Comparison of Real-World Vehicle Emissions for Gasoline-Ethanol Fuel Blends

H. Christopher Frey (frey@ncsu.edu) Tongchuan Wei Weichang Yuan Nikhil Rastogi	NC STATE UNIVERSITY Civil, Construction, and Environmental Engineering				
David Miller Larry Matheson	CORPORATION				
Steven VanderGriend	URBAN AIR INITIATIVE				

Portable Emissions Measurement Systems International Conference & Workshop University of California at Riverside

March 23, 2018

Background and Motivation

- Splash Blend versus Match Blend
- Role of Octane
 - Spark timing advance
 - May affect chemical residence time for combustion reactions
 - May affect combustion efficiency, emissions
- How well do vehicles adapt to fuel blends

 Flex Fuel Vehicles ethanol sensor
 Non-FFVs: Long-term fuel trim

Objective

Evaluate the effect of gasoline ethanol blends on real-world fuel use and emission rates

Study Design

- Fuels
- Vehicles
- Routes
- Instruments

Fuels

- E0 (neat gasoline)
- E10R (10% ethanol by volume) Regular
- E10P Premium
- E25 (splash blended with E10R)

Fuel Sampling and Blending

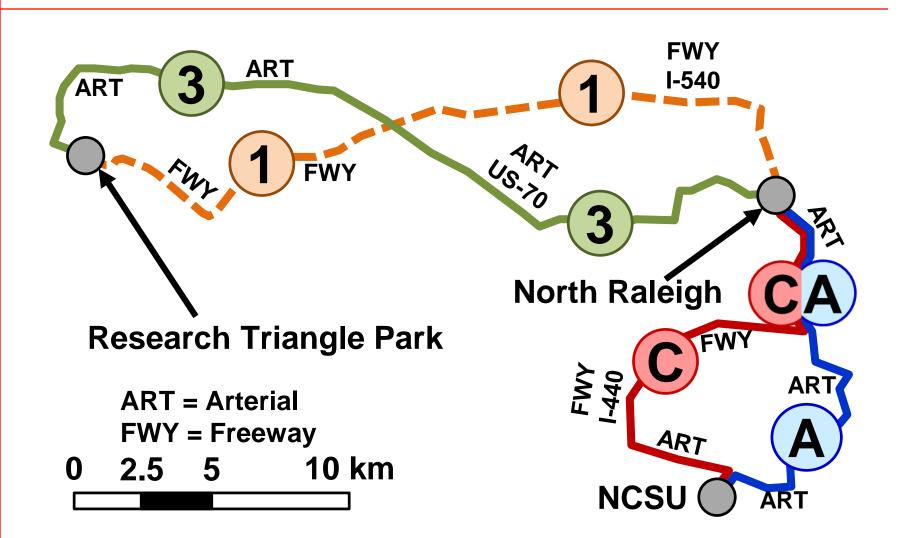
Selected Fuel Properties

Heating		Con	nposition	Distil	lation		
Fuel	Value (BTU/gal)	O (wt%)	Aromatics (wt%)	T ₅₀ (°F)	T ₉₀ (°F)	PMI	AKI
E0	115,700	0.0	41	226	322	1.9	90
E10R	110,000	4.1	28	155	321	1.7	88
E10P	110,800	3.8	39	198	316	1.7	93
E25	103,700	10.5	22	163	307	1.4	92

