ENVIRONMENTAL CHAMBER STUDIES OF ATMOSPHERIC OZONE FORMATION FROM SELECTED BIOGENIC COMPOUNDS

by

WILLIAM P. L. CARTER
DONGMIN LUO
IRINA MALKINA
JOHN PIERCE

STATEWIDE AIR POLLUTION RESEARCH CENTER
AND COLLEGE OF ENGINEERING —
CENTER FOR ENVIRONMENTAL RESEARCH AND TECHNOLOGY
UNIVERSITY OF CALIFORNIA
RIVERSIDE, CA

Presented at the
207th ACS NATIONAL MEETING

March 13-17, 1994
San Diego, California
BACKGROUND

OZONE IS FORMED FROM THE INTERACTIONS OF VOLATILE ORGANIC COMPOUNDS (VOCs) WITH NO\textsubscript{x} IN THE ATMOSPHERE.

BIOGENIC SOURCES ARE A NON NEGLIGIBLE CONTRIBUTOR TO THE VOC EMISSIONS IN MANY AREAS WHERE OZONE EXCEEDS AIR QUALITY STANDARDS.

MODELS MAY NOT CORRECTLY PREDICT EFFECTS OF OZONE CONTROL STRATEGIES IF THEY DO NOT REPRESENT REACTIONS OF BIOGENIC COMPOUNDS APPROPRIATELY.

A VARIETY BIOGENIC VOCs HAVE BEEN IDENTIFIED, BUT ISOPRENE AND THE MONOTERPENES ARE BELIEVED TO BE THE MOST IMPORTANT.

ISOPRENE AND THE MONOTERPENES ARE AMONG THE MOST RAPIDLY REACTING OF THE EMITTED VOC SPECIES.

ENVIRONMENTAL CHAMBER EXPERIMENTS PROVIDE THE ONLY MEANS TO TEST WHETHER THE MODELS CAN CORRECTLY PREDICT HOW BIOGENIC VOCs AFFECT OZONE.
ISOPRENE HAVE BEEN EXTENSIVELY STUDIED, BUT ITS MECHANISM IS COMPLEX AND HAS UNCERTAINTIES.

RATE CONSTANTS FOR TERPENE REACTIONS ARE KNOWN, BUT MECHANISMS ARE HIGHLY UNCERTAIN. PRODUCT STUDIES GIVE POOR CARBON BALANCES.

MOST AIRSHED MODELS INCLUDE SEPARATE REACTIONS FOR ISOPRENE, BUT TERPENES ARE USUALLY LUMPED WITH OTHER ALKENES.

ISOPRENE MECHANISMS HAVE BEEN TESTED TO VARYING DEGREES USING ENVIRONMENTAL CHAMBER DATA, BUT NOT USING THE FULL DATA BASE.

INSUFFICIENT CHAMBER DATA HAVE BEEN AVAILABLE TO DEVELOP AND TEST MECHANISMS FOR TERPENES.
OBJECTIVES OF THIS STUDY

TERPENES

CONDUCT CHAMBER EXPERIMENTS TO DEVELOP AND TEST MECHANISMS FOR O$_3$ FORMATION FROM TERPENES.

USE THESE DATA TO EVALUATE ALTERNATIVE METHODS FOR REPRESENTING TERPENES IN AIRSHED MODELS.

DETERMINE THE BEST METHOD TO REPRESENT TERPENES IN AIRSHED MODELS.

ISOPRENE

DEVELOP A DETAILED MECHANISM FOR ISOPRENE AND ITS PRODUCTS REFLECTING CURRENTLY AVAILABLE DATA.

CONDUCT CHAMBER EXPERIMENTS USEFUL FOR THE DEVELOPMENT AND EVALUATION OF THIS MECHANISM.

DETERMINE THE BEST METHOD TO REPRESENT ISOPRENE IN AIRSHED MODELS.
REPRESENTATIVE MONOTERPENES STUDIED

α-PINENE

Δ^3-CARENE

β-PINENE

SABINENE
Relevant Kinetic and Mechanistic Information Concerning the Representative Terpenes

