

# THE RDE AND THE REAL-WORLD: A DIESEL HYBRID/ADVANCED BIOFUEL/PEMS CASE STUDY

Scott Wiseman<sup>1</sup>, Daisy Thomas<sup>1,2</sup>, Karl Ropkins<sup>3\*</sup>, Hu Li<sup>1</sup> and Alison Tomlin<sup>1</sup>

Presented at the

2025 OSAR Conference

Riverside, California

April 17-18, 2025

<sup>&</sup>lt;sup>1</sup> School of Chemical and Process Engineering, University of Leeds, UK.

<sup>&</sup>lt;sup>2</sup> Now 3DATX Corporation, Buffalo, NY 14228, USA

<sup>&</sup>lt;sup>3</sup> Transport Studies, Faculty of the Environment, University of Leeds, UK

<sup>\*</sup> Email k.ropkins@its.leeds.ac.uk



## Background

Next-generation and transitional vehicle emission reduction strategies will likely employ a range of vehicle powertrain and fuel combinations. Governments are actively working to align incoming legislation to regulate vehicles on a fuel and technology neutral basis (e.g., EURO 7 in Europe).

https://ec.europa.eu/commission/presscorner/detail/en/ip 22 6495 [Press release / summary] https://eur-lex.europa.eu/eli/reg/2024/1257 [Regulation (EU) 2024/1257]

Here, using data from an on-going PEMS study into the impact of advanced biofuels on diesel hybrid vehicle emissions, we consider one such benchmark, the Real Driving Emissions work package 4 (RDE-4) methods, the factors driving variability in associated metrics, and the likely real-world emissions outcomes during different activities and modes-of-vehicle operation.

NOTE: This is a short thought-piece on the sources of variability in on-road emissions. It comes from discussions while analysing data from emissions studies at Leeds. The case study is also part of larger body of work on biofuel/hybrid combinations.

**REFERENCES:** Thomas et al, 2019. Investigating the engine behavior of a hybrid vehicle and its impact on regulated emissions during on-road testing, SAE Technical Paper, <a href="https://doi.org/10.4271/2019-01-2199">https://doi.org/10.4271/2019-01-2199</a>

Thomas et al, 2022. Particle number and size distributions (PNSD) from a hybrid electric vehicle (HEV) over laboratory and real driving emission tests. Atmosphere, <a href="https://doi.org/10.3390/atmos13091510">https://doi.org/10.3390/atmos13091510</a>

Wiseman et al, 2023. Predicting the physical properties of three-component lignocellulose derived advanced

biofuel blends using a design of experiments approach. Sus. Energy & Fuels. 7

https://pubs.rsc.org/en/content/articlelanding/2023/se/d3se00822c

Wiseman et al, 2025. Combustion and Emission Performance from the use of Acid-catalysed Butanol Alcoholysis Derived Advanced Biofuel Blends in a Compression Ignition Engine. SAE International, 2025.

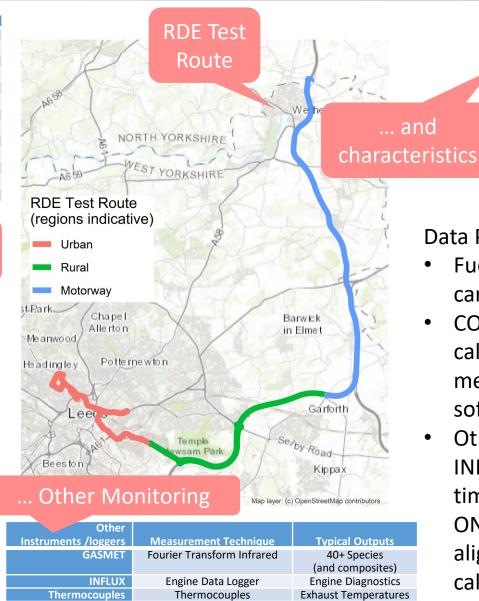
https://www.sae.org/publications/technical-papers/content/2025-01-8445/