Measured Vehicles

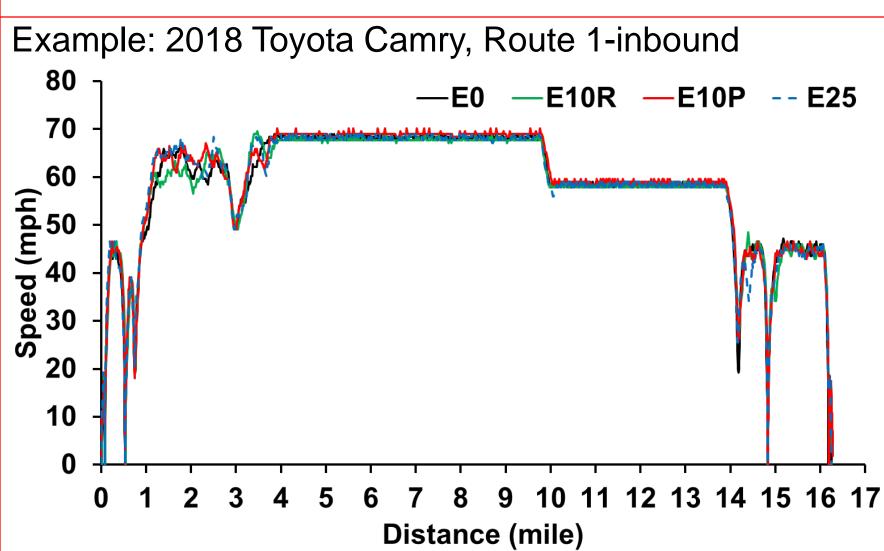
2017 Chevrolet Cruze GDI TC

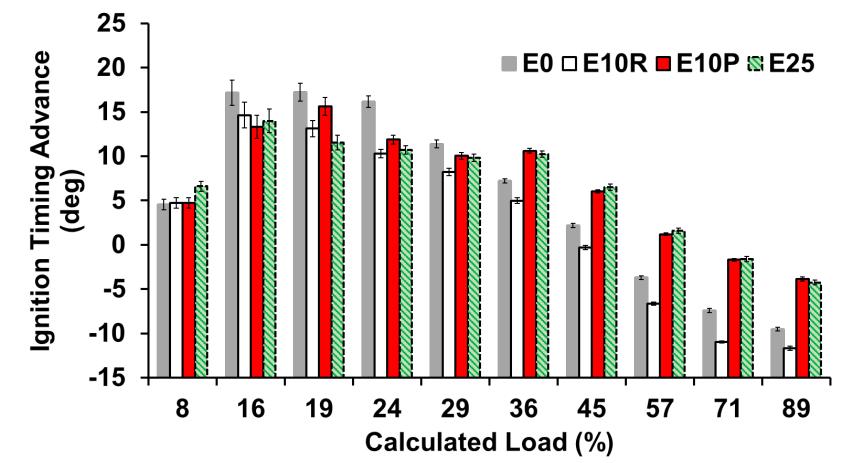
2018 Toyota Camry GDI


2017 Chevrolet Equinox GDI, FFV

2016 Nissan Quest PFI

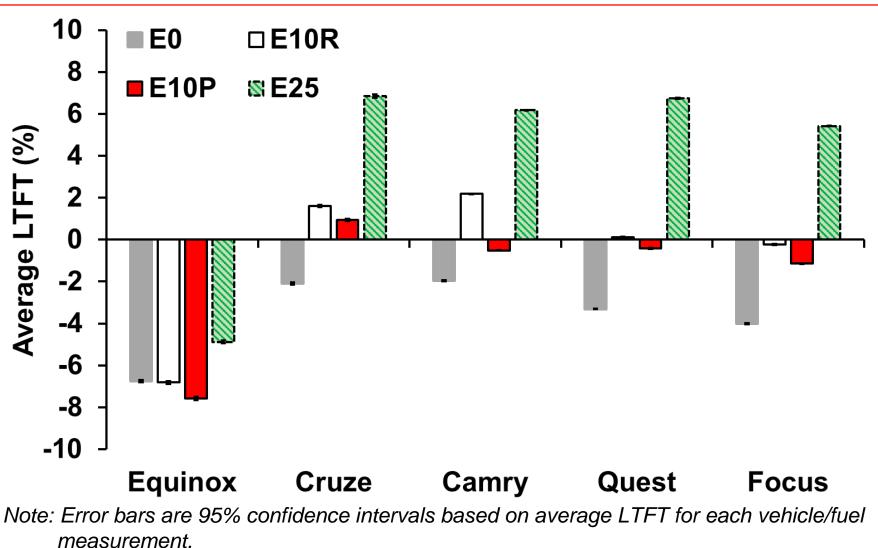
Test Routes in Raleigh


Portable Emission Measurement Systems (PEMS)


