Issues and Research at UCR on PM and Toxics Impacts of VOCs

William P. L. Carter CE-CERT, University of California, Riverside, CA May 28, 2009

Outline

- Factors affecting impacts of VOCs on secondary toxics and modeling study of aldehyde and PAN formation potentials of VOCs
- Factors affecting impacts of VOCs on PM and qualitative UCR chamber data on relative impacts of coatings VOCs
- Summary of issues and research needs for developing reactivity scales for impacts of VOCs on SOA and toxic products

Factors Affecting Impacts of VOCs on Air Toxics Formation

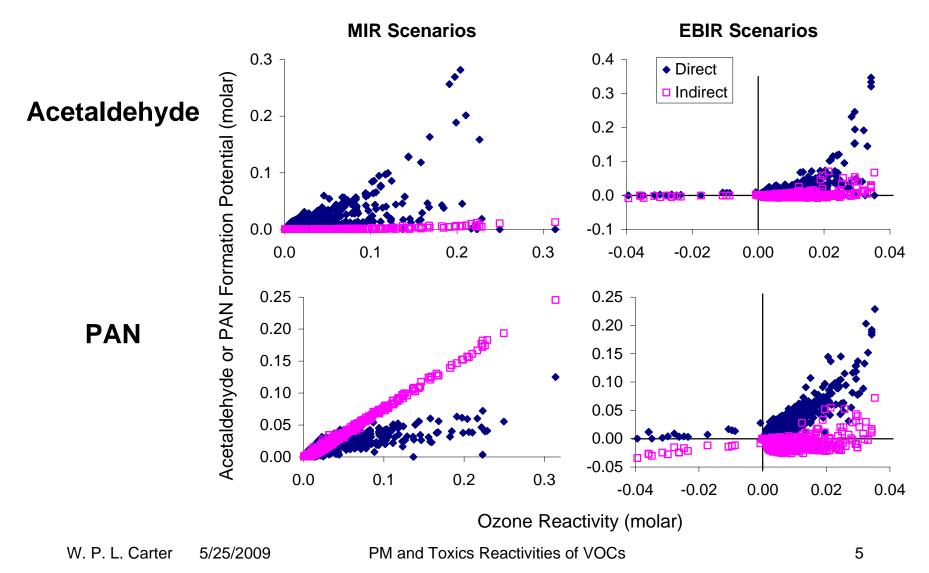
Direct Effects

- For toxic VOCs the main factors are their removal rates
- For toxic precursor VOCs the main factors are the rate the VOCs react, the toxic product yields and how they vary with conditions

Indirect Effects

- VOCs that enhance or inhibit radical levels will affect rate of toxic product formation from toxic precursors that are present
- VOCs that affect O₃ will affect the chemical environment that may affect some toxic product yields (e.g., PANs)
- Indirect effects will be highly dependent on the levels of toxic precursors present
- Indirect effects will correlate with O₃ reactivity more than direct effects.

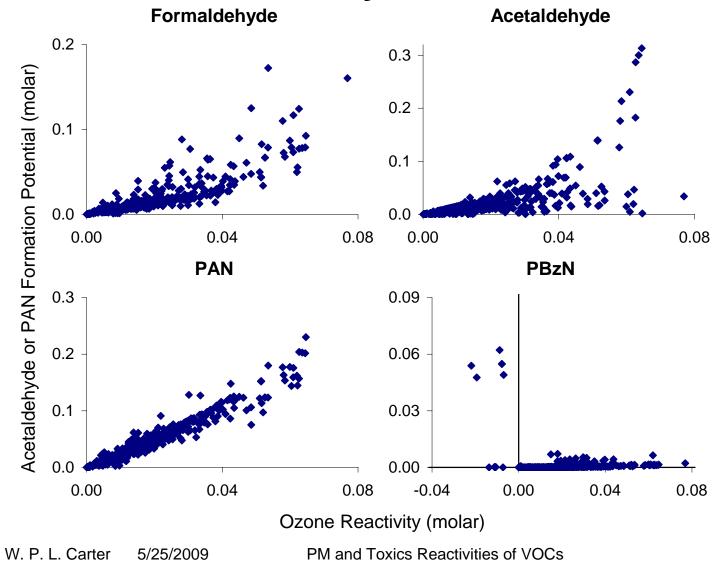
UCR Project for OEHHA to Estimate Aldehyde and PAN Formation Potentials