## Case Study

EURO 6 Medium Size Diesel Hybrid Car

| Test Vehicle                 | Value                 |  |
|------------------------------|-----------------------|--|
| Vehicle Make and Model       | Mercedes C300h        |  |
| Registration Year (EU class) | 2018 (EURO 6b)        |  |
| Vehicle Weight               | 1,765 (2,065) kg      |  |
| Number of Cylinders          | 4 in-line             |  |
| Displacement                 | 2,143 cm <sup>3</sup> |  |
| Maximum Engine Power         | 150 kW                |  |
| Maximum Torque               | 750 Nm                |  |
| Transmission                 | 7-speed automatic     |  |
| Electric Motor Power         | 20 kW                 |  |
| Hybrid Battery Capacity      | 0.7 KWh               |  |
| Emissions Management         | DOC, DPF, SCR, EGR    |  |
| Type Approval Test           | Approval Test NEDC    |  |
| Pre-test Mileage (approx.)   | 150,000 km            |  |


## ... Running on (ULS) Diesel and Biofuel Blends

| Test Fuels/Blend  | Diesel : Biofuel<br>Ratio (vol%) | nBL: DNBE :<br>nBuOH*<br>Ratio (vol%) | Calculateo<br>Lower Heating<br>Value (MJ/kg) |
|-------------------|----------------------------------|---------------------------------------|----------------------------------------------|
| D100              | 100:0                            | 0                                     | 42.5 – 42.9                                  |
| D90Bu10 - 65:5:30 | 90:10                            | 65:30:5                               | 41.4                                         |
| D90Bu10 - 85:5:10 | 90:10                            | 85:10:5                               | 41.1                                         |
| D75Bu25 - 85:5:10 | 75 : 25                          | 85:10:5                               | 38.8                                         |

<sup>\*</sup> D Diesel; nBL n-butyl levulinate; DBNE di-n-butyl ether; nBuOH n-butanol

