
W. P. L. Carter     5/12/06 Environmental Chamber Studies of VOCs 1

Environmental Chamber Studies of 
Ozone And PM Impacts of VOCs

William P. L. Carter
CE-CERT, University of California, Riverside

May 12, 2006

Outline
• VOCs and air quality
• Need for mechanisms to predict atmospheric impacts of VOCs
• Role of environmental chamber data in mechanism development
• Recent mechanism evaluation data with new low-NOx chamber
• Recent chamber data on secondary PM from m-xylene
• Ongoing research
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VOCs and Air Quality
• Volatile Organic Compounds (VOCs) enter the atmosphere from 

a variety of anthropogenic and biogenic sources 

• Impacts of VOCs on air quality include:
• Direct effects (for toxic VOCs very near large sources)
• Formation of toxic or persistent oxidation products 
• Promotion of ground-level ozone formation
• Contribution to secondary particle matter (PM) formation

• Contribution to ground-level ozone has been the major factor 
driving VOC regulations in the U.S.
• Models calculate large VOC reductions are needed to 

achieve air quality standards in urban areas
• NOx reduction is more important to reducing regional ozone

• But need to reduce PM has also become a priority. VOC control 
may also be necessary to reduce secondary PM.



W. P. L. Carter     5/12/06 Environmental Chamber Studies of VOCs 3

Mechanism of VOCs Impact on O3

• Ground level O3 is actually formed from the photolysis of NO2, 
with O3 in a photostationary state relation with NO and NO2:

• VOCs promote O3 by forming radicals that convert NO to NO2
and shift the photostationary state towards O3 formation, e.g.:

NO2 + hν → O(3P) + NO
O(3P) + O2 → O3

O3 + NO → O2 + NO2

Overall:

NO2 + O2 ⇔ O3 + NO

RH + OH → H2O + R
R + O2 → RO2

RO2 + NO → RO + NO2

RO → → HO2 + other products
HO2 + NO → OH + NO2

Overall:

VOC + O2 → → → O3 + products

hν

hν, NOx, O2
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Factors Affecting Impacts of VOCs on O3
• Ground level O3 is formed from the reactions of NOx. But without 

VOCs O3 levels are low because of its reaction with NO. 

• VOCs differ significantly on their effects on O3 formation 
Mechanistic factors affecting ozone impacts are:
• How fast the VOC reacts
• NO to NO2 conversions caused by VOC’s reactions
• Effect of reactions of VOC or its products on radical levels
• Effects of reactions of VOC or its products on NOx levels

• The effect of a VOC on O3 also depends on where it reacts
• The availability of NOx. (NOx necessary for O3 to form.)
• The sensitivity to radical levels
• The amount of time the VOCs have to react

• Models must take these factors into account to evaluate effective 
VOC control strategies to reduce O3.
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Factors Affecting Impacts of VOCs on 
Secondary PM

• Many VOCs form low volatility oxidation products that can 
partition into the aerosol phase and contribute to secondary PM

• Some higher volatility products may also partition into the aerosol 
phase due to heterogeneous reactions

• The yields of condensable products varies from compound to 
compound and may also vary with atmospheric conditions

• Identity, yields, formation mechanisms, and partitioning 
coefficients of condensable products are mostly unknown for 
most VOCs

• Data and mechanistic knowledge are inadequate for models to 
predict secondary PM from VOCs with any degree of reliability.

• Inadequately tested and highly simplified parameterized models 
are used for predicting effects of emissions on secondary PM
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Importance of Environmental Chamber Data 
to Air Pollution Models

• Chemical mechanisms are needed for models to predict 
secondary pollutants such as O3 and PM 

• Mechanisms in current airshed models have many uncertain 
estimates, simplifications and approximations

• Environmental chambers, simulating atmospheric reactions 
under controlled conditions, are essential to:
• Develop predictive mechanisms when basic mechanistic 

data insufficient.
• Testing approximations and estimates in mechanisms for 

almost all VOCs under simulated atmospheric conditions
• Testing entire mechanisms under the necessary range of 

conditions

• Results of experiments are influenced by chamber effects, so 
developing an appropriate chamber effects model is important
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Relationship Between Mechanisms, 
Chamber Data and Airshed Models

Basic kinetic and 
mechanistic data 

and theory

Environmental 
Chamber 

Experiments

Chamber 
Characterization 

Data

Mechanism Under 
Development

Model Simulations of 
Chamber 

Experiments

Chamber Effects 
Model

Evaluated 
Mechanism Airshed Model Airshed Scenario 

Conditions

Airshed Model Predictions
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Examples of Chemical Mechanisms
for Airshed Models