Background

- The California Office of Environmental Health Hazard Assessment needed to evaluate the human and environmental health impacts of motor vehicle fuels
- Quantifying effects on secondary toxics of fuel VOCs on air toxics (aldehydes, nitrates, PANs) was part of this effort
- UCR was contracted to calculate impacts of VOCs on atmospheric aldehyde, nitrate, and PAN levels
- Work was completed in September, 2001. Report now available at http://www.cert.ucr.edu/~carter/absts.htm#aldrpt

Project to Estimate Aldehyde and PAN Formation Potentials: Approach

- SAPRC-99 mechanism used
- Duplicate organic product species added to permit separate assessments of direct and indirect effects
- Same scenarios employed as used to calculate MIR, MOIR, and EBIR ozone reactivity scales
- Incremental reactivities of VOCs were calculated with respect to direct and indirect formation of:
 - Formaldehyde PAN
 - Acetaldehyde PBzN
 - Lumped higher
 Lumped Other
 Aldehydes
 PANs
- Acrolein
- Organic nitrates
 - Lumped aromatic products


Direct and Indirect Acetaldehyde and PAN Formation Potentials vs. Ozone Reactivity

Aldehyde and PAN Formation Potentials in High vs. Low NO_x Scenarios

Aldehyde and PAN Formation Potentials vs. Ozone Reactivity in MOIR Scenarios

Summary and Recommendations - Toxic Product Reactivity

Summary

- Toxic product reactivities depend on details of VOC mechanisms which vary from compound to compound
- Aldehyde formation potentials are insensitive to NO_x conditions.
 PAN potentials more sensitive but trends are consistent.
- Correlation with O₃ reactivity depends on product. Ranking is PAN > Formaldehyde > Acetaldehyde >> PBzN

Recommendations

- Issues and research needs similar to those for O_3 scales except:
 - Greater requirement for chemical detail in mechanism and greater mechanism uncertainty
 - Choice of scenario conditions may be slightly less important except for composition of base ROG mixture.

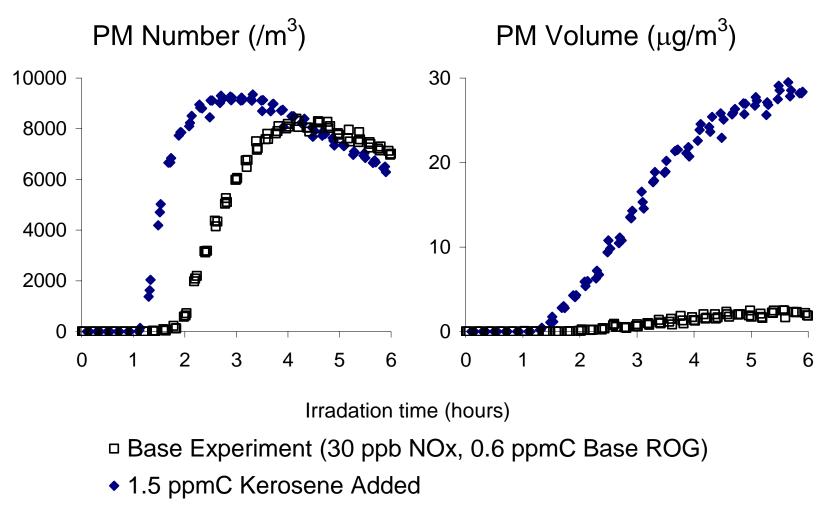
Factors Affecting Impacts of VOCs on Secondary PM

