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Today’s Agenda

1 The Data Analytics Marathon
What are you doing with data?

2 Fleet Monitoring

Targeted Insights for your customer fleet

3 Use Case Examples
Get more out of your data

4 Solution and Benefits

Proven to increase your efficiency
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What is driving the automotive industry?

The Data Analytics
Marathon

Public



Where Is Your Position in the Data Analytics Marathon?

100%

80%
0% Last Mile

A Value

PN T EEEPR

Eﬁacin-eumtorﬁenrg COMm

S - O g 2]

- o G —) ’ — “:l > Fw
Data Data Data Data Insight Take
Collection Preparation Visualization Analysis Communication Action

Source: Forbes.com

Joshua Orlando | Data Intelligence | 02 April 2025 |



AVL 3

Make more out of your fleet data

Targeted Fleet Data
Analytics




Fleet Data Analytics
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Fleet Monitoring

UUT Operation

= Overview

» Solution for monitoring testing fleets

e e S = Monitoring different aspects of the vehicle operation and
L ' validation project progress

= Event Detectors
= Measurement based events
= Component based controller events
» Diagnostic Trouble Codes

= KPIs

» Fault counters

= Deviations from setpoints/models
Start-end-min-max-mean of monitoring signals
Mileage / operating hours / down time
Testing coverage

= Charts and Tables

» Mileage accumulation charts

» Operating point heatmaps
Speed distribution bar charts
Signal monitoring scatter plots
Daily operation calender view
Location and routing maps
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Functional Digital Twins across the Life Cycle

@ Scalable Digital Twin
Conversion @
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Digital Twin — Reference Architecture

AI Inside Al Inside
Load Analysis and Usage based Load profile <
Usage Profile Analysis | anomaly detection prediction RUL
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Usage and Load Profile Analysis
From Fleet Data to Requirements to Validation Cycles with unsupervised clustering

<« 1. Damaging operating and aggravating conditions
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Usage profile differentiation Standard vs. Extreme Usage Similarity Analysis

Benefits: - Understand customer usage and extreme users
- Optimized requirements for quality and costs
- Optimized simulation and test cycles
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Analysis of Telemetry Fleet Data

Data Engineering &
Geospatial Data Analysis




Operation Profile Analysis

Features | Data Acquisition

 Engine Speed [rpm]
 Engine load [%]
+ Fuel consumption [I/h]
« Engine operating hours [h]
« Ambient Air Temp [°C]

Vehicle speed [kph]
Transmission Gear [enum]
Rear PTO speed [rpm]
Hich Position [%]

[ Draft Force kN]

 Front PTO Speed [rpm]

> 50 Features
CAN-Signals

1 Sampling Rate
Hz | Every 1s
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Fleet in numbers
2020 OCT = 2021 OCT
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Machine Profiling for Engineering

Grouping Possibilities

orking clas istuson by el seres ngine oot
= 3
[ = b B B 5 5 - u
i £ i is [ 2 . - s .
w =] oo . ® s : < . :
; .
E .
@ % 2 ) . . g
s = ¢ i if v o
£ b g 3 & 7 Y b o & B - s z
-
= 5 8 i} 5 . = .
%, g Py e, i, "y " e 2 4 i . = = = 2 o o

Series | Model | HP Horsepower (110, 120, 150) Series ( Multi, Profi, TERRUS)

7T =

uuuuuuuuuuuuuu

I
Ul

Country (GBR) Date (Day | Week | Month)) Total (Working Class)

[l
[
I

Joshua Orlando | Data Intelligence | 02 April 2025 |



Operating Hours - Distribution

Average Operating Hours per Day

Daily Operating Hours
From 2020-10-28 to 2021-09-28

I I Average per Day ~ 3.5h (mean)

11.05

Percent

6.88

0.07 0.04 0.03 0.02 0.02 0.01 0.01 0.01
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Operating Hours - Activity Heatmap