• Carbon Bond 4 Mechanism (~20 organic model species)
• Highly condensed. Designed for computational efficiency
• Developed in the late 80’s with some more recent updates
• Limited testing against older chamber data
• Widely used in regulatory modeling in the U.S.
• Not suitable for secondary PM prediction

• European “Master Mechanism” (~4500 organic model species)
• Highly explicit representation of major reaction routes for 

~130 VOCs and their major oxidation products. 
• Development and testing against chamber data ongoing.
• Used in trajectory models in Europe to estimate relative 

reactivity factors for VOCs. Too large for grid models
• Being adapted for secondary PM prediction
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Examples of Chemical Mechanisms
for Airshed Models (cont’d)

• SAPRC-99 Mechanism (~60 to ~600 organic model species)
• Can separately represent reactions of >550 types of VOCs. 

Condensed representation of oxidation products
• Developed in late ‘90’s and comprehensively evaluated 

against then-available chamber data
• “Lumped” version widely used for research and some 

regulatory modeling in the U.S.
• Versions with selected VOCs represented explicitly used for 

calculating VOC reactivity scales for O3

• Not designed for secondary PM prediction, but some 
modeling groups have adapted it for this purpose

• Evaluation against newer chamber data ongoing.
• Updated version under development
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Chamber Data Base Used when Developing 
and Evaluating the SAPRC-99 Mechanism

100 - 550556Base Case for Incremental 
Reactivity Reactivity

100 - 55084447Incremental Reactivity (effect of 
adding VOC to Surrogate - NOx)

80 - 1000117VOC Mixture - NOx

100 - 100037481Single VOC - NOx

0 - 66076Chamber Characterization

NOx Range 
(ppb)

No. of 
VOCs

No. of 
RunsType of Experiment



W. P. L. Carter     5/12/06 Environmental Chamber Studies of VOCs 11

Measure of Model Performance for Ozone
Model performance for simulating both ozone formation and NO 
oxidation is measured by ability to predict ∆([O3]-[NO]):

∆([O3]-[NO]) = ([O3]-[NO])FINAL- ([O3]-[NO])INITIAL

This gives a 
useful measure 
for both high NO 
and high O3
conditions

Time

C
on

ce
nt

ra
tio

n

O3
NO

∆([O3]-[NO])

Measures O3
formation once 
NO is consumed

Measures 
initial NO 
oxidation 
rate
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Distribution of Model Errors for ∆([O3]-[NO]) 
in the Initial SAPRC-99 Evaluation

Radical Source Characterization Single VOC - NOx

Various Mixture - NOx Base Case Surrogate
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Need for Improved Chamber Facility for 
Mechanism Evaluation

• Because of chamber effects and analytical limitations, most 
mechanism evaluation experiments conducted at higher pollutant 
levels than ambient.

• Large volume chambers are needed to reduce chamber effects 
and allow equipment with high sampling rates. But large outdoor 
chambers are difficult to control and characterize 

• Most chambers are not suitable to test predictions on how 
temperature affects O3 and PM formation.

• Most U.S. chambers lack the analytical instrumentation needed 
to monitor many important trace species

• The new UCR EPA Chamber was developed to address 
these needs
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Characteristics of New UCR EPA Chamber

• Indoor chamber design used for maximum control and 
characterization of conditions

• Dual reactor design for experimental productivity and to simplify 
reactivity assessment

• Largest practical volume for indoors (two ~100,000-L reactors)

• 200 KW filtered argon arc solar simulator

• Replaceable Teflon reactors in “clean room” to minimize 
background

• Positive pressure reactor volume control to minimize dilution and 
minimize contamination 

• Temperature controlled to ±1oC in ~5oC to ~50oC range.

• Improved array of analytical instrumentation and provision for 
additional instrumentation in the future
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Diagram of UCR EPA Chamber
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Diagram of Reactor and Framework
(One of Two)

CableCeiling
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Frame
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Motor
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Lower
Frame
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Photographs of Chamber and Lights
Looking Towards Reactors (from light) Looking Towards Lights and Air Inlet
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Light Source and Spectrum
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Summary of Characterization Results

• Contamination or dilution by enclosure air is negligible when run 
on positive pressure control. (Volume decreases as sample is 
withdrawn)

• Light intensity with argon arc lamp at 80% recommended 
maximum power gives NO2 photolysis rate of 0.26 min-1

