Investigation of NO_X Sensor Measurement Errors and Potential Methods of Correction

Southwest Research Institute®

Christopher Sharp April 17, 2025 14th Annual International OSAR Conference

POWERTRAIN ENGINEERING

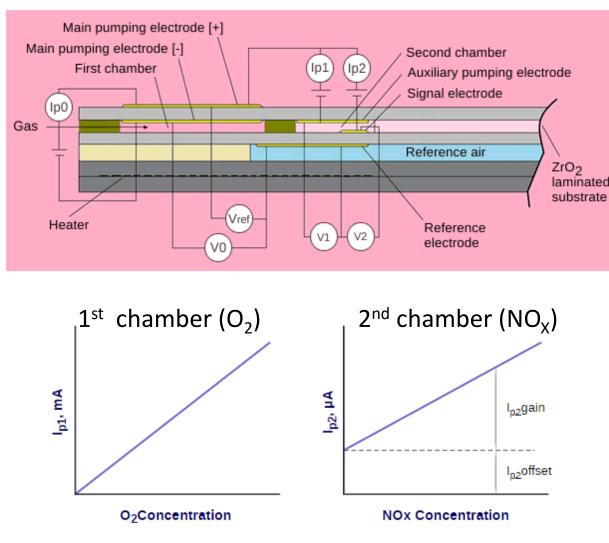
©SOUTHWEST RESEARCH INSTITUTE

Background and Objective Under CARB Contract 22RD019

- Growing demand for understanding real-world in-use emissions
- Increasing move towards in-use compliance monitoring using on-board sensors (OBM, On Board Monitoring)
 - China VI, Euro VI ISC, Euro VII OBM
- NO_{x} sensors are essential to these approaches
 - These can show significant errors compared to Reference methods for a variety of reasons
- Focus on Tailpipe sensors at Low NO_{x} levels
- Program objectives
 - Can we understand what is actually driving NO_x sensor measurement errors ?
 - Can we find a way to correct for these errors ?

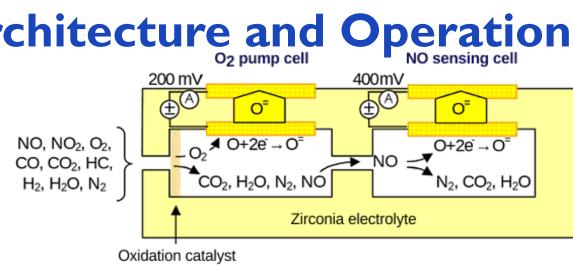
POWERTRAIN ENGINEERING

"Amperiometric" NO_X Sensor Architecture and Operation



Nernst Equation:
$$U_s = (RT/4F) \ln(p_{ref}/p_{exh})$$

U_s - sensor signal, V T - temperature, K p - partial pressure of oxygen R - gas constant = 8.314 J/mol F - Faraday constant = 96,485 sA/mol