- Many VOCs form low volatility oxidation products that can partition into the aerosol phase and contribute to secondary PM
- Some higher volatility products may also partition into the aerosol phase due to heterogeneous reactions
- The yields of condensable products varies from compound to compound and with atmospheric conditions
- Identity, yields, formation mechanisms, partitioning coefficients, and heterogeneous reactions of condensable products are mostly unknown for most VOCs
- Data and mechanistic knowledge are inadequate for models to predict secondary PM from VOCs with any degree of reliability.
- Current models use inadequately tested and highly simplified parameterized models to predict secondary PM

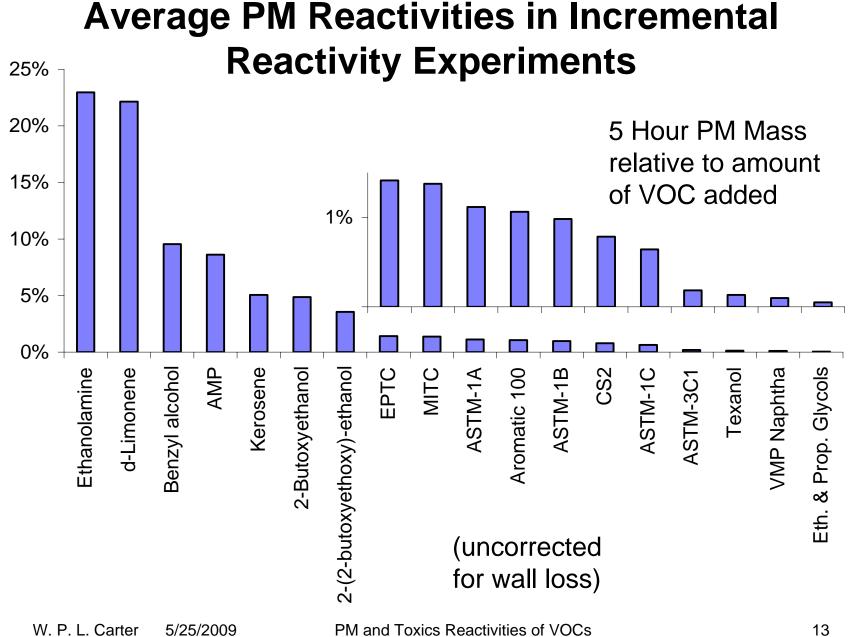
Requirements for Predictions of PM Impacts (in addition to requirements for O₃ predictions)

Predictive Mechanisms for Chemical and Physical Processes

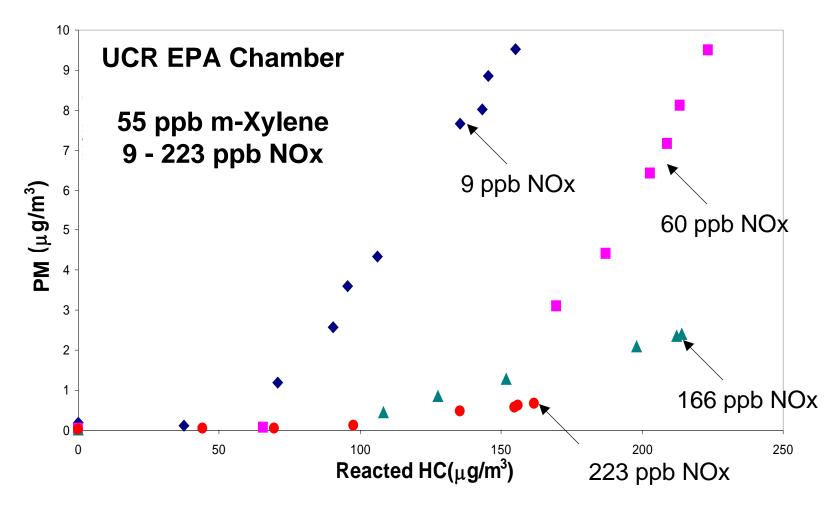
- Chemical mechanism must predict yields of low-volatility products and how they change with chemical conditions
- Predict gas-to-particle phase partitioning and evaporation
- Predict condensed-phase reactions (polymerization, etc)
- Predict PM nucleation and removal processes


