

Data-Driven Insights for Heavy Duty Fleet Emissions

Powered by AVL Data Analytics™

Joshua Orlando

Today's Agenda

- **Fleet Monitoring** Targeted Insights for your customer fleet
- Use Case Examples

Get more out of your data

4 Solution and Benefits

Proven to increase your efficiency

1

2

3

What is driving the automotive industry?

The Data Analytics Marathon

Where Is Your Position in the Data Analytics Marathon?

Make more out of your fleet data

Targeted Fleet Data Analytics

Fleet Data Analytics

AVL's Digital Driver Logbook

Fleet Monitoring

					 Master query: Custom query A 1107 Occupient 	(2022-05-01 00:0)	0 - 2023-06-20 23	59)										
					V OUT Overview												Control	
					DOT OVER NEW												Export	DUDA
					11 UUT ID		11 MILEAGE	ORIVEN (KM)		11 DURATION SY	STEM ON [H]	11 40	CTIVE DAYS		11 INA	CTIVE DAYS		
ents (Overview																	_
Master	query: Custom query (2019-07-16 0	0:00 - 2023-06-20 23:59)			e-NV250_G-1195Y		9444			1018.8		393			23			
Events	Overview				e-NV200_G-126SY		3702			404		360			56			
					e-NV200_G-406SU		3405			390		392			24			
	11 EVENT NAME	11 EVENT TYPE	11 NO. OF EVENTS	11 NO. OF UUTS	Summary:		16551			1812.8		393			23			
-	t have extended	Channe M			Total Entries: 3					1< <	1 > >1						10	~
	engine-on		1858	2	✓ Calendar View													
	AfterStart		7	0			Month Picker			0075		Assistica						
	Drive	Drive	0	0	Jun 2023	н -	June 2023		• H	e-NV200_6-11	987, e-NV200_ 🗸	Dutation Sy	ystem On 🗸	Monthly D	aration System	m Or: 57.7		
	GpsBasicAnalysis		0	0		Monday		Tuesday		Wednesday	Thursday		Friday		laturday		Sunday	
fotal En	tries: 4		IK K 🚺	2 21	CW 22 Total: 22.1						2.5	1	9.1	2	0.1	3	8.2	
GPS Lo	ication of Events				CW 23 Total: 19.4	11.9	5	3.5	6	32 7	0.2	8	0.2	9	0.2	10	a2	1
	-	AN V			Possia			+										

Overview

- Solution for monitoring testing fleets
- Monitoring different aspects of the vehicle operation and validation project progress

Event Detectors

- Measurement based events
- Component based controller events
- Diagnostic Trouble Codes

KPIs

- Fault counters
- Deviations from setpoints/models
- Start-end-min-max-mean of monitoring signals
- Mileage / operating hours / down time
- Testing coverage
- Charts and Tables
 - Mileage accumulation charts
 - Operating point heatmaps
 - Speed distribution bar charts
 - Signal monitoring scatter plots
 - Daily operation calender view
 - Location and routing maps

Functional Digital Twins across the Life Cycle

/ 8

Public

Digital Twin – Reference Architecture

/ 9

Public

Usage and Load Profile Analysis From Fleet Data to Requirements to Validation Cycles with unsupervised clustering

- Understand customer usage and extreme users

- Optimized requirements for quality and costs
- Optimized simulation and test cycles

Analysis of Telemetry Fleet Data

Data Engineering & Geospatial Data Analysis

Operation Profile Analysis Features | Data Acquisition

Fleet in numbers 2020 OCT - 2021 OCT

3082 Around Earth 204 to Moon

40121^{m³}_{Fuel Total} **31** liter | Day

liter | hour

Machine Profiling for Engineering Grouping Possibilities

Series | Model | HP

Horsepower (110, 120, 150)

2108,210 2109,210 2009,210 100,210 100,100 100,100 100,100 100,100 100,100 100,100 100,00 1

Series (Multi, Profi, TERRUS)

Date (Day | Week | Month)

Operating Hours - Distribution Average Operating Hours per Day

Daily Operating Hours

From 2020-10-28 to 2021-09-28

Operating Hours - Activity Heatmap When on the day the vehicles are operated

Activity Heatmap

Created: 2021-10-15 | data from 2020-10-28 to 2021-10-07 | 9493 unique vehicles | 3994187 Hours Total

Most of the vehicles are running between 5am to 7pm

N

T

Public / 1

Forecast the Next Service Date Proposed Modeling Process

Public / 17

Forecast the Next Service Date Training Data for the Forecasting Model

Example:

