Improved PN measurement with PPS-M using dynamic trap	•	• • •	• • • • • •	• • • • • •	• • • • • •	• • • • • •	• • • •		•
Switching PEMS Conference 2017 Erkka Saukko ¹ , <u>Niina Kuittinen²</u> , Henna Silvennoinen ² , Riina Hietikko ² , Topi Rönkkö ² , Panu Karjalainen ² , Jarkko Niemi ³ , Jorma Keskinen ² , Kauko Janka ¹ ¹ Pegasor Oy, Tampere, Finland ² Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, Tampere, Finland ³ Helsinki region environmental services, Helsinki, Finland		• • • • • • • •		 . .<					
							-	 •	
		Ē				S			•

Background

- PPS-M has been used for automotive PN/PM measurements commercially since 2011
- Sensor uses a diffusion charger and escaping current measurement to produce fast, repeatable and robust signal at high temperature measurement
- Signal size dependency introduces uncertainty when particle size changes
 - Getting size information reduces uncertainty

Pegasor sensor: Operation Principle

- Electric measurement principle
 - Wide concentration range
 - Size range D_p < 1 μm
 - Combination of air-jet charger and ejector pump
- Non collective consept
 - No clogging collecting filter
- All critical parts shielded by clean air flow
- Cutpoint adjustment possible with the trap voltage

Escaping current concept

- Measured primary signal is the net escaping charge
- No collection of large particles -> low contamination
- Very stable signal path
 - Saturated charge generation
 - Current is measured directly
 - Sensing elements isolated from sample

What about size?

- Diffusion charging has size dependency (Dp1..1.5)
- Getting number or mass in case of varying CMD is problematic
- Two signals at different cutpoints gives an opportunity to infer mean (charging) size
 - Dual PPS-M (Amanatidis et al., JAS 2016)
 - miniDisc, Partector (Fierz et al., AS&T 2011)
 - With a single PPS-M with successive trap settings (Dal Maso et al., AAQR 2016)
- Adds complexity
- Limited accuracy for the size at the extremes

Ntziachristos et al., SAE, 2011

Typical	Magnitude	Min	Max
Diesel (and	Dg [nm]	40	66
Range	GSD [-]	1.65	1.90
	DF [-]	2.2	2.6
	Number [km ⁻¹]	5×10 ¹¹	10 ¹⁴

Particle size and number concentration calculation

- Based on the currents from the two instruments, CMD, PM and PN can be calculated. (Amanatidis et al. 2016)
- A choice of instrument setting is made, with compromise in the extremes of the size scale.
 - Choose voltages, read signal ratio
- What if voltage setting is chosen continuously?

Dynamic trap : range advantages

- Instead of accurately measuring signal ratios, we can very accurately set the trap voltage
- Advantages: S/N kept at maximum, wide dynamic range
 - Dynamic trap: Signal ratio kept at 50% gives cmd dynamic range of 63
 - Static trap: Any constant voltage gives dynamic size range of ~27

Dynamic trap: Follow the peak of distribution

- The dynamic trap is adjusted to find the halfway point of the distribution.
- Size parameter is extracted from the optimal trap voltage
- Size correction for number (and even mass), given single mode distribution
- Caveat: Single mode, constant GSD assumed

Lab testing

- Lab generated size distributions
 20, 50, 60, 100 and 200 nm
- Size distribution is captured with trap voltage up to 100nm
- Signal ratio, moving avay from 0.5 can be used to extend the range

Practical application: roadside ambient air measurement

- Busy urban roadside in Helsinki
- Inlets at ~3m height, 1m from roadside
- Comparison with
 - CPC in a warm cabin
 - PPS-M, sample heated ambient+40C to dry the sample

- Further information:
 - www.hsy.fi
 - fmi.cityzer.fi

Example raw signals

CPC comparison, final result

CPC, cm^{-3}

12 Improved PN measurement with PPS-M using dynamic trap

Conclusions

- Dual-PPS-M type analytics can be done with one instrument by sequential trap switching
 - Particle size, number and mass
- Adjusting the dynamic trap voltage offers wider particle size range, up to 200 nm
- Cost of time sharing is reduction in time resolution
- Development for faster time response needed for faster transient response
- Applications at this stage:
 - Slow transient measurements: Ambient measurements, power generation, marine, local steady state size calibration at dynamometer.

	• • • • • • • • • • • • • • • • • • •
Thank You!	
Thank Tou.	
erkka.saukko@pegasor.fi	
entraleadine e pegaeenn	
• • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • •	
	Amazing Solutions [®]