

Ultra-Low NOx Measurement Utilizing Advanced Infrared Techniques

Joshua Israel, Horiba OSAR Conference 2025

IRLAM : InfraRed Laser Absorption Modulation

High accuracy infrared spectroscopy technology developed by HORIBA

Quantum Cascade Laser (QCL)

Narrow-wavelength High directivity

Herriot Cell

Small volume → fast response Long optical path

Signal Processing Algorithm

Extracts "features" from absorption signal Computationally moderate

Target Interference Environment Coexistence

HORIBA

HORIBA IRLAM Portfolio

NO₂, CH₄, THC

EPA Guidance Letter

Dear Manufacturer:

Approved Feb 24, 2025

 The approval is limited to utilizing HORIBA IRLAM analyzers for measurement of NO and NO2 species in heavy-duty engine and light-duty vehicle certification testing for Model Years 2025

Implementation, Analysis and Compliance Division Office of Transportation and Air Quality

Link to EPA website: https://dis.epa.gov/otaqpub/display_file.jsp?docid=62326&flag=1

Test Program

Sample Data, HD Engine

Heavy-duty Engine Testing

Excellent correlation with CLD High and low NO_x concentrations

Sample Data, HD Engine

Ultra-low NOx concentrations

Test Results

Heavy-duty Engine Testing Results

	Cold-Start FTP								
	Test #	CLD NOX_dc	IRLAM NOX_dc	Diff		Test #	CLD NOX_dc	IRLAM NOX_dc	Diff
		(g/hp-hr)	(g/hp-hr)	Yref - Y			(g/hp-hr)	(g/hp-hr)	Yref - Y
CFTP	1	0.2497	0.2479	0.0018	HFTP	1	0.0047	0.0040	0.0007
	2	0.2583	0.2571	0.0012		2	0.0044	0.0044	0.0000
	3	0.2418	0.2376	0.0042		3	0.0051	0.0051	0.0000
	4	0.2372	0.2357	0.0015		4	0.0052	0.0047	0.0005
	5	0.2500	0.2501	-0.0001		5	0.0052	0.0049	0.0003
	6	0.2427	0.2403	0.0024		6	0.0045	0.0049	-0.0004
	7	0.2439	0.2428	0.0011		7	0.0050	0.0041	0.0009

Hot start average difference: ~0.00029 g/bhp-hr (<1% of the MY27 NOx standard)

Statistical Analysis

Heavy-duty Engine Testing

NO₂ Measurement

Sample Data, LDV

Light-Duty Vehicle Testing

Excellent correlation with CLD, High and low NOx concentration

Statistical Equivalence

No statistically significant difference between IRLAM measurements and the regulatory reference method for NO + NO₂ (CLD)

FTP-75 Duty Cycle Statistical Analysis

Portable Emissions Measurement System

MEXAcube

Measured components and ranges

IRLAM by HORIBA						
CO	0 - 8000 ppm, 0 - 12 vol%					
CO ₂	0 - 20 vol%					
NO	0 - 2000 ppm					
NO ₂	0 - 800 ppm					
N ₂ O	0 - 1000 ppm					
NH ₃	0 - 1500 ppm					
НСНО	0 - 50 ppm					
CH ₄	0 - 2000 ppm, 0 - 10000 ppm					

Flame Ionization Detector

THC 0 - 10000 ppmC

Robust Design for On-board Testing

Ambient pressure 100 ~ 70 kPa (0 ~ 3000 m equivalent)

Random vibration 2G, Multi-axis

Ambient temperature -10 \sim 45 °C

● CO(L) ● CO(H) ● CO2 ● NO ● NO2 ● N2O ● NH3 ● HCHO ● CH4(L) ● CH4(H)

Near-zero Interference

Drift / Noise Performance

No meaningful zero drift observed throughout testing

Average Drift:

- Zero drift ~0.01 ppm
- Span drift ~0.5 ppm (100 ppm fs)

2σ zero noise for NO and NO2 channels ~0.015 ppm.

Calibration Stability / Automation

PEMS Correlation

Trip composition is based on JRDE.

PEMS Correlation

	CO [mg/km]	CO2 [g/km]	NO [mg/km]	NOx [mg/km]	NO2 [mg/km]	N2O [mg/km]	NH3 [mg/km]	HCHO [mg/km]	CH4 [mg/km]
OBS-ONE-GS02	57.0	117.9	2.3	3.0	0.7				
MEXAcube	63.5	117.1	3.0	3.2	0.2	0.4	1.1	0.012	1.6
Difference	6.5	-0.8	0.7	0.2	-0.5				
Difference	11.3%	-0.7%	30.4%	6.6%	-71.4%				
Euro 7 proposal limit (LDV)	500			60			20		

* Masses were calculated with same exhaust flow rate from pitot tube.

2025 and Beyond

- Expanded instrument portfolio
- Continued demonstrations for CARB and EPA; Inclusion in EU7
- Publication of research

This document is our proprietary material and is protected by copyright law. Please do not use, reproduce, transmit, or disclose (including orally) all or part of this document without our prior approval. Thank you.