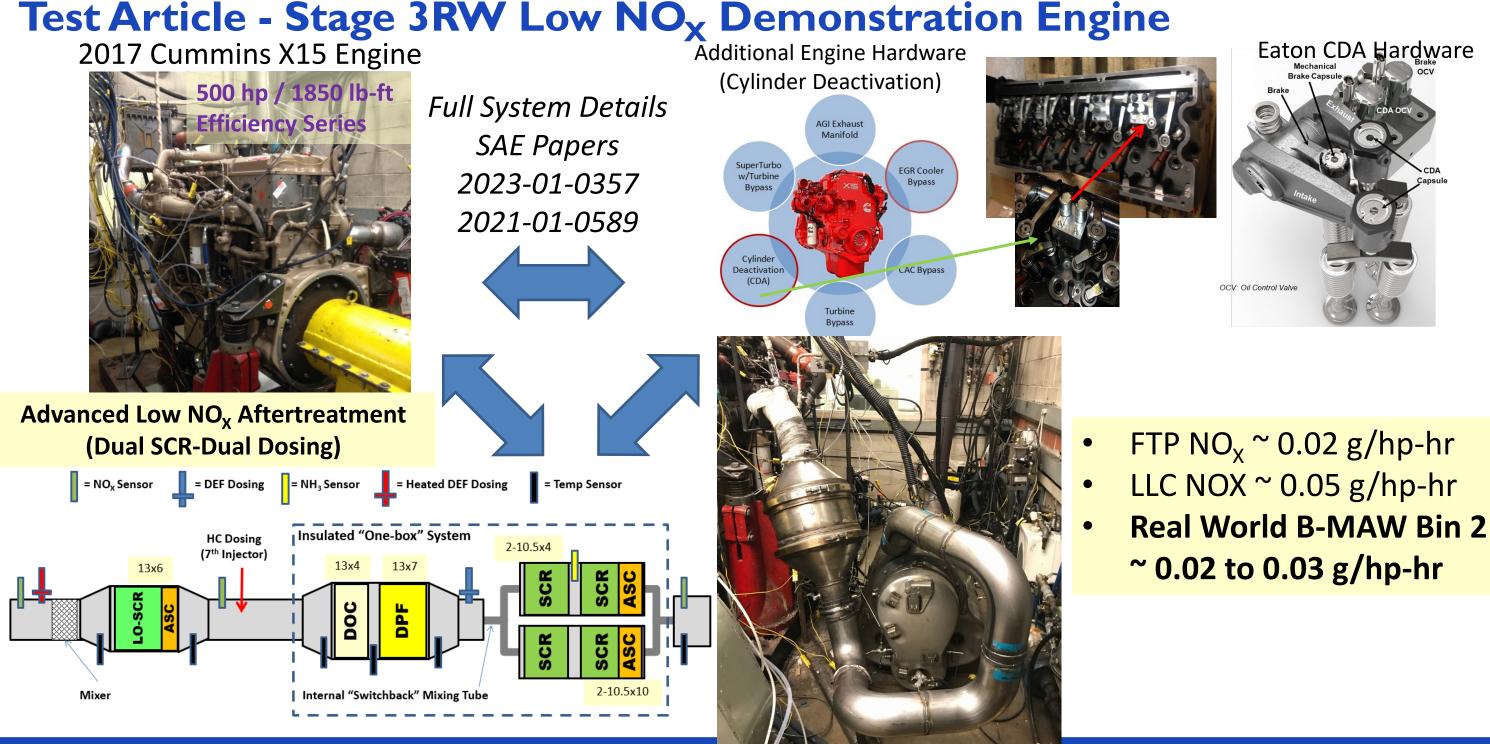


- Voltage is applied across each cell which results in pumping of oxygen ions
- First chamber (O_2) is usually pumped not to zero but to fixed lambda
 - Pumping current is controlled via a PID loop to reach target Nernst voltage
 - $(O_2 \text{ measurement})$
- Second chamber (NO_x)
 - PID loop on voltage
 - liberated from NO_x
- Note that these measurement signals are based in **actively** controlled parameters

POWERTRAIN ENGINEERING

Measured current gain (i_{P2} gain) is proportional to O_2

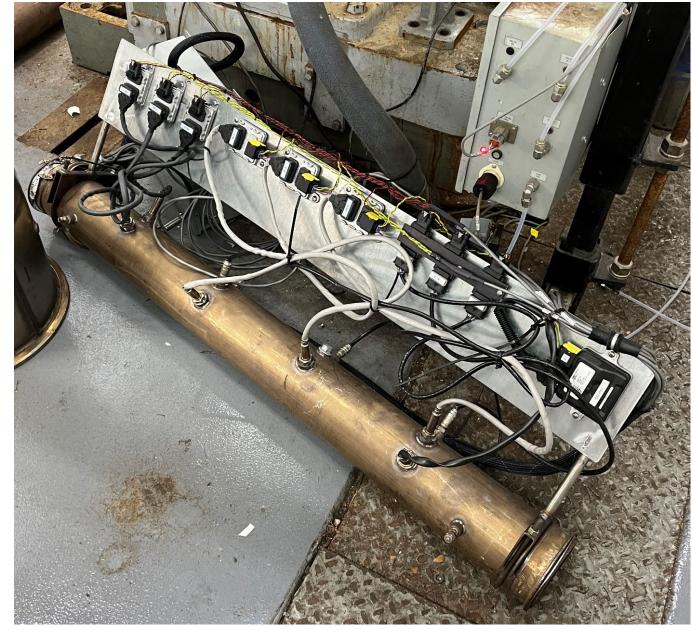
Current (i_{P1}) is proportional to amount of O₂ pumped



POWERTRAIN ENGINEERING

Program NO_x Sensors

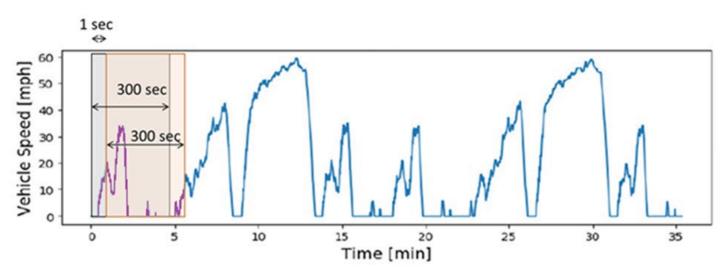
- Bosch 4th Generation (newest)
- 3 Vitesco 4th Generation (newest)
- 3 Vitesco 3rd Generation (current, from previous program)
- I NH₃ Sensor for real time NH₃ tracking to help assess data
 - Parallel FTIR measurement
- Mounted in same pipe and setup used previously for NO_X sensor testing in EMTC program
- Tested before and after aging



POWERTRAIN ENGINEERING

U.S. In-Use Compliance - 2B-MAW Basics

- Utilized in test runs of nearly any length
 - There are some minimums for number of windows in each bin
 - Still require at least 3 hours of non-idle operation for a valid test day
- The entire data set is utilized including cold-start
- The 2B-MAW method uses a <u>fixed-length</u> 300-second average window
- Average window is stepped through the data file in 1-second increments
- Each window is sorted into one of 2 load bins based on "normalized CO_2 "
 - NO_x mass (all bins) and CO₂ mass (Bin 2)
- A sum-over-sum calculation is done for each bin to generate final numbers (Bin I is just NO_x mass rate in g/hr)



