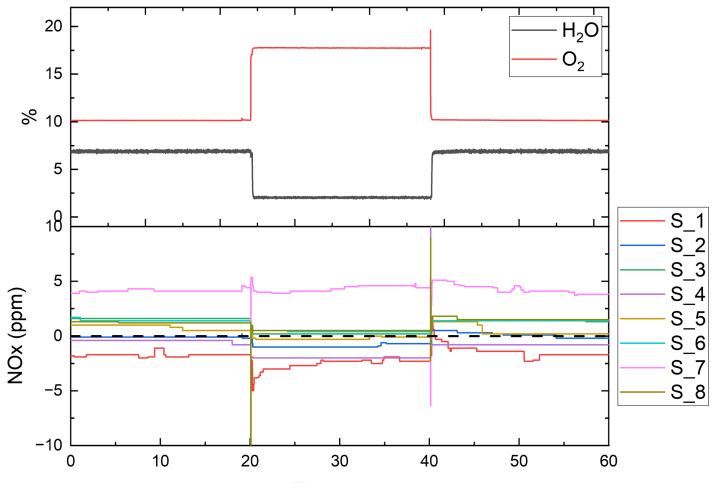


Emission Measurement with NOx Sensors in the Presence of HC's & H₂


Yang Li and Tyler Rash

April 17, 2025

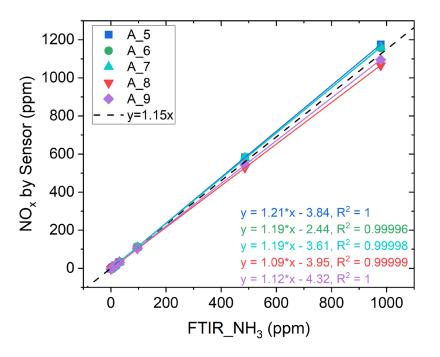
The 14th OSAR Conference

State **1**: 7% H₂O, 10% O₂, 6.5% CO₂ *State* **2**: 2% H₂O, 17.5% O₂, 2% CO₂

Oppm NOx, fast O₂ Change: positive drift @state 1 drift lower @ state 2

Time (min)

Background

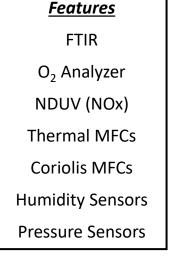

- On-board monitoring relies on the vehicle's sensors to continuously monitor emissions for emissions compliance, system repair, or fleet emissions inventory measurement.
- Understanding the performance of NO_x sensor is crucial for both lean and stoichiometric internal combustion engine (ICE) applications as their sensitivities may vary.
- NO_x sensors measure both O₂ and NO_x while being cross-sensitive to several species on each channel.
- Here we characterize and discuss NO_x sensor cross-sensitivities to various reducing agents in the context of stoichiometric CNG engines and H₂-ICE applications.

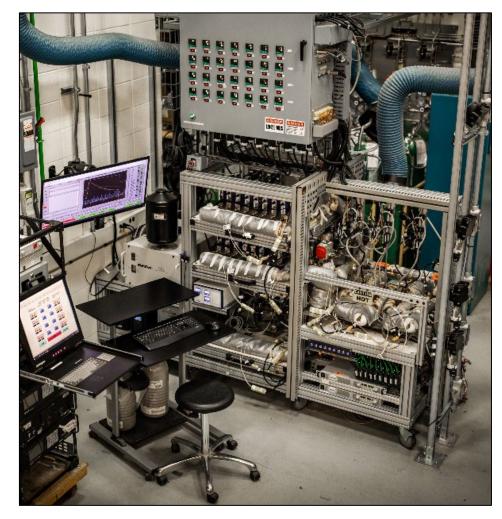
Potential NO_x/NH₃ Emission Deconvolution Method for Stoichiometric Applications

- NO_x sensors have a well known cross-sensitivity on their NO_x channel to NH₃ (see right).
- For stoichiometric-ICE applications both NO_x (lean) and NH₃ (rich) may be present.
- The proposed method relies on the NO_x sensor's O₂ channel to arbitrate between when the NO_x channel is responding to NO_x (lean) vs NH₃ (rich).

Outstanding Questions:

- 1. What species/factors impact the sensor's O₂ readings and may negatively impact the sensor's ability to arbitrate between rich and lean vehicle operation?
- 2. Is the sensor's NH_3 cross-sensitivity consistent across both rich and lean operation?
- 3. What are the implications of the sensor's H_2 sensitivity for lean burn H2-ICE applications?
- 4. Are there any situations on stoichiometric systems, healthy or failed, in which you will have the simultaneous presence of NO_x and NH_3 or NO_x when it is rich and NH_3 when it is lean?
- 5. Are OEM and aftermarket NO_x sensors capable?