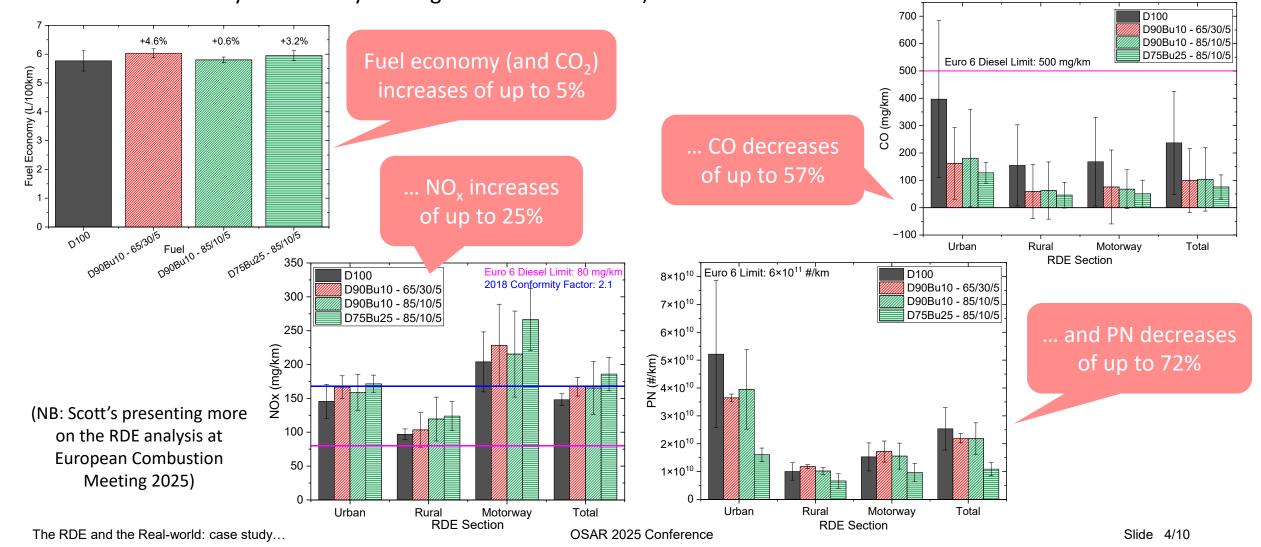
#### ... Primary (RDE) Monitoring

| OBS-ONE           | Measurement Technique   | Calibrated Range                        |
|-------------------|-------------------------|-----------------------------------------|
| СО                | Non-Dispersive Infrared | 0 – 10 vol%                             |
| CO <sub>2</sub>   | Non-Dispersive Infrared | 0 – 20 vol%                             |
| NO <sub>x</sub>   | Chemiluminescence       | 0 – 3000 ppm                            |
| PN (23 - 1000 nm) | (IPA) Condensation      | 0 - 5×10 <sup>7</sup> #/cm <sup>3</sup> |
|                   | Particle Counter        |                                         |
| Exhaust Flow Rate | Pitot Flow Meter        | $0.3 - 10 \mathrm{m}^3/\mathrm{min}$    |



Value 97.2 km **Urban Distance Share** 31.5 - 37.7 %**Rural Distance Share** 29 - 35.6 % **Motorway Distance Share** 29.6 - 35.2 % **Urban Speed Range**  $0 - 60 \, \text{km/h}$ **Rural Speed Range**  $60 - 90 \, \text{km/h}$ **Motorway Speed Range** >90 km/h **Average Test Duration** 1 hr 54 min  $24 - 103 \, \text{m}$ **Cumulative Elevation Gain** 563 m/100km

#### Data Processing:

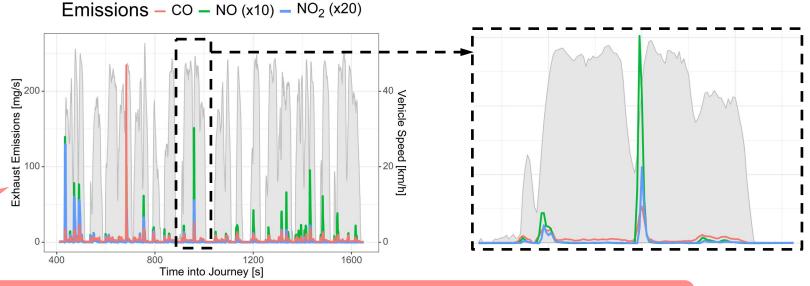

- Fuel economy was calculated by carbon balance
- CO, NO<sub>x</sub>, PN RDE emissions were calculated using Package 4 methods using Horiba's OBS-PP software
- Other monitoring (GASMET, INFLUX, Thermocouples) data time-aligned with primary (OBSONE) data using correlation alignment, and emissions calculated separately



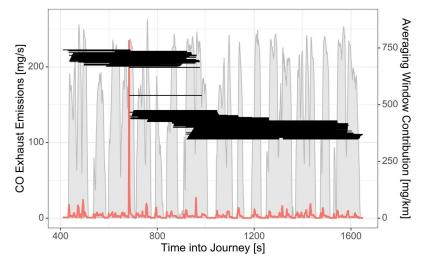
#### Main RDE-4 Results

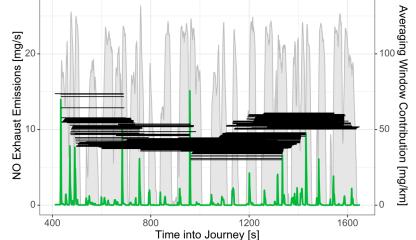
Exhaust emission trade-offs for one diesel hybrid vehicle when switching from a conventional Ultra Low Sulphur diesel (ULSD) to a 25% blend of an advanced biofuel (a butyl-based mixture derived from the acid

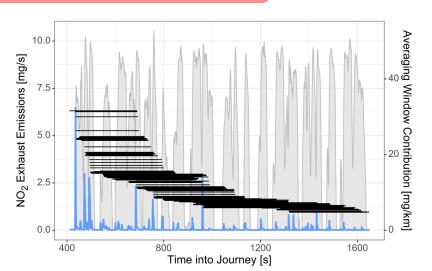
catalyzed alcoholysis of lignocellulosic biomass) and the same diesel







### The Challenge


Looking at the sources of variance in the 1-Hz data used to calculate the RDE emission rates and associated error bars...