When on the day the vehicles are operated

Activity Heatmap

Created: 2021-10-15 | data from 2020-10-28 to 2021-10-07 | 9493 unique vehicles | 3994187 Hours Total Most Of the vehicles are running between 5am to 7pm
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Forecast the Next Service Date
Proposed Modeling Process

1.) Training Data

0 EEEEEEIENENT
Z AX501 Monday January a Finland -1.9 5.5 0.5 31
H AX501 Tuesday January 4 Finland -1.9 -6.4 0.6 33
Z AX501  Wednesday  January 4 Finland 15 5.9 0.4 34 engifn::tr?r:;
—] AX501 Thursday Januan Y 4 Finland -13 5.6 -0.1 3.2
< AX501 Friday January 4 Finland -1.1 6.2 -0.4 32
m AX501 Saturday January a Finland 2.1 5.6 0.4 3.0 Validation
P AXS01 Sunday January 4 Finland 13 6.2 -1.0 2.2

AX501 Monday February =i Finland -2.4 -6.6 0.0 2.0

AXS501 Tuesday February i Finland e -6.8 0.1 25

2.) Model Creation

3.) Model Validation

Train Test
N N O O O O |

X Kk iterations
Test Train
Y
| J

T
k parts

4.) Final Model

1.) Input Data

Average Min. Max.
January 4 Finland -1.9 5.5 -0.5

AX501 Monday

INFERENCE

AX501 Monday February 5 Finland -2.4 -6.6 0.0

AX501 Tuesday February 5 Finland 2.3 6.8 0.1

2.) Model Execution

AX501 Tuesday January a Finland -19 -6.4 0.6

AXS01  Wednesday ~ January a Finland -15 5.9 -0.4

AX501 Thursday January a Finland 13 5.6 0.1

AX501 Friday January a Finland -1 -6.2 -0.4

AX501 saturday January a Finland 2.1 5.6 0.4
»
>

AX501 Sunday January a Finland -13 6.2 -1.0 .

3.) Predict Operating Hours 4.) Service-Date Forecast

Predicted Operating Hours
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Forecast the Next Service Date
Training Data for the Forecasting Model

Example:

Average Min. Max Avg.
Country 9 X Operation
Temp. Temp. Temp. e Further Inputs

Customer Operation Profile
AX501 Monday January Finland GrOUpS (e g based on
.g.,
AX501 Tuesday January 4 Finland -1.9 -6.4 0.6 33 englne_ mapl usage
behavior, percentage of
AX501 Wednesday January 4 Finland -1.5 -5.9 -0.4 3.4 certain field Operations,
usage profile, etc.)
AX501 Thursday January 4 Finland -1.3 5.6 -0.1 3.2 9 unsupervised
o1 o J ) o > s ou iy * Vehicle model, type (e.qg.,
riday anuary inlan -1. -6. -0. .
harvester, tractor, etc.)
AX501 Saturday January 4 Finland 2.1 -5.6 0.4 3.0 * Ram_y & S_unnY_dayS based_
on historical climate for this
AX501 Sunday January 4 Finland -1.3 -6.2 -1.0 2.2 location (e.g., 20 out of 30
rainy days)
AX501 Monday February 5 Finland 2.4 -6.6 0.0 2.0
AX501 Tuesday February 5 Finland -2.3 -6.8 0.1 2.5
\ Y H_'_I
explanatory variables (features) response (predicted)

variable
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Analysis of Telemetry Fleet Data

Onboard Emission Sensing for
Heavy Duty Applications




UC Riverside System Setup

UNIVERSITY OF CALIFORNIA, RIVERSIDE !J im? RI vERS I D E

On-Board Sensing, Analysis, and Reporting (OSAR)
System Design

s

UNIVERSITY OF CALIFORNIA, RIVERSIDE ‘?!:'l 1: R Iv EIR”IS”I ﬁt
/‘ Generation 2 systems completed using NOx and PM

{ S o commercial sensors and 30 are installed operating for 1 year or
OSAR more.