Methods: Sensor Exerciser and Test Instrument (SETI)


Primary sensor characterization test bench:

- Temperature Range: 20-550 °C.
- Isobaric flow sweep capability (<40 psi).
- Flow Range: 20 250 SLPM.
- ≈0.2 sec response time measurements.
- Independently controlled H₂, CH₄, C₃H₈, CO, CO₂, N₂, O₂, H₂O, NO, NO₂, & NH₃ concentrations.

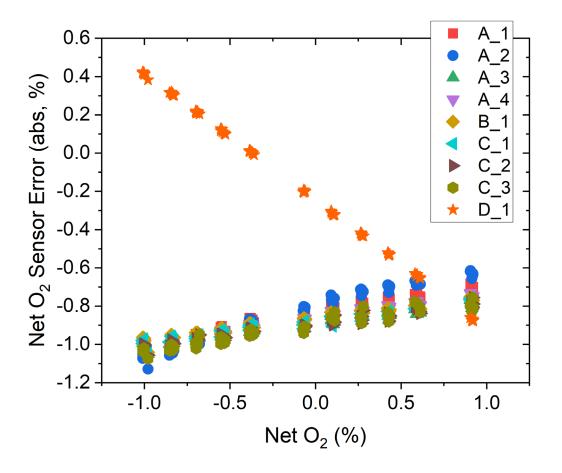
Here we tested with two HC mixtures:

- Mix1: 1% CO, 3000 ppm H₂, 3000 ppm CH₄, 0 ppm NO, at 150 °C.
- Mix2: 0% CO, 0 ppm H₂, 2200 ppm CH₄, 0 ppm NO, at 350 °C.

Concept Introduction: "Net O₂"

- Net O₂ is the O₂ concentration less the concentration of reducing agents as considered based on the amount of O₂ needed to fully oxidize said reducing agents.
- OBD-style NO_x and O₂ sensors are designed/expected to measure "Net O₂" and not O₂ concentration.
- When "Net O₂" = 0% we consider this to be the definition of the λ=1, stoichiometric condition. All "rich" conditions are defined by Net O₂ concentrations less than zero whereas "lean" conditions correspond to positive Net O₂ concentrations.
- Example Calculation:
 - O₂ concentration = 10% as measured by a reference analyzer (e.g. paramagnetic)
 - CH_4 concentration = 2% as measured by a reference analyzer (e.g. FTIR)
 - H₂ concentration = 1% as measured by a reference analyzer (e.g. mass flow meters)

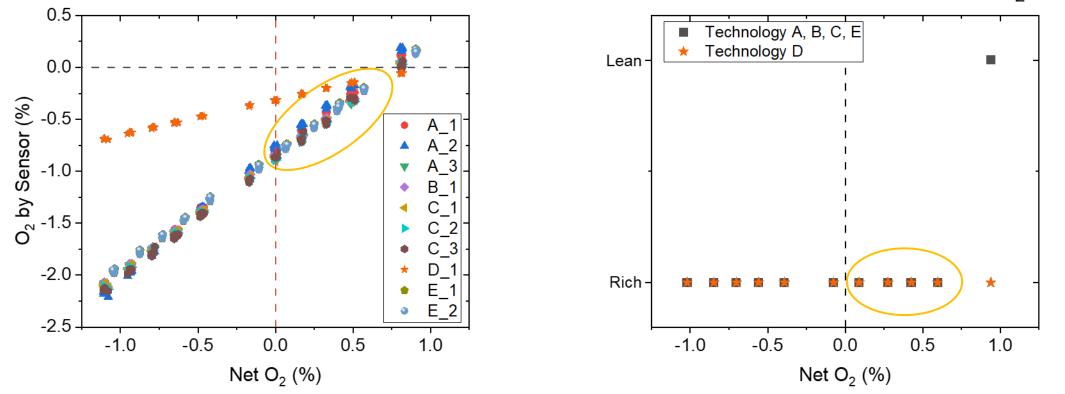
$$CH_4 + 2 \cdot O_2 \rightarrow CO_2 + 2 \cdot H_2O \tag{1}$$


$$H_2 + \frac{1}{2} \cdot 0_2 \to H_2 0$$
 (2)

• Net $O_2 = 10\% - 4\%$ (CH₄) - 0.5% (H₂) = 5.5%

O_2 Channel Accuracy with NH_3 vs. λ (HC Mix 1)