Model for Environmental Conditions

- Appropriately representing temperature, humidity, absolute concentrations *much more important* for PM than for O_3
- Appropriately represent *primary* and *background* PM that may affect partitioning or condensed-phase processes
- Use base case scenarios that give representative PM levels
- Appropriately represent PM loss processes


PM Measurements in the UCR EPA Chamber

- PM Measurements were made in conjunction with most recent ozone reactivity experiments. Compounds studied include:
 - Representative Water- and Solvent-based coatings VOCs
 - Several pesticide VOCs: MITC, EPTC, CS₂, Kerosene
 - Aminomethylpropanol (AMP), Aminoethanol, d-Limonene
- Research underway to determine effects of reactant (e.g. NO_x) concentrations, humidity, and other factors on PM formation
 - Current emphasis is on aromatics and terpenes
 - Data obtained are needed to develop predictive mechanisms for PM formation in the atmosphere
- Experiments are being carried out at lower reactant concentrations than is practical for most other chambers
- A large array of state-of-science equipment recently was obtained from a grant from the Keck foundation


Representative PM Data from Reactivity Experiments

PM and Toxics Reactivities of VOCs

Comparison of SOA in Experiments with Same Initial m-Xylene Concentrations

Upcoming UCR Project: SOA Formation: Chamber Study and Model Development

- <u>Objectives</u>: Develop improved mechanisms to predict secondary organic aerosol (SOA) from aromatics and other compounds.
- <u>Status</u>: Contract pending
- <u>Proposed Overall Approach</u>:
 - This project to be carried out in collaboration with Dr. David Cocker at UCR and Dr. Robert Griffin at Rice University.
 - UCR EPA chamber experiments will be conducted to develop and evaluate models for SOA from aromatics, aromatic products, and selected other VOCs
 - The SAPRC-07 mechanism will be expanded and adapted for SOA modeling based on the results of the experiments.
 - Use the results to develop improved mechanisms for predicting SOA in 3-D airshed models.

Summary and Recommendations - PM Reactivity: Scientific Issues

- Chamber data indicate VOCs vary significantly in PM impacts, and PM impacts are *not* correlated with O₃ impacts.
 - However, current data are qualitative and not representative of ambient conditions
- Improved, and more comprehensive mechanisms need to be developed for modeling secondary PM in the atmosphere
 - Detailed mechanisms have been developed for only few of VOCs and evaluated under unrepresentative conditions
 - Current simplified PM models are not consistent with the limited available chamber data for aromatics
 - Well-characterized chamber experiments *simulating ambient conditions* are needed to develop *predictive* PM models.
- Scenarios for assessing PM impacts need to be developed. Existing scenarios for O_3 reactivity scales are not appropriate

Summary and Recommendations - PM Reactivity: Policy Issues

- Current models are not yet sufficiently reliable to serve as a basis for deriving PM reactivity scales for regulatory applications
- Near term solution:
 - Use PM formation in appropriate environmental chamber experiments to obtain *qualitative* PM reactivity rankings
 - Modeling and experimental research is needed to develop appropriate experimental procedures for this purpose
- Longer term solution:
 - Continue to support experimental and model development research to improve SOA models.
 - Once sufficiently reliable models are developed, the issues become similar to those for O_3 and toxics reactivity scales.

Additional Information Available

W.P.L. Carter research on chemical mechanisms and reactivity

• http://www.cert.ucr.edu/~carter

Report on Aldehyde and PAN formation potentials for the California OEHHA (Dated September 23, 2001)

• http://www.cert.ucr.edu/~carter/absts.htm#aldrpt

Research on Secondary Organic Aerosol Formation in UCR EPA chamber

• http://www.engr.ucr.edu/~dcocker/