High emissions of most species associate with load events ...



... Using moving-average windows to demonstrate how the frequency, intensity and duration of these events AND baseline all affect reported emissions



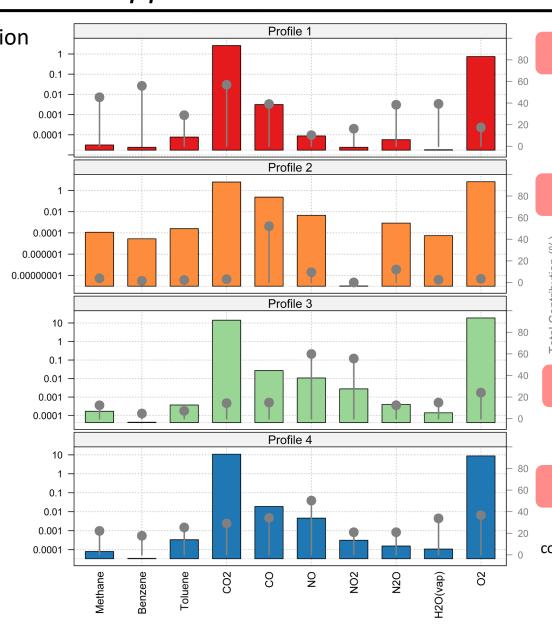






## Applying a Source Contribution Approach

Using a conventional 'linear-combination of profiles' model BUT interpreting as indicative of exhaust-out emissions chemistry (and source/sink behavior) rather than a classical 'source'


Emissions time-series

Their Contributions ...

 $x_{ij} = \sum_{k=1}^{N_{ik}} N_{ik} \times M_{kj} + e_{ij}$ ... and Contribution
Profiles

Using EPA ESAT software and Positive Matrix Factorisation (PMF)-style 'multiple runs/random start-point' strategy to solve this...