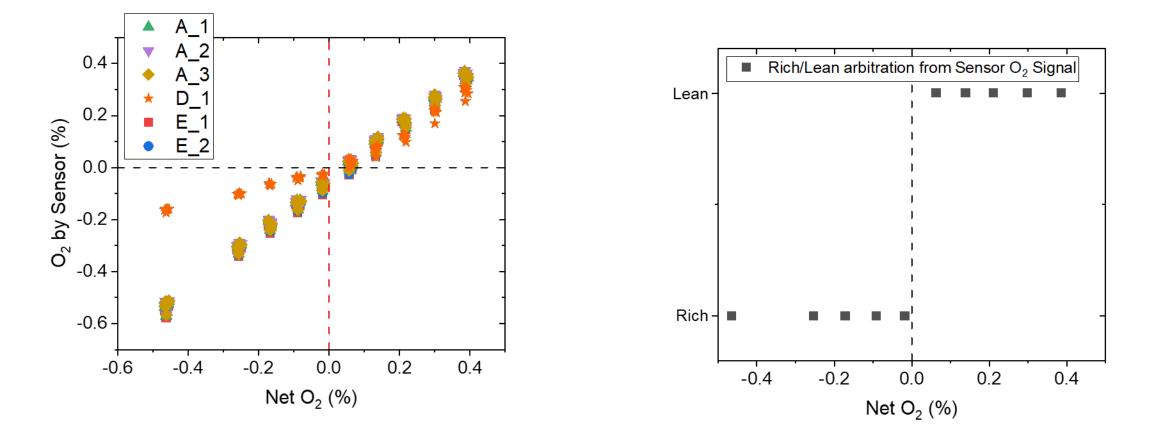
Test condition:


- 1% CO, 3000ppm H₂, 3000ppm CH₄, 0ppm NO
- 150°C
- NH₃: 256, 128, 64, 32, 16, 8, 0ppm (multiple points for each sensor at each O₂ concentration)

- Sensor technologies A, B, C are showing a weak positive dependence as O₂ increases and an overall negative bias.
- Sensor technology D is showing a negative dependence as O₂ increases.

Prepared by Cummins for OSAR

O₂ Arbitration – Lean vs Rich with HC Mix 1?

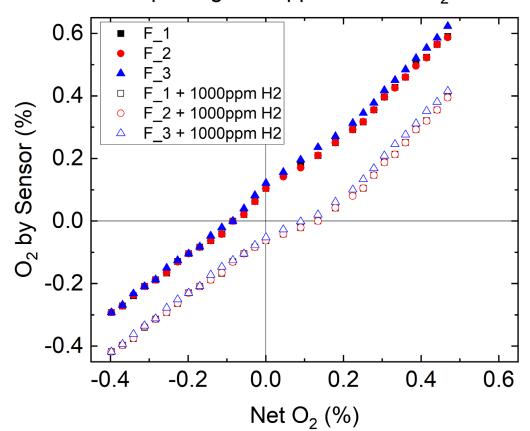


Rich/Lean arbitration from Sensor O₂ Signal

- 1% CO, 3000 ppm H₂, 3000 ppm CH₄, 0 ppm NO, at 150 °C.
- The NO_x sensors are under-reporting the O₂ level and read rich when it's lean.

Prepared by Cummins for OSAR

O₂ Arbitration – Lean vs Rich with HC *Mix 2*?

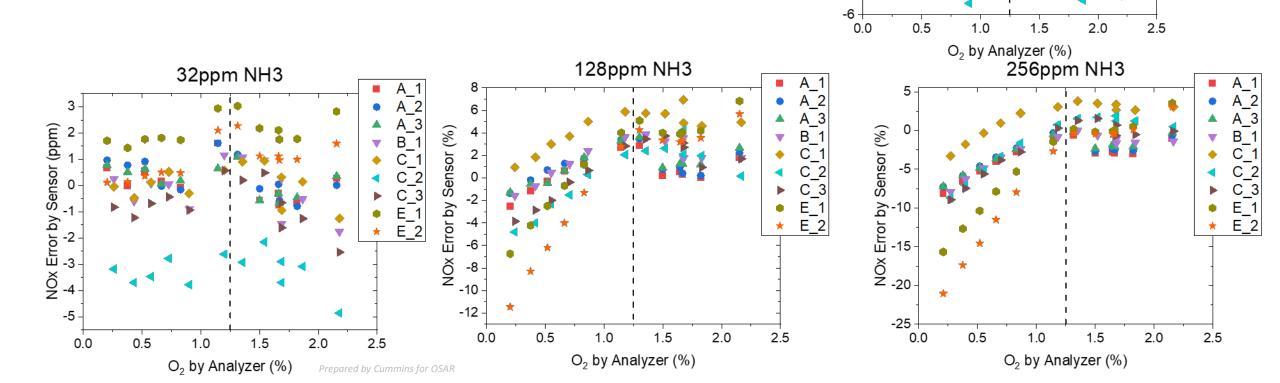


- 0% CO, 0 ppm H₂, 2200 ppm CH₄, 0 ppm NO, at 350 °C.
- NH₃: 256, 128, 64, 32, 16, 8, 0ppm.
- The NO_x sensors are *slightly* under-reporting the O₂ level and could distinguish rich vs lean.