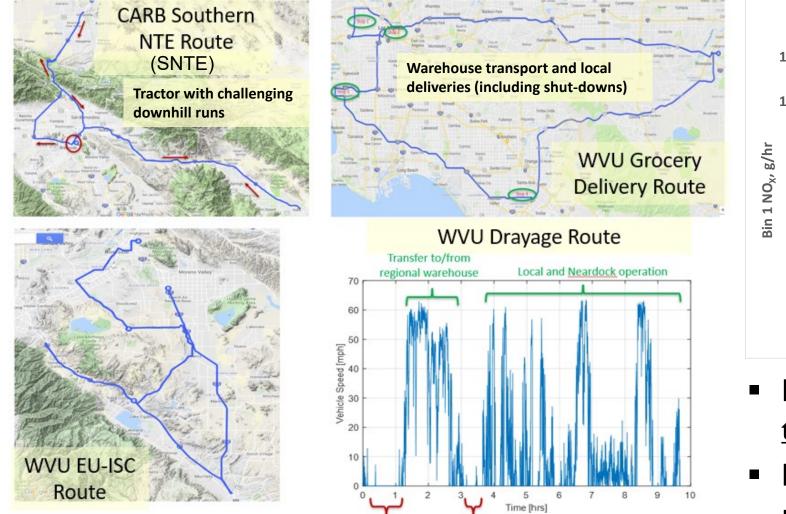
CARB / EPA On-Highway In-Use Standards MY 2027+

Off-Cycle Bin	NO _X	Temperature adjustment ^a	HC mg/hp·hr	PM mg/hp∙hr	CO g/hp·hr
Bin 1	10.0 g/hr	$(25.0-\bar{T}_{\rm amb})\cdot 0.25$	_	_	—
Bin 2	58 mg/hp·hr	$(25.0 - \overline{T}_{amb}) \cdot 2.2$	120	7.5	9

POWERTRAIN ENGINEERING

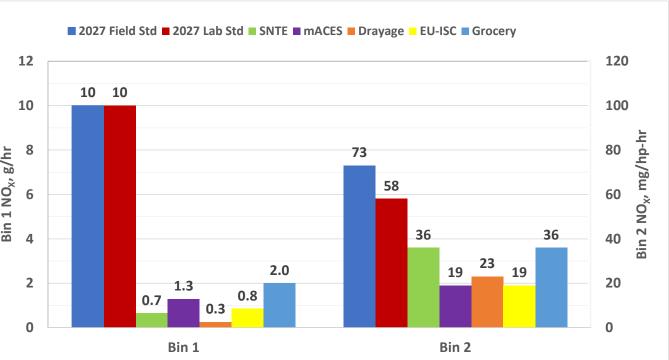
Real World Duty Cycles

2-bin MAW^{*} In-Use Method Results



Inside port or drayage yard operation =>

Real-world routes run by WVU on trucks, translated to cycles we could run on engine-dyno using Stage 3RW system (stock system performed similarly to field data...we are duplicating the field duty cycle accurately)

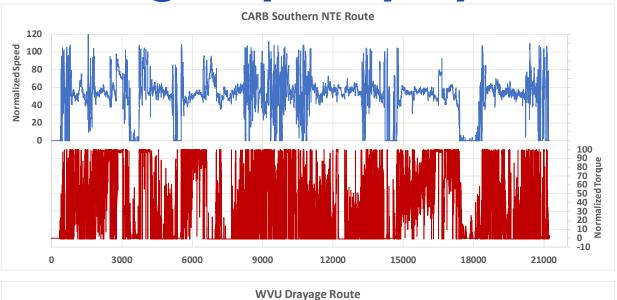


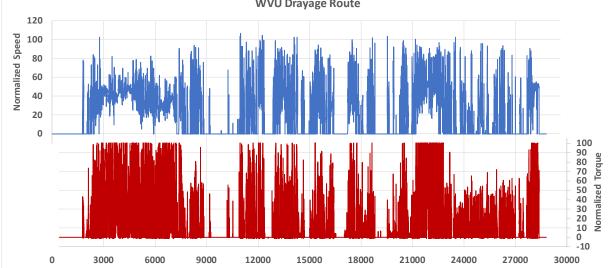
- Regulatory Cycle performance (with LLC) does translate to real-world performance for this system
- Bin I well below 2027 in-use Standards
- Bin 2 below 2027 in-use standards with some margin

^{*} 2-bin MAW is the new in-use testing protocol (EPA/CARB), considers all operation including cold-start, 5-min averaging window results sorted into two "load" bins

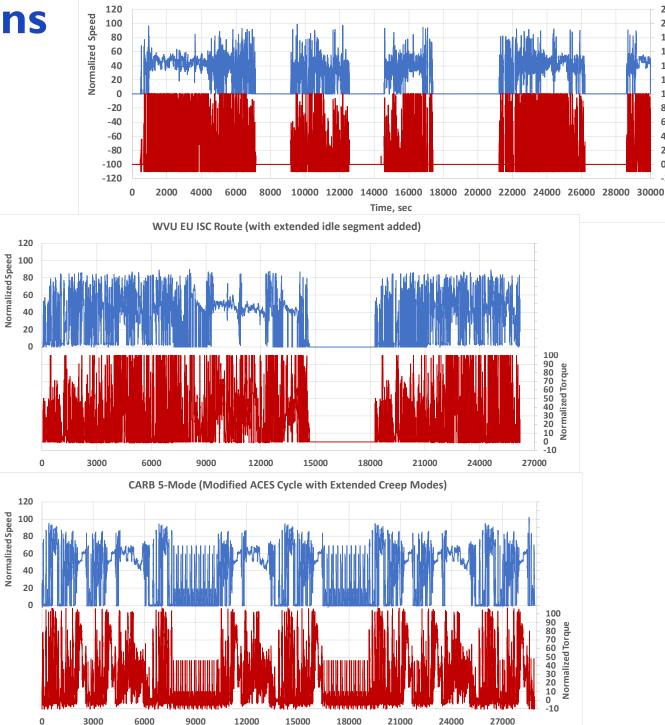
POWERTRAIN ENGINEERING

On-Highway Duty Cycle Variations





- Wide range of operation profiles and conditions
- Allows for examination of trends on many different driving ۲ patterns



