Potential Applications of µPEMS and Remote Sensing Devices

7th Portable Emissions Measurement System (PEMS) Workshop March 30-31, 2017

Presented By:

Thomas Durbin, Yu (Jade) Jiang, <u>Kent Johnson</u>, Georgios Karavalakis, Jiacheng (Joey) Yang, Edward O'Neil, and Wayne Miller www.cert.ucr.edu (951) 781-5786

> University of California, Riverside Center for Environmental Research and Technology (CE-CERT)

Collaboration Mark Carlock, Consultant, West Covina, CA Nigel Clark, University of West Virginia, Morgantown, WV Robert B. Harris, Indiana University Purdue University, Indianapolis, IN

www.cert.ucr.edu

Background

- Light duty vehicles... Significant progress has been made PFIs, but new technologies important.
- > Heavy duty (HD on-road). Programs are needed
- > Heavy duty (HD non-road). Construction, marine, locomotive...
- > Other

µPEMS

BOSC

Light duty I/M with RSD methods

> Failure Modes: Age, Off-cycle, Defeat device

Gasoline

- I/M can capture, aging and defeat devices, but off cycle may be complex.
- Combine with PEMS/PAMS for complete picture
 Distributed EDAR may also be an option for off-cycle

Active Project: On-Road HD I/M

- HD vehicles represent 33% of NOx, 26% of PM, and 8% of GHG emissions from motor vehicles.
- California has an existing heavy-duty vehicle Inspection and Maintenance program (HDVIP) and a Periodic Smoke Inspection Program (PSIP).
 - Snap-acceleration opacity testing (SAE J1667)
 - Vehicle and emission control label (ECL) inspections
- California needs a more comprehensive HD I/M program.
 - Updated for modern trucks with aftertreatment and on-board diagnostics
 - Test for multiple pollutants

On-road I/M Objective

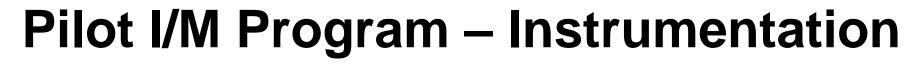
The objective of this study is to evaluate and assess various potential approaches and technologies for a more comprehensive HD I/M program that could be implemented in California.

Collaboration

Mark Carlock, Consultant, West Covina, CA Nigel Clark, University of West Virginia, Morgantown, WV Robert B. Harris, Indiana University Purdue University, Indianapolis, IN

Overview of Project Tasks

- > Task 1: Perform a literature review
- > Task 2: Demonstration
- > Task 3: Cost, benefit, and emissions analysis


Pilot I/M Program – Chassis Dyno Testing

Test Sequence					
Vehicle 3 minutes warm up @ 60 mph					
Dyno 50 mph @ 200 hp					
1 minute @ 50 mph	Collect Emissions				
Dyno 30 mph @ 100 hp					
1 minute @ 30 mph	Collect Emissions				
2 minutes Idle @ 600 rpm	Collect Emissions				
1 minute High Idle @ 1800 rpm	Collect Emissions				
Opacity	Triplicate tests				

Vehicle on the dyno

UC RIVERSITY OF CALIFORNIA

Maha	Pegasor Mi3	TSI NPET		
			Instrument List	
			Instrument	Measure
			Maha	NOx, CO ₂ , PM
	VERL		Pegasor	PM
Testo	parSYNC	NTK	TSI NPET	Solid PN
		Testo	PN	
	RE 3DETX	· · · · · · · · ·	parSYNC	NOx, CO ₂ , PM
	e Bondo o		NTK	NOx, PM, AFR, PN

Note: Pegasor, NPET, and parSYNC were only used for the first two weeks of testing.

PEAQS

Pilot I/M Program: HEAT EDAR & CARB PEAQS*

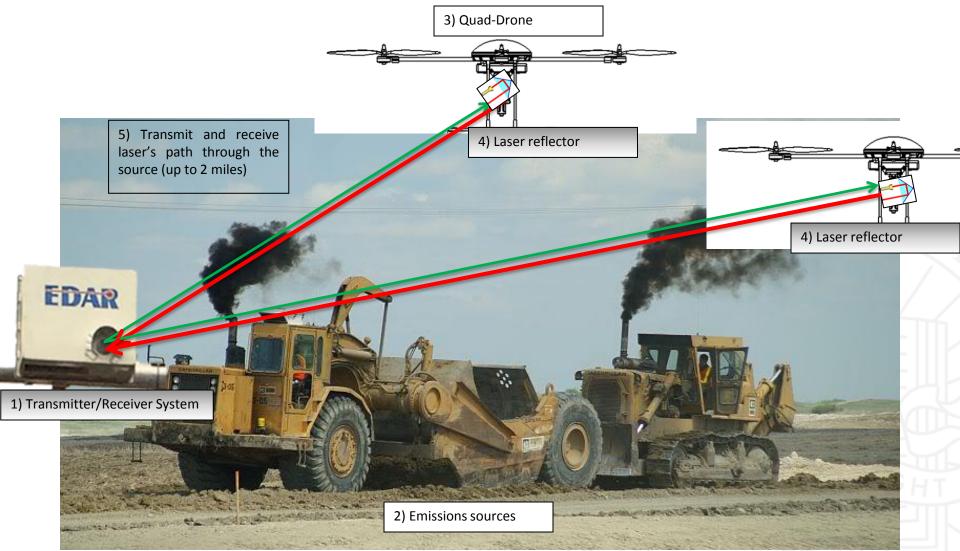
On-Road I/M Observations

- Some truckers are declining diagnostic scans, even with an active MIL, based on cost.
- Some truckers are also declining emissions-related repairs, some even with active MILs.
- DPF cleaning is frequently conducted in conjunction with other repairs.
 - > Many repairs involve more than one system/component

Non-Road I/M is Needed Also

- > PEAKS or RSD would take the unit off line
- Construction works very demanding (tell them were to go?)
- > Other options?