Sensor Supplier Observations:

HC Mixtures of Propane, CO, and H₂

- Schaeffler tested with fixed concentrations of C₃H₆ and variable amounts of O₂, CO, & H₂.
- Two tests were done with one test exposing the sensors to 1000 ppm more H_2 at each point which was offset by a 1000 ppm decrease in CO (unchanged λ).
- Sensors exposed to higher H₂ concentration were biased lowe by the exposure.
- Presence of the heavy molecule C₃H₆ might be the cause of the observed lean bias under some conditions.



Replacing 1000 ppm CO with H₂ 1:1

Data provided courtesy D. Wieland, Schaeffler Automotive Group

NO_x Channel NH₃ Sensitivity Variability vs O₂

- 1% CO, 3000ppm H₂, 3000ppm CH₄, 0ppm NO, 5% CO₂, 20% H₂O at 150C.
- The NO_x sensor's NH₃ cross-sensitivity drops off as Net O₂ crosses zero.
- Here errors are computed after pressure compensating and by utilizing the supplier published NH₃ cross-sensitivity factors.

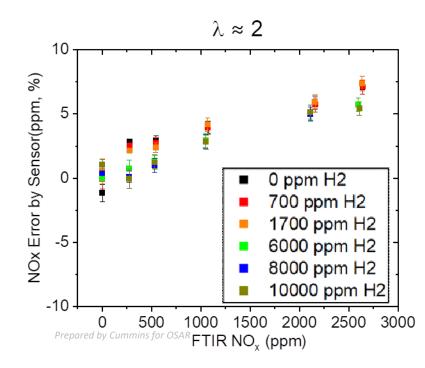
0ppm NH3

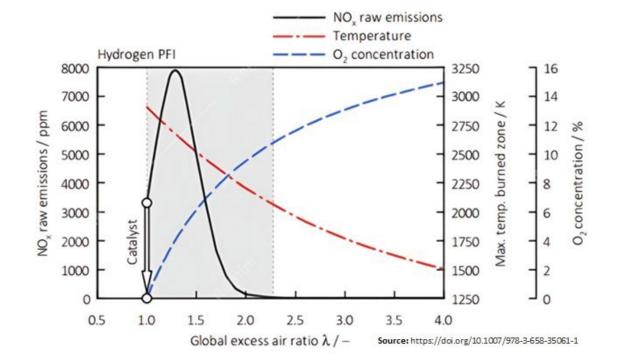
NOX Error by Sensor (ppm)

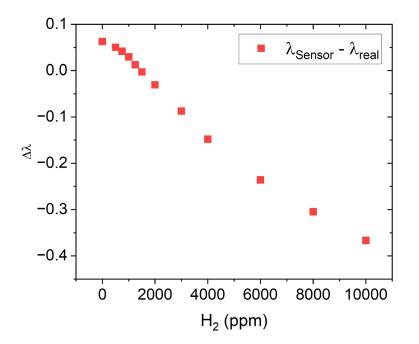
A_1

В

E 2


*


Applicability for H₂-ICE


• The measured H_2 sensitivity on the O_2 channel is ~4x the sensitivity needed for the sensor to serve as a consistent indicator of λ (i.e. ~2 vs ½).

$$\mathrm{H}_{2} + \frac{1}{2} \cdot \mathrm{O}_{2} \rightarrow \mathrm{H}_{2}\mathrm{O}$$

• The NO_x channel is largely insensitive to H_2 .

Conclusions & Next Steps:

Conclusions:

- We found that the sensor's O₂ readings are particularly impacted by H₂ which induces a rich bias under both truly rich and truly lean conditions alike.
- If H₂ were to exist under lean conditions, it could lead to a sensor's broadcast NOx values to be erroneously associated with NH₃ emissions.
- Both positive and negative biases of the sensor's O₂ channel are possible with highly diffusive reducing agents biasing the net O₂ reading low and slower molecules potentially imposing a high bias.
- NH₃ sensitivity remains *relatively* consistent around λ =1 especially at lower NH₃ levels.
- The method considered for NO_x monitoring on stoichiometric applications may have issues under some conditions while working fine under others.

Potential Next Steps:

- 1. Get a better understanding of the real-world H₂ + HC + CO concentrations at the tailpipe for both healthy and degraded systems.
- 2. Consider a combined NO_x+NH_3 threshold based approach.
- 3. Characterize alternatives technologies:
 - Aftermarket NOx sensors
 - Traditional wideband and narrowband O₂ sensors
 - Prepare H2 sensing technologies for compensation