VIN	Day	Month	CW	Country	Average Temp.	Min. Temp.	Max. Temp.	Avg. Operation Hours
AX501	Monday	January	4	Finland	-1.9	-5.5	-0.5	3.1
AX501	Tuesday	January	4	Finland	-1.9	-6.4	0.6	3.3
AX501	Wednesday	January	4	Finland	-1.5	-5.9	-0.4	3.4
AX501	Thursday	January	4	Finland	-1.3	-5.6	-0.1	3.2
AX501	Friday	January	4	Finland	-1.1	-6.2	-0.4	3.2
AX501	Saturday	January	4	Finland	-2.1	-5.6	-0.4	3.0
AX501	Sunday	January	4	Finland	-1.3	-6.2	-1.0	2.2
AX501	Monday	February	5	Finland	-2.4	-6.6	0.0	2.0
AX501	Tuesday	February	5	Finland	-2.3	-6.8	0.1	2.5
L			ſ]	

explanatory variables (features)

response (predicted) variable

Further Inputs

- Customer Operation Profile Groups (e.g., based on engine map, usage behavior, percentage of certain field operations, usage profile, etc.)
 → unsupervised
- Vehicle model, type (e.g., harvester, tractor, etc.)
- Rainy & sunny days based on historical climate for this location (e.g., 20 out of 30 rainy days)

Analysis of Telemetry Fleet Data

Onboard Emission Sensing for Heavy Duty Applications

UC Riverside System Setup

UNIVERSITY OF CALIFORNIA, RIVERSIDE

On-Board Sensing, Analysis, and Reporting (OSAR) System Design

UNIVERSITY OF CALIFORNIA, RIVERSIDE

/ 20

UNIVERSITY OF CALIFORNIA, RIVERSIDE

In partnership with

UCRIVERSIDE

Generation 2 systems completed using NOx and PM commercial sensors and 30 are installed operating for 1 year or more.

EmTrac-6 Core Telemetry System

UCRIVERSIDE

For more information on EmTrac: pt@emisense.com

Analysis of Telemetry Fleet Data

OSAR Emission Analysis

NOx Emissions by Fuel Technology

/ 22

Public

PM Emissions by Fuel Technology

Public

/ 23

Deeper Dive into Vehicle 23005

Duration_h by Day

Emission Analysis with ML-Based Analytics

- Event-Based Analytics
 - Efficient analysis of large time series data
 - Event-based channel aggregation: operating modes, range types
- Model-based Data Analytics
 - Event-based ML models
 - Model Inputs: Engine Speed, Vehicle Speed, Engine Fuel Rate, O2, Ambient Temp, ..
 - Model Outputs: NOx, PM, ...
 - Meta-data: fuel technology, model type, vocation
 - ML-Based Analysis
 - Sensitivity Analysis
 - Root Cause Analysis
 - Anomaly Detection

/ 25

Correlation & Model-Based Analysis

NOx vs Engine Speed

Vehicle 23005: logNOx_gs vs EngineSpeed_bins

/ 26

Correlation & Model-Based Analysis

NOx vs Engine Fuel Rate

Vehicle 23005: logNOx_gs vs EngineFuelRate_mean_15_bins

ML-Based Sensitivity Analysis: NOx

Operation Mode

Range Type (driving operation only)

ML-Based Sensitivity Analysis: PM

Operation Mode

Range Type (driving)

Analysis of Telemetry Fleet Data

Fleet Shapley Analysis

Main NOx Influence Parameters

Range Types: Low: Trip time < 5 Min Medium: Trip time < 60 Min High: Trip time > 60 Min

NOx_gs shapley analysis for XN40 (NG)

Main PM Influence Parameters

Range Types:

Low: Trip time < 5 Min Medium: Trip time < 60 Min High: Trip time > 60 Min

Technology Route Selection Proposed Modeling Process

Transform Data to insights

Data Analytics Solution

Transform Data Streams to Application Specific Insights

Boosting Engineering Efficiency

AVL 💑

Transform Data to insights

Benefits

AVL Data Solution[™]

OFFICE

SIMULATION

Benefits:

Reduced data processing up to 40% by standardized automated analytics

Reduced test amount up to **20%** by cross environment data analytics

DECAREONISATION

OFFICE

ALENablet

VALIDATION

Data re-use across domains

AFTER WARVET

AVL 🐝

502

Frontioading & Correlation

AVI Dara Management Processing and analytics

VI Engineering Inside

TESTFLEET

. 6

Backup

Shapley values are a method based on game theory to explain the output of machine learning models. They fairly assign a value to each feature, representing its contribution to the model's prediction.

• Imagine each feature as a player in a cooperative game. The model's prediction is the payout. Shapley values calculate the average contribution of each feature across all possible feature combinations.

The Shapley value ϕ_i for feature i is given by:

Where:

- S is a subset of all features F that does not include i
- v(S) is the model prediction using subset S
- |S|! and |F|! are factorial terms for weighting