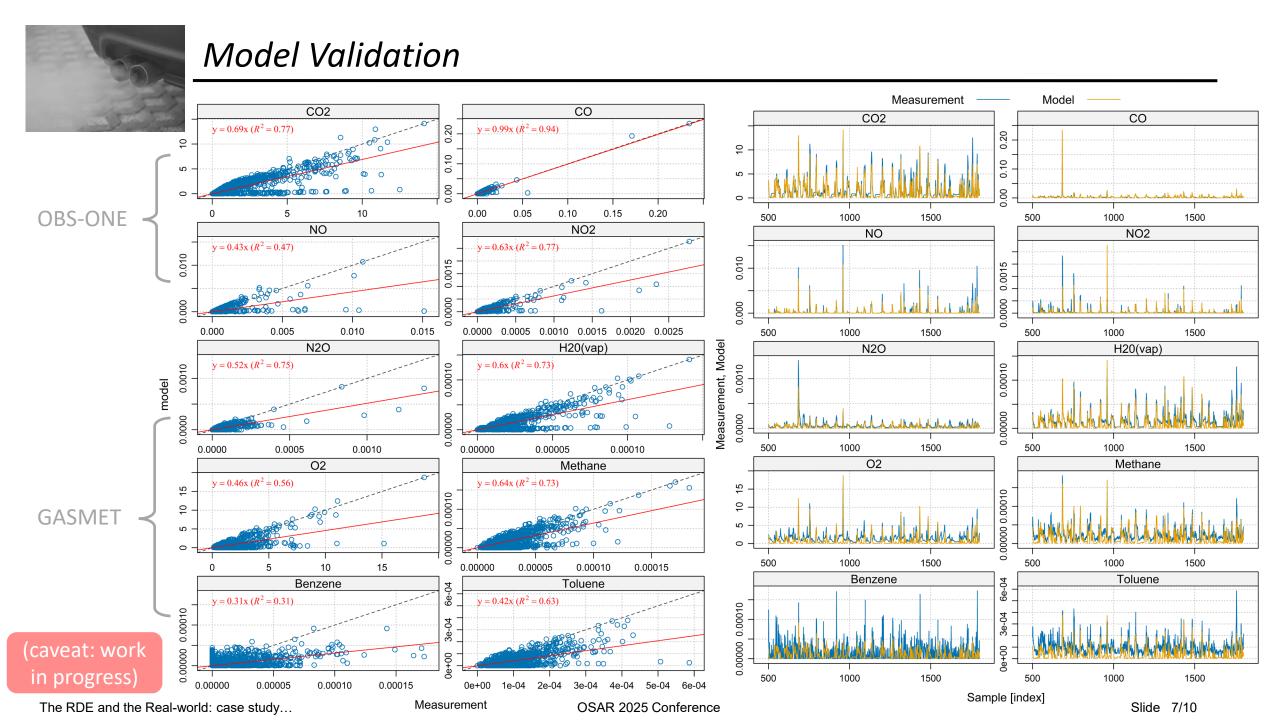
https://quanted.github.io/esat/



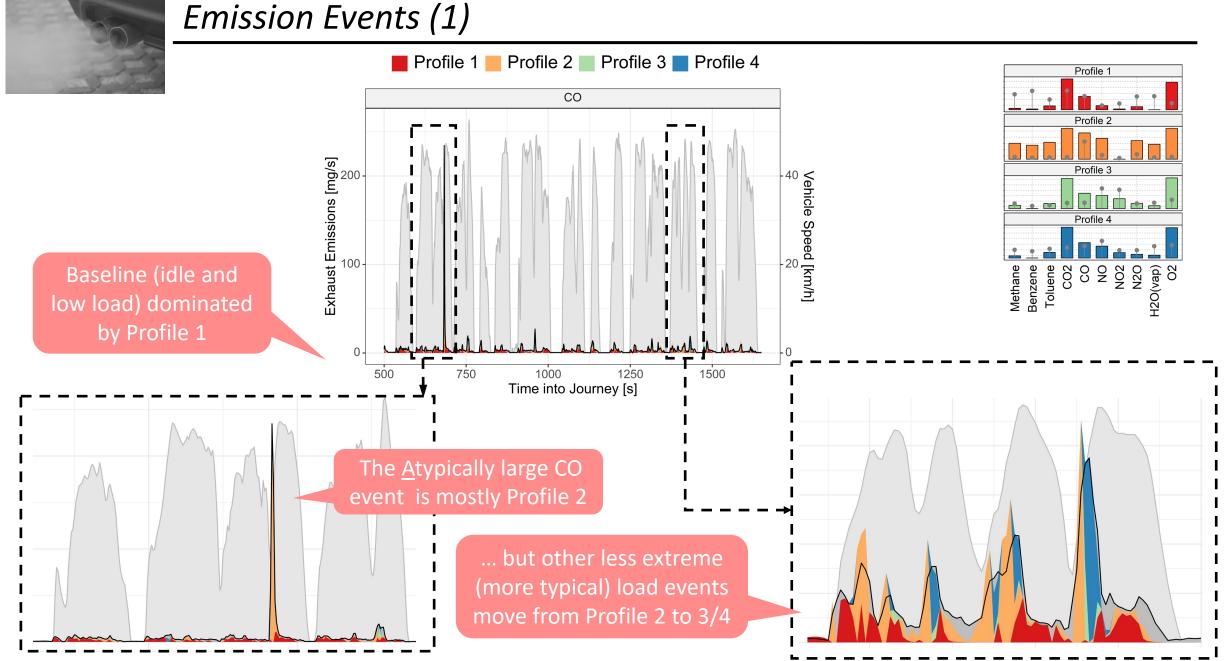
#### **Base Case**

(main/major contributor to overall emissions)