WVU Grocery Delivery Cycle

swri.org

220

200

180

160

140

120

100

80

60

40

20

0

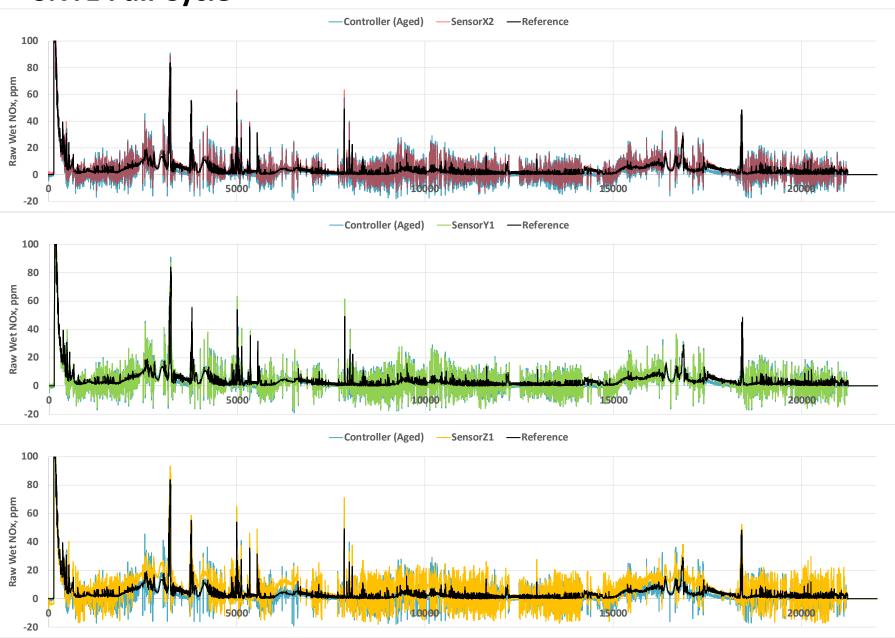
-20 Ž

τ

POWERTRAIN ENGINEERING

Individual NO_x Sensor Comparisons versus Lab Reference

SNTE Full Cycle



- **PEMS** examples
- test article (~1200 hours)
- suppliers
 - Not Aged Sensors
- comparisons
- At this scale data appears to be very "noisy" compared to Lab
- Aged Controller sensor does appear Lab and other sensors

©SOUTHWEST RESEARCH INSTITUTE

POWERTRAIN ENGINEERING

swri.org

g

This is just one sample...

to show a negative offset compared to

- Larger features are still captured

Lab Reference is same as for PEMS

Sensor X/Y/Z examples from different

Controller is tailpipe NO_x sensor from

Data is from same SNTE field cycle as

Analysis of Sensors Compared to PEMS – 2B-MAW Bin 2 (Preliminary)

Bias + 95th Percentile Variance, g/hp-hr					
Sensor Y1	0.017	PEMS 1	0.007		
Sensor Y2	0.023	PEMS 2	0.002		
Sensor Y3	0.024	PEMS 3	0.005		
Sensor X1	0.011				
Sensor X2	0.019				
Sensor X3	0.020				
TP Sensor (aged)	0.013				
Sensor Z1	0.047				
Sensor Z2	0.055				

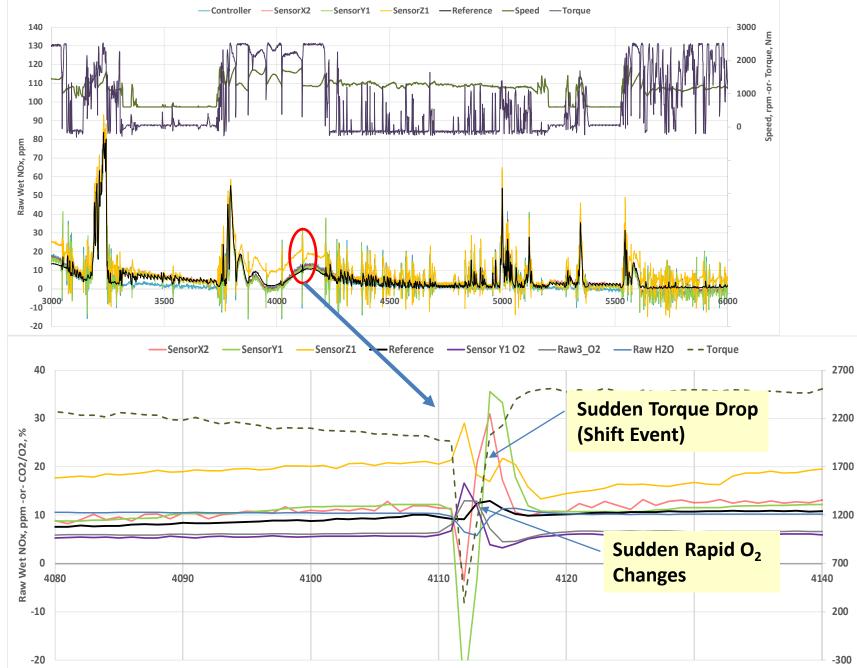
- NONE OF THESE SENSORS ARE AGED EXCEPT THE **TP SENSOR**
- THIS IS A TINY SAMPLE OF PRODUCTION • VARIATION FROM ONE BATCH