ECM |

EmTrac—6 Core Telemetry System

saa)

MNOx/02 Module PM Module Data Logger GPS & LTE
(CAN, GPS, LTE) Antennas
Typical sensor package includes NOx, P."r L,eﬁuh vehicle/equipment
CAN, and GPS

O

UNIVERSITY OF CALIFORNIA, RIVERSIDE

ag

- Em iSense _ - _ a
in partnership with a;% For mare information on EmTrac: pl@emisenss. com
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Analysis of Telemetry Fleet Data

OSAR Emission Analysis




NOx Emissions by Fuel Technology

AVL Data Analytics™

Emission Analysis Fleet Aggregations Vehicle Time Series

(o) et DR / @

NOx Analysis "4
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NOx_gs by Range Type - Diesel NOx_gs by Range Type - NG
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B nOx_gs (mean, mean) medium / driving
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Range Types:

Low: Trip time < 5 Min
Medium: Trip time < 60 Min
High: Trip time > 60 Min
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PM Emissions by Fuel Technology
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b
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>

Projects: OSAR - Usage Space Analysis

AVL Data Analytics™

Dashboards | @ Master query: ‘Time range: 16.07.2019 00:00 - 01.04.2025 23:59° () )
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Range Types:

Low: Trip time < 5 Min
Medium: Trip time < 60 Min
High: Trip time > 60 Min
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Deeper Dive into Vehicle 23005

Duration_h by Day
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Emission Analysis with ML-Based Analytics

ML Data Model

= Event-Based Analytics
— Efficient analysis of large time series data log(NOx) = f(x1,%3, ... , Xn)

— Event-based channel aggregation: operating modes,
range types

. Shapley values: X1, X2, ... feature

= Model-based Data Analytlcs non-linear values, e.g. ambient
contribution of each conditions, control

— Event-based ML models feature on the inputs, driver, incl.

model output past channel values
— Model Inputs: Engine Speed, Vehicle Speed, Engine Fuel

Rate, 02, Ambient Temp, ..
— MOdeI Outputs: NOX, PM, Shapley Values for logNOx_gs (23005)

— Meta-data: fuel technology, model type, vocation Altitude_mean_120 1

- M L- Ba Sed An a | yS i S EngineFuelRate_mean_15 - _
- Sensitivity AnaIYSiS EngineFuelRate § _

— Root Cause Analysis 02_sensar | -
— Anomaly Detection

AcceleratorPedalPositionl -

e _

T T T T T T
—0.03 —0.02 —0.01 0.00 0.01 0.02
Shapley Value logNOx_gs




Correlation & Model-Based Analysis

NOXx vs Engine Speed

Effect of Model
Inputs not
identified by
Correlation

logNOx_gs

=10 4

=12 4

Vehicle 23005: logNOx_gs vs EngineSpeed_bins

Operation
I driving
I idle

Correlation Statistics Shapley Values
OperaFic!n R MOdeI'based
I driving . .
——. Analytics explain

isolated effect of
input features

logNOx_gs_SHAP_EngineSpeed

—1.0 A

T
(105.0, 815.875]

T T T T T
(815.875, 1090.0] (1090.0, 2789.0] (105.0, 815.875] (815.875, 1090.0] (1090.0, 2789.0]

EngineSpeed_bins EngineSpeed_bins
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Correlation & Model-Based Analysis

NOXx vs Engine Fuel Rate

Vehicle 23005: logNOx_gs vs EngineFuelRate_mean_15_ bins

Correlation Statistics Shapley Values
Operation Operation
I driving 0.8 mmm driving 8
| mm idle = idle g i S
0.6
uw
HI
-4 1 § 04
£
EI
[
e 0.24
% =
= S 0.0
g b,
—8 4 %
v, —0.2
v
E N
>
S 0.4
—-10 ~ g E ’
o]
_06 4
_12 4
I —0.8 1 o
T T T T T T
(0.0, 2.21] (2.21, 4.483] (4.483, 59.987] (0.0, 2.21] (2.21, 4.483] (4.483, 59.987]
EngineFuelRate_mean_15_bins EngineFuelRate_mean_15_bins
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ML-Based Sensitivity Analysis: NOX