• Characterization results indicate chamber effects are comparable
or lower than in other Teflon film chambers 

• Good side equivalency in gas-phase results obtained when the 
same experiment is simultaneously run in the two reactors 
(except for some NOx offgasing-sensitive runs) 

• Some background PM formation observed in one of the two 
reactors before it was replaced, but reproducible results obtained 
when >10 µg/m3 PM formed.
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Radical or NOx Offgasing Rates
Derived for Various Chambers
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Initial Evaluation Experiments
in New Chamber

0.2 – 4.2 ppmC

Toluene: 0.6 – 0.16
Xylene: 0.18
CO: 25 - 50

0.4 – 0.5

~0.6

HCHO: 0.4 – 0.5
CO: 15 - 80

0.35 – 0.50

Varied

VOC Range (ppm)

15-202Formaldehyde - CO - NOx

2 - 31561Ambient Surrogate - NOx

5 - 306Aromatic - NOx + CO

5 - 254Toluene or m-Xylene - NOx

5 - 252Propene - NOx

10 - 252Ethene - NOx

8 - 252Formaldehyde - NOX

0 - 20032Characterization

NOx Range 
(ppb)RunsRun Type
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Model Errors in Simulating ∆([O3]-[NO]) in 
the Initial Evaluation Experiments

← Model Biased Low Model Biased High →

SAPRC-99 
Mechanism 
used

Previous Experiments
HCHO - NOx

HCHO - CO - NOx

Ethene - NOx

Propene - NOx

Toluene - NOx

Toluene - CO - NOx

m-Xylene - NOx

m-Xylene - CO - NOx

Surrogate - NOx

-50% -25% 0% 25% 50%
(Calculated - Experimental) / Experimental

Single Run Average
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Matrix of ROG Surrogate – NOx Experiments 
in the UCR EPA Chamber
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Lowest NOx Surrogate Experiment
(ROG surrogate = 300 ppbC, NOx = 2 ppb)

Concentration (ppm) vs Time (minutes)
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Representative Data from a
Radical Measurement Experiment
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Previous Experiments
HCHO - NOx

HCHO - CO - NOx

Ethene - NOx

Propene - NOx

Toluene - NOx

Toluene - CO - NOx

m-Xylene - NOx

m-Xylene - CO - NOx

Surrogate - NOx

-50% -25% 0% 25% 50%
(Calculated - Experimental) / Experimental

Single Run Average

Model Errors in Simulating ∆([O3]-[NO]) in 
the Initial Evaluation Experiments

← Model Biased Low Model Biased High →

Variable fits 
with generally 
negative bias 
for surrogate 
experiments
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Model Underprediction Errors for
Surrogate - NOx Experiments

ROG/NOx Ratio relative to ratio giving maximum O3
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Model Underprediction Errors for
Surrogate - NOx Experiments
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Model Underprediction Errors for
Surrogate - NOx Experiments:
SAPRC-99 vs Carbon Bond 4
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SAPRC-99 Model Underprediction Errors for
Mixture and Surrogate - NOx Experiments
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Uncertainties in Aromatics Mechanisms

• Major atmospheric reactions of aromatics involve OH adding to 
the ring, followed by various ring fragmentation processes

• Despite considerable study, details of ring fragmentation 
process is unknown. Less than half of the product mass has 
been identified and quantified

• In order for model to simulate chamber data, it is necessary to 
derive parameterized mechanisms with following characteristics:
• Some uncharacterized products are highly photoreactive
• Photoreactive product yields and photolysis rates adjusted 

for model to predict O3 in aromatics - NOx experiments

• Evidence for compensating errors between numbers of NO to 
NO2 conversions and radical input rates
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Experimental SAPRC-99

Measurement of Direct Reactivity

• Direct reactivity is the number 
of NO to NO2 conversions 
caused by a VOC’s reactions

• A HONO + VOC photolysis 
flow system was developed to 
give a measurement sensitive 
to direct reactivity

• Initial experiments indicate 
SAPRC-99 overpredicts direct 
reactivities of aromatics by up 
to a factor of 2



W. P. L. Carter     5/12/06 Environmental Chamber Studies of VOCs 33

Effect of CO in Aromatic - NOx Runs
Toluene m-Xylene
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Effects Of Adjustments to
Parameterized Toluene Mechanism

Effect of CO (EPA074) Toluene - NOx Runs
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Ongoing Mechanism Development Work

• SAPRC mechanism is being updated as part of a contract for 
the California ARB. Due to be completed by the end of 2006

• Significant work on the European Master Mechanism is 
underway. Current version does not perform well for aromatics

• Improving the aromatics mechanism is a high priority.
• New chamber experiments conducted to evaluate models for 

aromatics products
• New laboratory data are available
• A more explicit aromatics mechanisms is being developed, 

but simulations of data no  better than SAPRC-99.