- Using similar methodology to what was developed for PEMS values used by EPA
- Note that Sensor exhaust flow and fuel flow (CO_{2}) were fairly close to Reference (and PEMŜ)
- Even excluding Sensor Z these values are still 2X to 5X PEMS allowance of 0.005 g/hp-hr
 - With Sensor Z as much as IIX
 - Variation even within sensor manufacturer
- Filtration of high frequency (1-hz) noise did not change these values and did not address this problem

POWERTRAIN ENGINEERING

10

High Frequency Noise - NO_x Sensor Behavior versus Engine Operation



- in significant "noise"
- Sensor behavior impacted by rapid rates of change in load
- Large swings in O₂ cause disturbance in NO_{x} sensor reading
- This is likely the sensor PID loop for first chamber O_2 having to catch up with rapid transient in O_2 (and then overshooting)
- (300-sec averaging window)

Rapid changes in speed and/or torque result

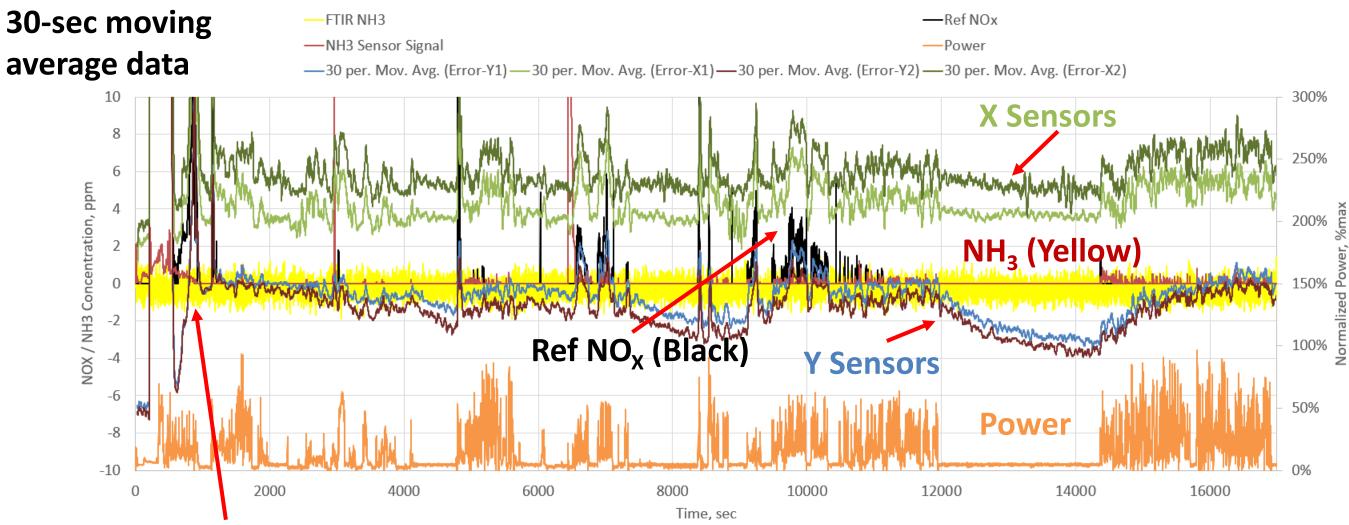
- this event show a large but momentary load drop (but not quite a fuel cut event)

this can cause positive or negative errors This "noise" is not a problem for 2B-MAW

POWERTRAIN ENGINEERING

swri.org

Example of Longer Time Constant NO_x Sensor Errors over Field Cycle



Note: Larger negative errors during cold-start warm-up...but small influence due to high NO_x levels

- All NO_X sensors of a given type act similarly, but there are offsets between them
- Engine load appears to influence NO_X sensor error on longer timescales
 - This is the case whether or not there is NO_x present
 - Ammonia data (sensor and FTIR) indicates this is not ammonia interference

POWERTRAIN ENGINEERING

12

Handling Different Timescales

- We are interested in more than just short-term sensor noise
 - "Real-time" noise is unlikely to be influential in a 5-min b-MAW averaging window
- Analysis has shown that there are both short-term and long-term impacts on the sensor measurements
 - Short-term ~ real-time/l-hz
 - Long-term ~ minutes
 - Note that neither of these include aging which is on a much longer timescale (100s/1000s of hours)
- We need to isolate short-term and long-term errors to see what drives them differently
- Essentially done through auto-regressive smoothing
- We used Exponentially Weighted Moving Average (EWMA) for this purpose

swri.org

Exponentially Weighted Moving Average (EWMA)

- EWMA is a way to filter data to extract trends from and reduce the impact of noise on time-series data
- Equations:

$$s_t = lpha x_t + (1-lpha) s_{t-1}$$

$$lpha = 1 - e^{-\Delta T/ au} \quad \Longrightarrow \quad lpha pprox rac{\Delta T}{ au}$$

- S_{t} = EWMA result for current time step
- X_{t} = current time series value
- S_{t-1} = EWMA result for previous time step
- α = Filter weight factor
- τ = Filter time constant (sec)