#### CO-rich


(main CO contributor)

#### NO/NO<sub>2</sub>-rich


(main NO and NO<sub>2</sub> contributor)

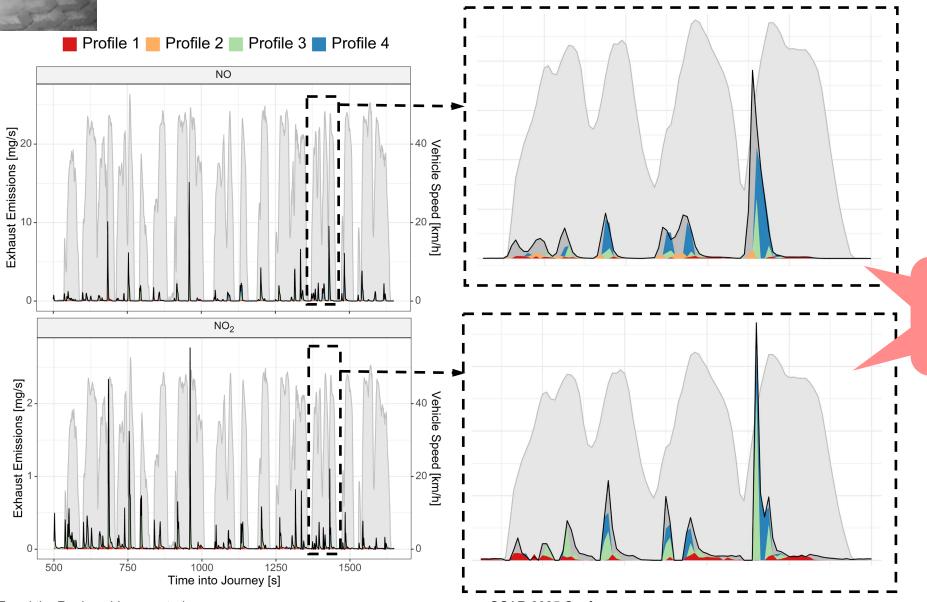
#### $NO/NO_2$ (2)

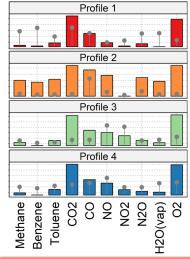
(major NO and NO<sub>2</sub> contributor but less NO and much less NO<sub>2</sub> than profile 3)








The RDE and the Real-world: case study...


OSAR 2025 Conference

Slide 8/10



## Emission Events (2)





NO and NO<sub>2</sub> events typically involve Profile 3/4 combinations

(but still probably need to work on the time alignment ©)



#### **Conclusion and Comments**

#### **Key Points/Comments:**

- RDE regulations provide a good benchmark for vehicle manufacturers and policy makers working at larger scales, and, being real-world, are a significant improvement on previous approaches, but are also a 'blunt tool' for anyone considering emissions on smaller scales
- The frequency, intensity and duration of the largest pollution events are obviously an important contribution to average emissions, but baseline levels can also be important
- There is obvious scope to use the raw data routinely collected during such regulatory testing to develop a range of additional non-regulatory outputs, e.g. for civil engineers, town planners, vehicle fleet operators, air quality modelers...

#### **Acknowledgements**

The presented case study was partly funded by UKRI EPSRC grant EP/T033088/1 and by UKRI STFC grant ST/Z51035X/1.

The authors also thank for support and input: the SusLABB project team; Scott Prichard (Leeds Engineering); Influx Technology Ltd; and Horiba Mira.

And, special thanks to Horiba UK and Kevin Tully of Tully Engineering Ltd for providing us with the OBS-ONE, and associated technical support.