18575221

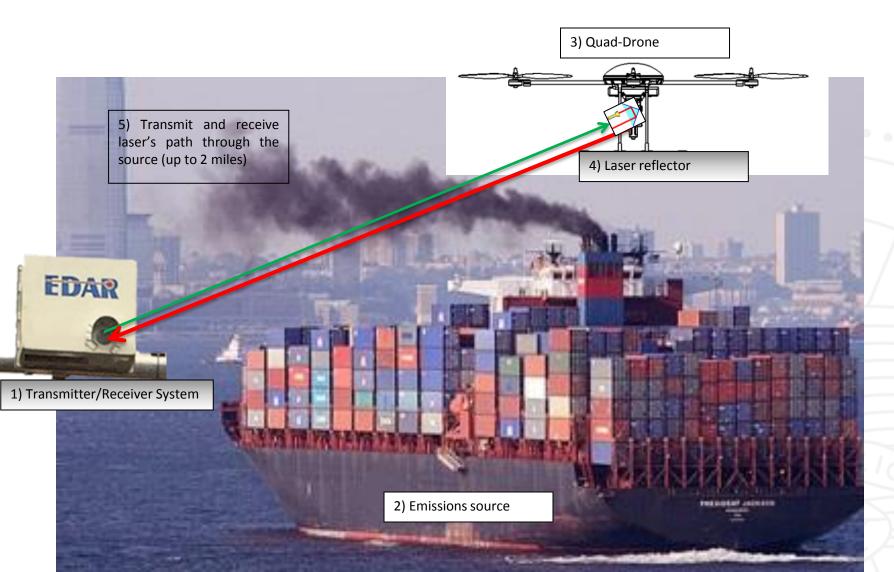

Non-Road Measurement Biases

Imagine the PM contamination on this test! Best I/M?

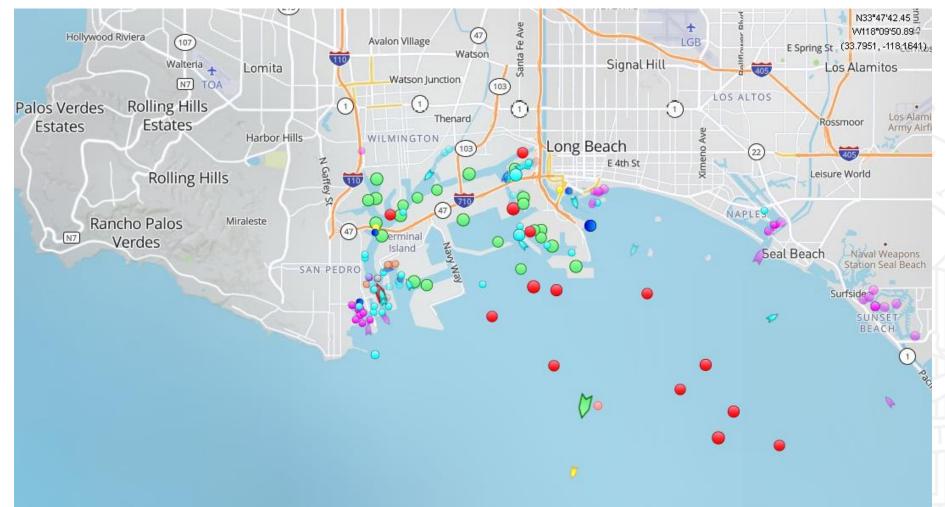
UC RIVERSIDE

Non Road: Next Generation of I/M

Marine Testing Even More Complex

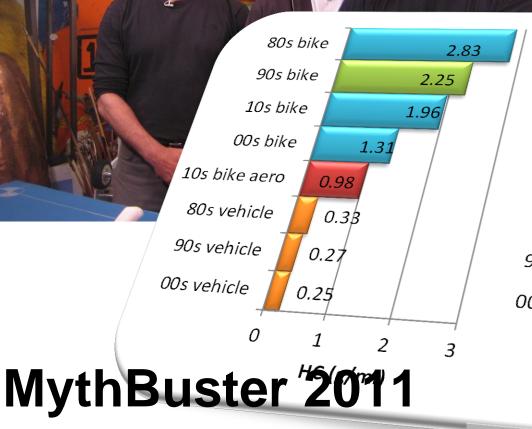


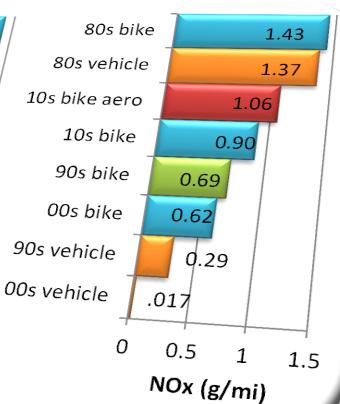
Permissions to board Long routes Logistics complex Homeland security Customs Combustible gases Setup very long


Simultaneous source sampling and plume sampling

Marine: Next Generation of I/M

Marine Testing with Drones Could Cover Large Areas and Low Cost




AUSIERS

µPEMS are the only solution here

CARS versus Motorcycles

17

HYPERMILING

How to Make Your Car Go <u>Further</u> With Less Gas

uPEMS would not work well

MythBusters 201 http://www.cert.ucr.edu/events/pems2014/

Summary

- > On-road many tools available
- Non-road tools more limited
- Marine even more complex and limited
- > Other: Aircraft, restaurants?