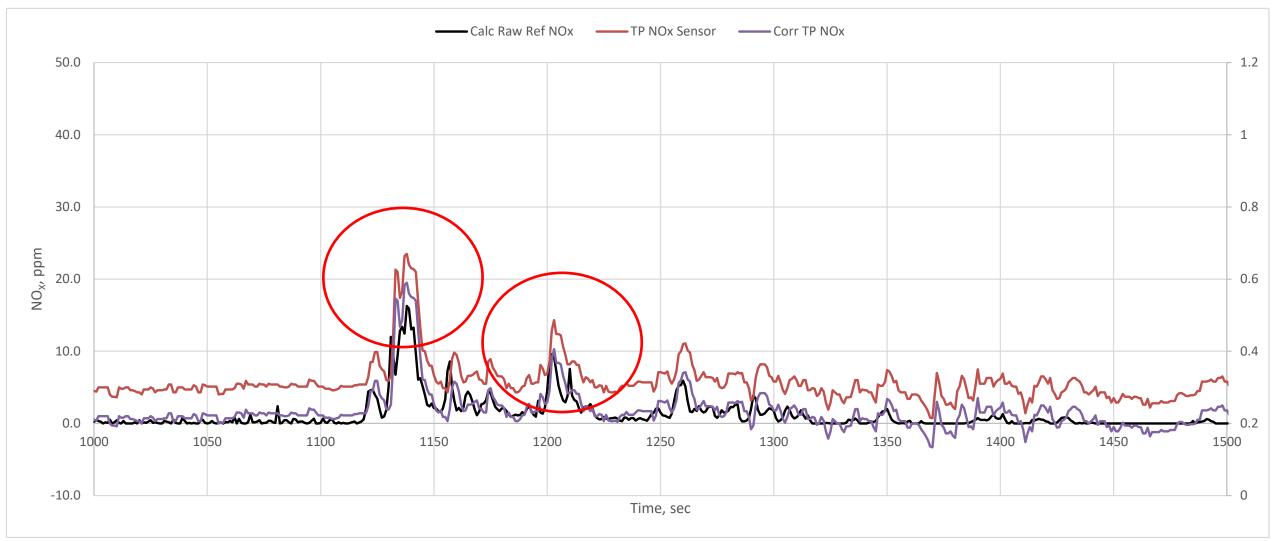
- Why use EWMA ?
 - It can be effective as a filtration method to look at longer time constant impacts
 - It is already used extensively in OBD for noise reduction and trend tracking
 - Can be readily coded into ECMs

30-second EWMA was primarily used, but some functions used a 300-sec EWMA

POWERTRAIN ENGINEERING

swri.org

Can a Zero Offset Be Used Across the Measurement Range ?



- In this case a sensor with high bias
- Note zero correction applied also brings data in 10-20ppm much closer to Reference..
- Zero offset approach looks to be workable...if we can identify the zero offset

swri.org

15

POWERTRAIN ENGINEERING

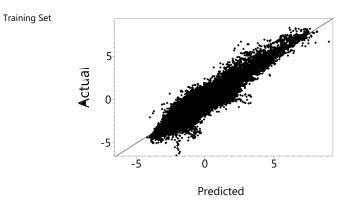
Modeling Approach

- We have a large data set including 100s of hours of field duty cycle operation at Low NO_{x} levels
 - Multiple sensor types
 - Different field duty cycles
 - Parallel Lab Reference Measurements
 - Tailpipe Exhaust Characterization Data $(NO/NO_2/NH_3, etc.)$
 - Other parallel operating parameter measurements
- Used machine learning techniques to identify potential correlations between NO_x sensor error and other operating parameters

POWERTRAIN ENGINEERING

16

Gradient Boosted Tree Model of NO_x Sensor Error



Y Sensors Overall Statistic RAS 0.887 0.5096209 119821

Column Contributions				
Number of Splits	55		Portion	
616	380616.783		0.5413	
553	116036.392		0.1650	
848	85464.2914		0.1216	
907	41039.0972		0.0584	
352	34989.2338		0.0498	
244	24363.3694		0.0347	
197	11451.0781		0.0163	
145	5652.06422		0.0080	
138	3490.69104		0.0050	
	ofSplits 616 553 848 907 352 244 197 145	of5plits SS 616 380616.783 553 116036.392 848 85464.2914 907 41039.0972	ofSplits SS 616 380616.783 553 116036.392 848 85464.2914 907 41039.0972 352 34989.2338 244 24363.3694 197 11451.0781 145 5652.06422	

Column Contributions						
Term	Number of Splits	SS		Portion		
Sensor X1 30	905	343633.702		0.5822		
Torque 300	1104	137442.739		0.2328		
Torque 30	664	55370.6773		0.0938		
Sensor X1 300	1127	53826.4277		0.0912		

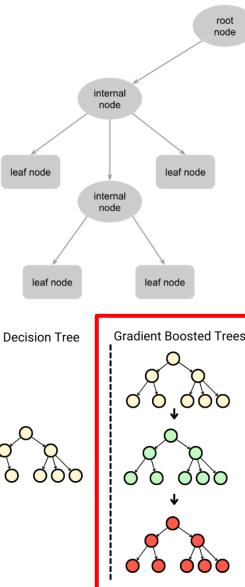
A decision tree can be thought of as a way to split up the data into bins of predictions. For any data point, the decision path is followed until it reaches the end of the tree, and then a prediction is made. Boosted trees and random forests are both collections of decision trees, but they differ in terms of how they make final predictions. Both types of models are prone to overfitting, so validation is important, along with careful understanding of tuning parameters.

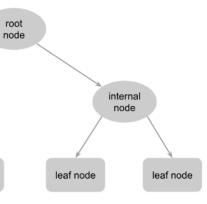
Boosted Trees:

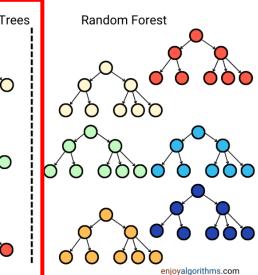
Decision trees are sequential, with each new tree attempting to predict the errors (residuals) from the previous one. Final prediction for a new data point is the sum of all of the predictions from the trees.