<table>
<thead>
<tr>
<th></th>
<th>(\alpha)-Pinene</th>
<th>(\Delta^3)-Carene</th>
<th>Sabinene</th>
<th>(\beta)-Pinene</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH Reaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k(\text{OH}) \times 10^{11})</td>
<td>5.4</td>
<td>8.0</td>
<td>11.7</td>
<td>7.9</td>
</tr>
<tr>
<td>Identified Products</td>
<td>(~30%)</td>
<td>(~35%)</td>
<td>(~20%)</td>
<td>(~30%)</td>
</tr>
<tr>
<td>O_3 Reaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k(O_3) \times 10^{17})</td>
<td>8.7</td>
<td>3.7</td>
<td>8.6</td>
<td>1.5</td>
</tr>
<tr>
<td>OH Yield</td>
<td>0.85</td>
<td>1.06</td>
<td>0.26</td>
<td>0.35</td>
</tr>
<tr>
<td>Identified Products</td>
<td>(~20%)</td>
<td><10%</td>
<td>(~50%)</td>
<td>(~25%)</td>
</tr>
</tbody>
</table>

Notes
- \(T=298^\circ\text{K}\) rate constants in units of \(\text{cm}^3\ \text{molec}^{-1}\ \text{sec}^{-1}\)
- Observed products are those predicted from general alkene mechanisms.
METHODS USED TO REPRESENT TERPENE REACTIONS IN AIRSHED MODELS

CARBON BOND 4
• REPRESENTED BY CARBON BOND SPECIES:
 α-PINENE: 0.5 OLE + 1.5 ALD2 + 6 PAR
 β-PINENE: OLE + 8 PAR
 SABINENE: OLE + 8 PAR
• α-PINENE BASED ON MODEL SIMULATIONS OF UNC CHAMBER RUNS.

"LUMPED MOLECULE" MECHANISMS (RADM-2, LCC, ETC)
• LUMPED WITH HIGHER ALKENES WHOSE MECHANISM ARE BASED ON THAT FOR 2-BUTENES.

SAPRC-90 "DETAILED" MECHANISM (CARTER, 1990)
• INITIAL REACTIONS WITH OH, O₃, NO₃, AND O(³P) REPRESENTED EXPLICITLY.
• GENERAL ALKENE MECHANISMS USED FOR SUBSEQUENT REACTIONS AND PRODUCTS.

PRELIMINARY UPDATED SAPRC MECHANISM
• SAME AS ABOVE, BUT WITH RADICAL YIELDS IN O₃ REACTION INCREASED TO BE CONSISTENT WITH MEASURED OH YIELDS.
AVAILABLE TERPENE - NO\textsubscript{x}
ENVIRONMENTAL CHAMBER DATA

UNC OUTDOOR CHAMBER (PREVIOUS STUDIES)

\(\alpha\)-PINENE

BLACKLIGHT TEFOLON CHAMBERS (THIS WORK)

\(\alpha\)-PINENE
\(\beta\)-PINENE
\(\Delta^3\)-CARENE
SABINENE
D-LIMONENE

XENON ARC TEFOLON CHAMBER (THIS WORK)

\(\alpha\)-PINENE
\(\beta\)-PINENE
CHANGE IN O_3 - NO IS A USEFUL MEASURE OF OZONE REACTIVITY IN AN EXPERIMENT

PROCESSES CAUSING O_3 FORMATION IS MANIFESTED BY NO CONSUMPTION IN THE INITIAL STAGES OF THE RUN.

FIT OF MODEL TO O_3 - NO SHOWS HOW WELL IT SIMULATES THESE PROCESSES DURING BOTH PERIODS.
CONCENTRATION-TIME PROFILES FOR O$_3$ - NO IN REPRESENTATIVE TERPENE - NO$_x$ EXPERIMENTS

(INITIAL TERPENE = ~0.3 PPM; NO$_x$ = ~0.25 PPM ~3000-LITER BLACKLIGHT CHAMBER)
MODEL SIMULATIONS OF AN α-PINENE EXPERIMENT USING THE PRELIMINARY UPDATED SAPRC MECHANISM

NO NITRATE FORMATION (PRELIMINARY MODEL)

- Ozone \rightarrow NO
- A-Pinene \times 2
- Model Calculation

Concentration (ppm) vs. Time (hours)
MODEL SIMULATIONS OF AN α-PINENE EXPERIMENT USING THE UPDATED SAPRC MECHANISM. ASSUMING 25% ALKYL NITRATE FORMATION IN THE OH REACTION

25% NITRATE FORMATION (ADJUSTED MODEL)

- Ozone = NO
- A-Pinene x 2
- Model Calculation

Graph showing concentration (ppm) over time (hours) with data points and curves representing different concentrations.
MODEL SIMULATIONS OF A β-PINENE EXPERIMENT USING THE PRELIMINARY UPDATED SAPRC MECHANISM

NO NITRATE FORMATION (PRELIMINARY MODEL)

- Ozone \rightarrow NO
- β-PINENE \times 2

Model Calculation

Concentration (ppm)