• The California ARB is sponsoring an international conference on 
the future of mechanism development in December, 2006.  See 
http://www.cert.ucr.edu/~carter/Mechanism_Conference
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PM Measurements in the UCR EPA Chamber

• PM Measurements are being made in conjunction with most 
UCR EPA chamber experiments. PM alternately sampled from 
each of the two reactors, switching every 10 minutes

• Number densities of particles in 71 size ranges (28 - 730 nm) 
measured using a a Scanning Electrical Mobility Spectrometer. 
Data used to compute particle number and volume densities

• Background PM formation now less than 0.5 µg/m3. (Was up to 
2  µg/m3 in Reactor A before it was replaced)

• PM measurements made during incremental reactivity 
experiments with representative architectural coatings VOCs. 

• A number of experiments were conducted to determine effects 
of varying initial concentrations on secondary PM from m-xylene

• Most experiments to date are unhumidified with no seed aerosol
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Representative PM Data
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Matrix of m-Xylene - NOx Experiments to 
Study Effect of Reactant Levels on PM
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Equilibrium Model for PM in Experiments

• Measured PM yield is the ratio of aerosol mass formed 
(corrected for wall loss) to mass of VOC reacted

• From equilibrium gas-particle absorptive partitioning theory, 
assuming no initial PM and all PM is secondary organic aerosol:

PM Yield =               ≈ PMtot Σi
PMtot αi Kpart

i

∆VOC                     1 + Kpart
i PMtot

Where: αi = Yield of condensable product i in VOC reactions
Kpart

i = Gas-particle partitioning constant for product i
PMtot = Total organic PM mass formed in experiment
∆VOC = Mass of VOC reacting in experiment

• Standard parameterization for chamber experiments assumes:
• Stoichiometric yields, αI, are constant for a given VOC
• Maximum of 2 products (i = 1,2) sufficient to fit data
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Standard Equilibrium Model Yield Curves
for the m-Xylene Experiments
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NOx-Dependent Yield Model

Xylene + OH → Intermediate

Intermediate → α’ PM Precursor

Intermediate + NOx → other products

• Assume that of formation yield of PM precursor, αi, is NOx -
dependent, as suggested by:

• Adjust α’, Kpart, and k1/k2 to fit data

• Single product model (i=1) is 
sufficient to fit data

• Fits better using NOx to xylene 
ratio rather than total NOx.

k1

k2

• Model and best-fit Kpart, and k1/k2 values can be used to derive 
precursor yields, α, for individual experiments
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Dependence of Derived PM Precursor Yields 
on NOx/ROG, O3, and Extent of Reaction

PM precursor yields (molar) derived from data for a run
Predicted dependence on NOx/xylene ratio by NOx-dependent yield model
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PM Yields from Zero NOx
(m-Xylene – H2O2) Experiments
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Partial Mechanism for m-Xylene Reactions 
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These hydroperoxides are the 
probable zero-NOx PM precursors
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Comparison of Hydroperoxide and Derived 
PM Precursors Yields vs NOx/Xylene Ratio
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Comparison of Hydroperoxide and Derived 
PM Precursors Yields vs NOx/Xylene Ratio
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PM Formation in Incremental Reactivity 
Experiments with Coatings VOCs
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Base Case Experiments
Propylene Glycol

Ethylene Glycol
Texanol®
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Dearomatized MS

Reduced Aromatics MS
Regular Mineral Spirits (MS)

Aromatic 100
Butyl Carbitol
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Average 5 Hour PM Volume µg/m3

Side B data only

Error Bars are 1-σ 
standard deviations.
No error bar means 
only one experiment.
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FUTURE RESEARCH DIRECTIONS

• Continue O3 reactivity and mechanism evaluation experiments 
as currently underway

• Utilize the capabilities of chamber for well-characterized SOA 
studies needed for SOA model development and evaluation

• Investigate temperature and humidity effects on O3 and SOA

• Obtain instrumentation needed for NO3, N2O5, HOx, and other 
trace species to improve capabilities and utility of this facility

• Serve as a resource for collaborative studies where 
environmental chamber measurements under highly controlled 
and characterized conditions would be useful

• Serve as test bed for instrumentation for ambient monitoring
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