Model trained on a portion of the data – validated on other duty cycle data from different engine

Relationship with engine "load" observed on all NO_x sensor types on a longer timescale (minutes)







POWERTRAIN ENGINEERING

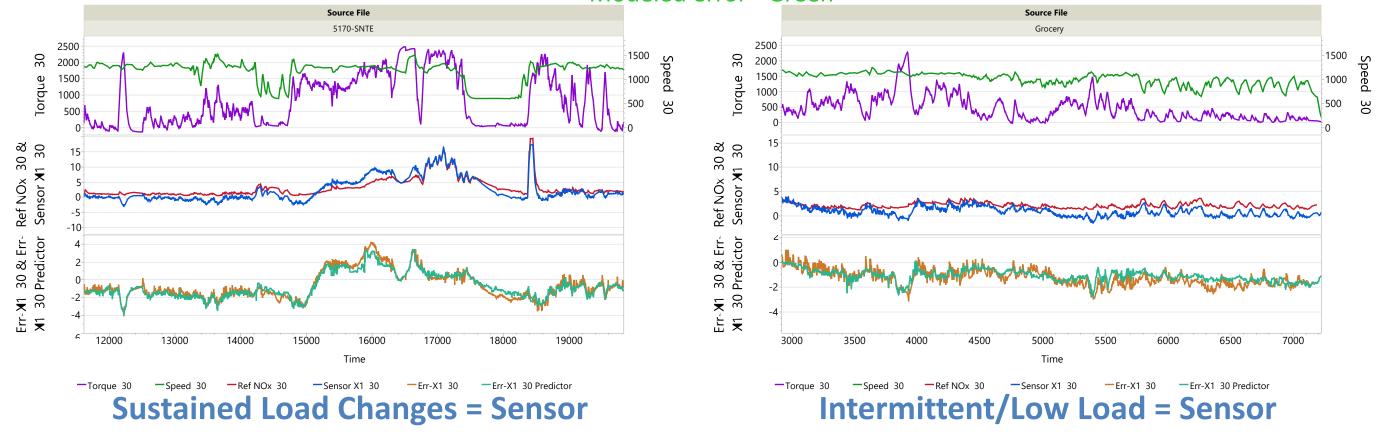
17

Model Predictions – Sensor Y

Error Movement

Measured error - Brown

Modeled error - Green



Error Does not move much

- All NO_X sensors of a given type act similarly, but there are offsets between them
- Model appears to capture load-based changes in NO_x sensor error
- Each sensor type requires different tuning, but all sensors of same type are consistent

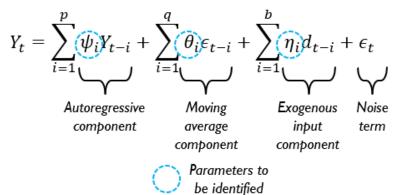
swri.org

POWERTRAIN ENGINEERING

Real-time Implementation for ECM

"Transient" Error

- An <u>Auto-Regressive-Moving-Average model</u> with eXogenous inputs (ARMAX) model is a promising candidate for NO_x sensor error prediction and correction toward real-time implementation
- The ARMAX approach is often used in time series analysis and forecasting applications



Exogenous inputs are torque-30 and tailpipe temperature-30 and 300

"Steady-State" Bias Correction

- Identify regions of "zero" tailpipe NO_x and use these to characterize individual sensor offset
 - Low Engine-out NO_x , High SCR Temperature, Low Load (High O2), Low Tailpipe NO_X
- Examine sensor within identified windows
- We can use intrusive dosing changes to "check for zero," if necessary, without impacting overall NO_{x} level
- Sample Enable conditions:
 - Torque 30 < 100 N-m</p>

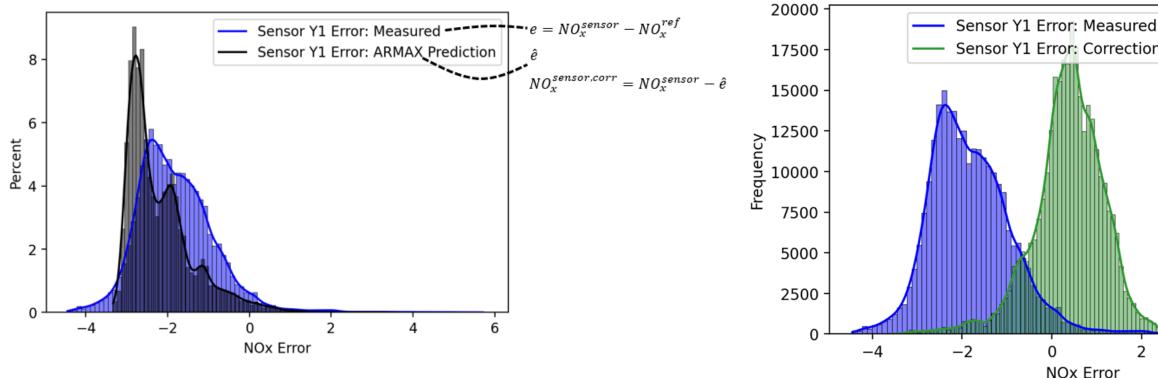
 - Tailpipe NO_{\times} Sensor-30 < 15 ppm Inlet NO_x-30 < 50 ppm
 - SCR outlet Temp > 300° C