Time (hours)
MODEL SIMULATIONS OF A β-PINENE EXPERIMENT USING THE UPDATED SAPRC MECHANISM. ASSUMING 25% ALKYL NITRATE FORMATION IN THE OH REACTION

25% NITRATE FORMATION (ADJUSTED MODEL)

Ozone - NO
B-PINENE x 2
Model Calculation

Concentration (ppm)

Time (hours)
MODEL SIMULATIONS OF NO CONSUMED + O$_3$ FORMED
IN AN α-PINENE - NO$_x$ EXPERIMENT

CHAMBER RUN WITH BLACKLIGHT LIGHT SOURCE

RUN ETC-443

- Experimental
- Adjusted Updated
- CB-4
- SAPRC-90

[Graph showing the comparison of ozone levels over time for different simulations.]
MODEL SIMULATIONS OF NO CONSUMED + O₃ FORMED
IN AN \(\alpha \)-PINENE - NO\(_x\) EXPERIMENT

CHAMBER RUN WITH XENON ARC LIGHT SOURCE

RUN XTC-95

- Experimental
- Adjusted Updated
- CB-4
- SAPRC-90

Graph showing ozone concentration over time for different models.
MODEL SIMULATIONS OF O\textsubscript{3} FORMED IN \textalpha-PINENE - NO\textsubscript{x} EXPERIMENTS IN THE UNC OUTDOOR CHAMBER

UNC RUN 7/15/80 (B)

- Experimental
- Adjusted Updated
- CB-4
- SAPRC-90

UNC RUN 7/25/80 (R)

- Experimental
- Adjusted Updated
- CB-4
- SAPRC-90
MODEL SIMULATIONS OF NO CONSUMED + O₃ FORMED IN A β-PINENE - NOₓ EXPERIMENT

CHAMBER RUN WITH BLACKLIGHT LIGHT SOURCE

RUN ETC-434

- Experimental
- Adjusted Updated
- CB-4
- SAPRC-90

Ozone - NO (ppm)

Time (hours)
MODEL SIMULATIONS OF NO CONSUMED + O_3 FORMED IN A Δ^3-CARENE - NO\textsubscript{x} EXPERIMENT

CHAMBER RUN WITH BLACKLIGHT LIGHT SOURCE

3-ARENEx

![Graph showing ozone and NO concentration over time]

- Experimental
- Adjusted Updated
- CB-4
- SAPRC-90

Ozone - NO (ppm)

Time (hours)
MODEL SIMULATIONS OF NO CONSUMED + O₃ FORMED IN A SABINENE - NOₓ EXPERIMENT

CHAMBER RUN WITH BLACKLIGHT LIGHT SOURCE

SABINENE

- SABINENE

- Experimental
- Adjusted Updated
- CB-4
- SAPRC-90

Ozone - NO (ppm)

Time (hours)
EXPERIMENTAL AND CALCULATED EFFECT OF TERPENE ISOMER ON OZONE FORMATION

EXPERIMENTAL

MODEL CALCULATION
SUMMARY OF RESULTS OF MODEL SIMULATIONS OF TERPENE EXPERIMENTS

THE METHODS CURRENTLY USED TO REPRESENT TERPENES IN AIRSHED MODELS ARE UNSATISFACTORY.

TERPENES ARE SUFFICIENTLY DIFFERENT FROM OTHER ALKENES THAT AIRSHED MODELS SHOULD USE SEPARATE MODEL SPECIES TO REPRESENT THEM.

THE CHAMBER DATA INDICATE THAT TERPENES ARE STRONG RADICAL INHIBITORS UNTIL O_3 IS FORMED, THEN THEY ARE STRONG RADICAL INITIATORS.

TERPENE ISOMERS DIFFER SIGNIFICANTLY IN THEIR EFFECTS ON OZONE FORMATION. THE RATES AND OH YIELDS IN THE O_3 REACTION ARE THE CRITICAL FACTORS.

AN UPDATED MECHANISM CAN PREDICT O_3 FORMATION RATES IN TERPENE EXPERIMENTS IF IT ASSUMES ~25% FORMATION OF ORGANIC NITRATES IN THE OH REACTION.

BUT THE MECHANISM DOES NOT CORRECTLY SIMULATE EFFECT OF TERPENE ISOMERS ON FINAL O_3 YIELDS.

MORE DATA ARE NEEDED TO IMPROVE REPRESENTATION OF PRODUCT REACTIONS.
ACKNOWLEDGEMENTS

THIS WORK WAS FUNDED BY

U. S. ENVIRONMENTAL PROTECTION AGENCY
COOPERATIVE AGREEMENT CR817773-01-0