Operation Mode Range Type (driving operation only)

Shapley Values for logNOx_gs (23005) Shapley Values for logNOx_gs (23005)
0.4 4 0.6 4
Operation Range Type
l dle  low
0.3 B driving 0.5 . medium
= high
0-27 0.4 -
w w
=2 0.1 =
8 S 0.3
= =
: ___mm :
g oo - e z
] n 0.2
701 -
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-0.2 - - -
0.0
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o e el o Lo of e 5 0
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@' va{\'b\ o @“e‘ X2 a2 o @Be;b\ o C')‘“e‘ G J% -
‘a‘_oi <« p o »\,&0 5 « wa\?k &.&-A
Ael e aet o
& o & o
Input Features Input Features

A i i i Range Types:
Large fleet datasets require isolated analysis of different Low: Trip time < 5 Min

data groups, e.g. based on opgratlon modes,_ fuel Medium: Trip time < 60 Min
technology, vehicle types, environment conditions, ... High: Trip time > 60 Min
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ML-Based Sensitivity Analysis: PM

Operation Mode Range Type (driving)

Shapley Values for logPM_mgs (23005) Shapley Values for logPM_mgs (23005)
e W
mm driving . medium
0.5 = high
0.2 4
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A i i i Range Types:
Large fleet datasets require isolated analysis of different Low: Trip time < 5 Min

data groups, e.g. based on opgratlon modes,_ fuel Medium: Trip time < 60 Min
technology, vehicle types, environment conditions, ... High: Trip time > 60 Min
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Analysis of Telemetry Fleet Data

Fleet Shapley Analysis




Main NOx Influence Parameters

NOx_gs shapley analysis for T370 (Diesel)

0.014 NOx_gs shapley analysis for XN40 (NG)
BN EngineSpeed 0.012 4 i
i Spead mean 120 I EngineFuelRate
' Bl EngineCoolantTemperature_mean_120 - DZ_Sensor
e 0.010 - I ActualEnginePercentTorque
] - BN Rest

0.010 mmm EngineFuelRate_mean_10 — AnfbientﬁirTemperature

5008 - [— Act_ualEngmePerr:entmrque_mean_lzﬁ 0.008 - mmm AcceleratorPedalPositionl_mean 120
%I = ﬁ]nt_ude_mean_lzﬂ ) B EngineSpeed std 10
5 B EngineFuelRate 5' 0.006 - B EngineSpeed
Z 0.006 - <

— 0.004 -

S < 0.002 -

0.000 4 0.000 -

X B & o E & &
X B & S 3 o & O S o Y
'Q'\q 30 &6'6\ .c}q '>° Q‘S‘\&@ \.\\P Q}S\\ _Qci' ﬁb\ \Q}:\ . \0\’ zb\ Q\\>
o & &ﬁ- 14 3@' O 4\*‘ oy & & ® & e
S s ° $ & & 8 & &
b¢’ '\’.{\Q _é@ é?@ & &
& s

Range Types:

Low: Trip time < 5 Min
Medium: Trip time < 60 Min
High: Trip time > 60 Min
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Main PM Influence Parameters

PM_mgs shapley analysis for XN40 (NG)

PM_mags shapley analysis for T370 (Diesel)

—— 1.0 BN EngineFuelRate
EEE EngineSpee
] : == n
0-200 mmm EngineCoolantTemperature_mean_120 Speeld_meape_{:.zli N
0.175 - mmm ActualEnginePercentTorgue_mean_10 0.8 4 W AcceleratorPedalPositionl
BN Rest ] R.E'St
0.150 - B EngineSpeed mean 120 mmm EngineCoolantTemperature_mean_10
B ActualEnginePercentTorque_mean_120 EEE EngineSpeed_mean_120
2 0.125 - s EngineFuelRate y 0.6 7 mm Speed_std_120
E, B EngineSpeed_mean_10 E,
Z 0.100 - z
0.075 4
0.050 +
0.025 4
0.000 -

Range Types:

Low: Trip time < 5 Min
Medium: Trip time < 60 Min
High: Trip time > 60 Min
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Technology Route Selection
Proposed Modeling Process

1.) Training Data

U NN
Z AX501 Monday January a Finland -1.9 5.5 0.5 31
H AX501 Tuesday January 4 Finland -1.9 -6.4 0.6 33
Z AX501 Wednesday January 4 Finland =T -5.9 -0.4 34
—] AX501 Thursday Januan Y 4 Finland -13 5.6 -0.1 3.2
< AX501 Friday January 4 Finland -1.1 6.2 -0.4 32
m AX501 Saturday January a Finland 2.1 5.6 0.4 3.0
P AXS01 Sunday January 4 Finland 13 6.2 -1.0 2.2
AX501 Monday February =i Finland -2.4 -6.6 0.0 2.0
AXS501 Tuesday February =i Finland e -6.8 0.1 25

3.) Model Validation

: } kiterations »
1
k parts

2.) Model Creation 4.) Final Model

Feature
selection &

Feature

engineering Feduction
Test Train
— [ |
Validation :gf-fit:;"é L J

evaluation

1.) Input Data

L
O ElEIEIENE NS
Z AX501 Monday January a Finland -19 -5.5 -0.5
AX501 Tuesday January a Finland -19 -6.4 0.6
L
AXS01  Wednesday ~ January a Finland -15 5.9 -0.4
m AX501 Thursday January a Finland 13 5.6 0.1
m AX501 Friday January a Finland -1 -6.2 -0.4
u- AX501 saturday January a Finland 2.1 5.6 0.4
Z AX501 Sunday January a Finland -13 6.2 -1.0
AX501 Monday February 5 Finland -2.4 6.6 0.0
AX501 Tuesday February 5 Finland 2.3 6.8 0.1

2.) Model Execution

‘ |
timre

4.) Technology Route
Selection

3.) Predicting Emissions

Predicted Emissions
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Transform Data to insights

Data Analytics Solutio




Transform Data Streams to Application Specific Insights

AVL DATA MANAGEMENT,
PROCESSING AND ANALYTICS™ @[@J

Toolboxes

Powered by
AI and ML

RDE

Emission

duct
etence

Fleet BEV HEV

2R EE

Battery Damage Calibration

SaaS

Subscription

AVL 3

(o)

eering
rtise

End of line

Powered by
Microsoft Azure™
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Boosting Engineering Efficiency

- -

Observe the expected and show the outliers
Fully automated and traceable decision basis for product maturity

AN W

Find the unknown with intelligent anomaly detection
Find the needle in the haystack, focus on exceptions where it counts

E W

Predict the future with advanced machine learning
Take augmented decision based on trustworthy predictions

<

4

« %

Nikolaus Keuth; Sebastijan Sabati | Data Management, Processing and Analytics | 26
Marz 2025 |
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Transform Data to insights

Benefits




Benefits:
Reduced data processing up to 40%b0

by standardized automated analytics
Reduced test amount up to 20%b0

by cross environment data analytics

Basis for various AI applications
for further efficiency gains

Nikolaus Keuth; Sebastijan Sabati | Data Management, Processing and Analytics | 26
Marz 2025 |
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Backup




What is a Shapley Value

Shapley values are a method based on game theory to explain the output of machine
learning models. They fairly assign a value to each feature, representing its

contribution to the model's prediction.

« Imagine each feature as a player in a cooperative game. The model's prediction is the payout. Shapley
values calculate the average contribution of each feature across all possible feature combinations.

Feature Contributions to a Prediction

The Shapley value @i for feature i is given by:

@i =2 [ (S|t *(F] - 1Sl - D/ IF[Y) * (v(S
UA{i}) - v(S)) ]

Where:
« S s a subset of all features F that does not include i

« Vv(S) is the model prediction using subset S
« |S|!'and |F|! are factorial terms for weighting

SHAP Value

Feature A Feature B Feature C

Nikolaus Keuth; Sebastijan Sabati | Data Management, Processing and Analytics | 26

Marz 2025 |
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