Algorithm must be based on parameters available to an ECM

POWERTRAIN ENGINEERING

swri.org

Algorithm Performance - Transient



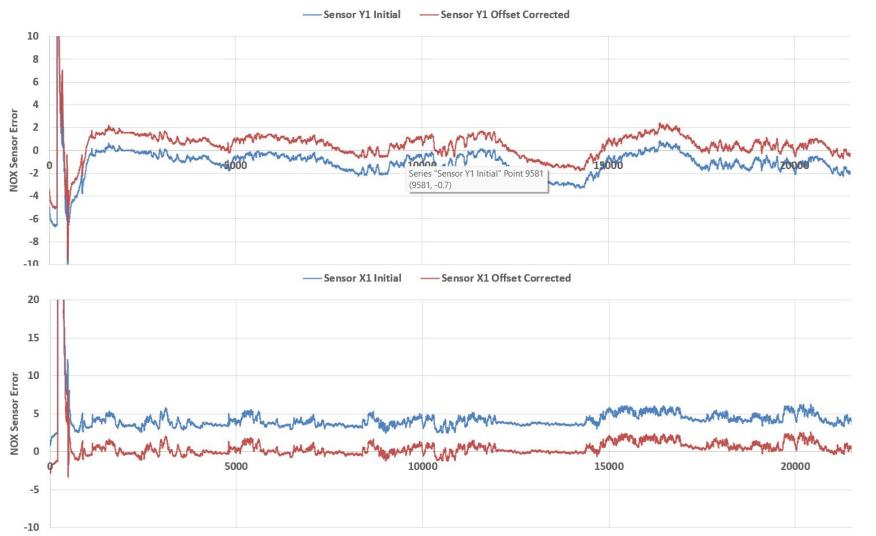
- ARMAX model overlaps measured data relatively well
- Note this is a validation cycle (ACES 5m) that was <u>not</u> used for model training
- Correction applied reduces the spread of the error data and shifts the error distribution closer to zero
- There is still a steady-state error which that needs to be fixed (Bias correction function)

Sensor Y1 Error: Correction Applied from ARMAX 6

POWERTRAIN ENGINEERING

20

Algorithm Performance – Bias Correction



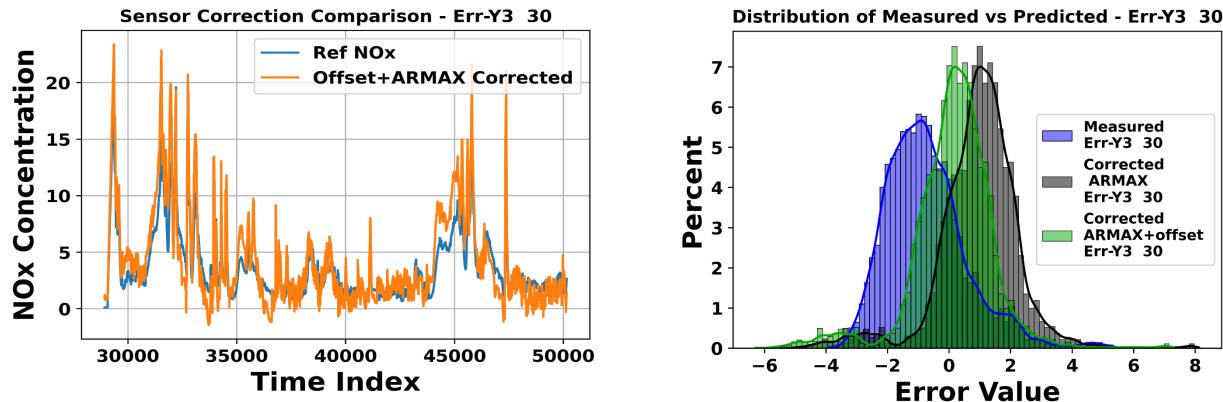
Uncorrected = Blue Corrected = Red

- Offset applied negative and/or positive bias is removed
- This example is without ARMAX model, but this can also be applied after the ARMAX model to eliminate residual bias after "transient" error correction
- Algorithm would track sensor over time as aging shifts the offset

POWERTRAIN ENGINEERING

"Zero" windows identified in field

Algorithm Performance – Combined Algorithm



- Combination of ARMAX and Bias correction shifted senor close to original reference (in most cases)
- Distribution of sensor errors is narrower and centered around zero for Corrected Sensor signal
- Note this is a validation cycle data was <u>not</u> used to train the model

POWERTRAIN ENGINEERING

22

Conclusions

- Large database of NO_x sensor data over a variety of duty cycles, different engines at Low NO_X levels, different sensors with parallel laboratory reference signal used to examine sensor error
- Slower moving transient error behaviors driven by engine load identified which appear to be consistent across a given sensor model
 - All sensors seem to do this, but different sensor models respond differently
 - What is the mechanism behind this? (Water? Oxygen? Temperature?)
- Sensor-to-sensor errors appear to be driven by individual sensor bias offset, which appears to move with aging
- Possible error correction methods identified which could potentially be implemented on ECM
 - Post processing may also be possible...
- Identification of areas affected by NH_3 cross sensitivity still needed...

POWERTRAIN ENGINEERING

swri.org

Thank you!

Christopher Sharp Institute Engineer **Commercial Vehicle Systems** chris.sharp@swri.org +1-210-522-2661 (Office) +1-210-204-8165 (Cell)

POWERTRAIN ENGINEERING

24