubishi	Dyno load change + 450 lbs	1.49E+10	7.52E+10	7.89E+10	0.133
30	16-Aug	T5	Funnel	New	US06	Tire	HS	Mitsubishi	Dyno load change + 450 lbs	3.08E+10	1.37E+11	1.44E+11	0.157

17

Aggregated emissions levels – Old vs New tire

- No clear trend between old and new tire under the PN spectrum
- Higher PM emissions for the Old tire

Measurement findings based on new tire

- Higher nucleation mode under US06 compared to the less aggressive UDDS
- Both high PN and PM emissions under US06

18

Measurement findings – effect of tire temperature

Chassis Testing – Various Tire Pressures & Dyno Loads

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UC RIVERSITY OF CALIFORNIA

Final version of the brake and tire sampling system / sampling tunnel

21

Design approach and fabrication

UCR design approach

 Option A allow for a higher enclosure volume with less risk of contact between rotating and stationary parts

UCRIVERSITY OF CALIFORNIA

AJ: TOP

Initial steps – dimensions measurements

Spindle mounting dimensions

 D_a = axle diameter

 I_m = length from spring assembly to disc mounting face

Initial steps – dimensions measurements

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UC RIVERSITY OF CALIFORNIA

Final version of the brake sampling system – Outer plate

UCRIVERSITY OF CALIFORNIA

Final version of the brake sampling system - Safety

Critical components were simulated for static loading stress

Simulation under rotational speed at 30 m/s (~60 mph) Von Mises stress of 101.7 kPa Yield strength of aluminum: Common aluminum alloys have a yield strength ranging from 30 MPa to 500 MPa (3×10⁷ N/m2 to 5×10⁸ N/2) Not high and would not cause vielding or significant deformation in 1.5 mm thick aluminum under normal

conditions

Final version of the brake sampling system – Inner plate

UCRIVERSITY OF CALIFORNIA

Final version of the brake sampling system – Inner plate

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Tire sampling system – general overview

Tire sampling system – nozzle design

Tire sampling system – nozzle design

Tire sampling system – nozzle design

> Nozzle B

Merging block

Final version of the sampling tunnel

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Final version of the sampling system – Brake Particles

Sampling system – brake enclosure

System layout

- System is under evaluation during pilot testing
 - Temperature difference between tested and non-tested wheel
 - Response time

Brake enclosure emissions

Two PN/PM generation mechanisms are existing

- Mixing of aged and fresh-formed particles during acceleration
- Fres-formed particles during braking
- Vehicle tested as delivered (no brake cleaning,~180k mileage)

Brake enclosure emissions

Two PN/PM generation mechanisms are existing

• High PM concentration during high-speed braking under higher temperature conditions

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UC RIVERSITY OF CALIFORNIA

Sampling system

Background on brake and tire emissions and objectives

- Significant contribution of brake wear and tire wear to total particulate emission performance, enhanced by the substantial reduction of tailpipe exhaust due to advancements in combustion technologies.
- UCR developed a brake and tire sampling system to investigate the brake-wear and wheel-wear performance under different test routes, driving dynamics and different brake/tire technologies.

Brakes and Tire sampling methodology

- Full-enclosed brake system developed with inlet and outlet ports for clean air introduction and sampling, respectively.
- Tire semi-enclosed system to cover almost half of tire size. Tire sampling system designed for 245/75R17 tires.
- Sampling flows are on the order of 300-600 Lpm, and clean air introduction is in the range of 700-1000 Lpm
- Brake disk temperature and brake pressure sensors are installed to characterize brake operation with brake-wear and wheel-wear performance.

Emission findings based on pilot testing

- Two PN/PM generation mechanisms exist
- Mixing of aged and fresh-formed particles during acceleration
- Fresh-formed particles during braking
- Vehicle tested as delivered (no brake cleaning,~180k mileage)
- Specific tires seem to have a temperature threshold where potentially higher particle volatility and hence particle emissions are detected

inlet

Sample

outlet

Brake

Sampling flow regulated with a blower and measured with flow meter

- Instrumentation for PM, PN, and size distribution, including PM10 and PM2.5 filters
- Measurement of ambient PM (background)
 Temperature infrared sensor measurement of
- Temperature infrared sensor measurement on the brake disc and tires

Flow measurement

PM

ambient

15kWhr

batteries

Background air sample line

and temperature

Particle size PM10/ PN/PM

distribution PM2.5 measurement

Sampling tunnel

On-road brake emissions

Results

UCRIVERSITY OF CALIFORNIA

Test route

- Speed: 0-60mph
- Elevation: 254 468m
- Test Duration: 65 -80 minutes
- Distance: ~25miles

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Aggregated results

PM/PN generation mechanism

Contact Info

- Dr. Zisimos Toumasatos
- > UCR CE-CERT
- 1084 Columbia Ave, Riverside, CA 92507
- > zisimost@ucr.edu

Special Issue Brake and Tire Non-Exhaust Emissions and Air Pollution

Guest Editor Dr. Zisimos Toumasatos

Deadline 31 July 2025

Danke Merci Grazie Gracias Ευχαριστώ Hvala תודה. Dziękuję Thank you ありがとう Хвала děkuji Спасибо Takk Kiitos Tänan Dank U Multumesc 45