Results

- Driving Cycles
- Engine Performance
 - Ignition Timing Advance
 - Long-Term Fuel Trim
- Fuel Use and Emission Rates
 - VSP (Vehicle Specific Power) Modal Analysis
 - Cycle-Average Analysis
 - Statistical Significance

Driving Cycles: Route 1 (Inbound)

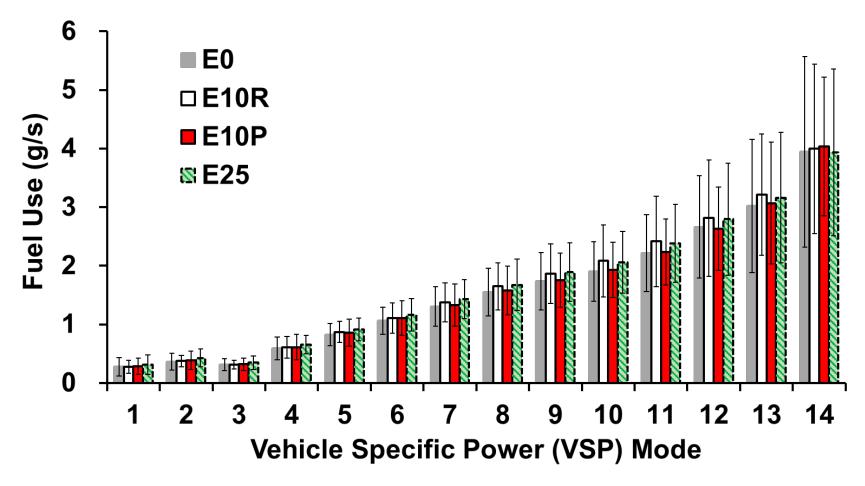


Ignition Timing Advance vs. Calculated Load: 2017 Chevrolet Cruze

Note: Error bars are 95% confidence intervals based on mean ignition timing advance for each engine calculated load bin for the Cruze.

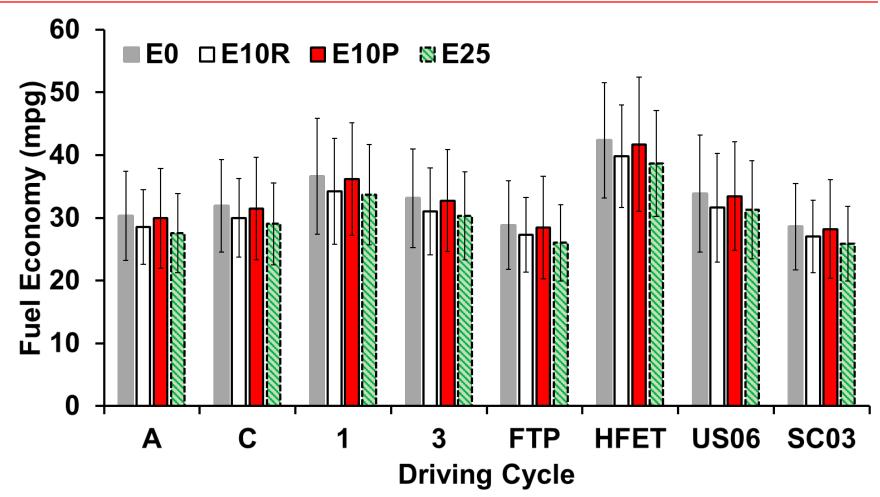
Vehicle Specific Power (VSP)

$$VSP = v\left\{a\left(1+\varepsilon\right) + gr + gC_R\right\} + \frac{1}{2}\rho v^3\left(\frac{C_DA}{m}\right)$$

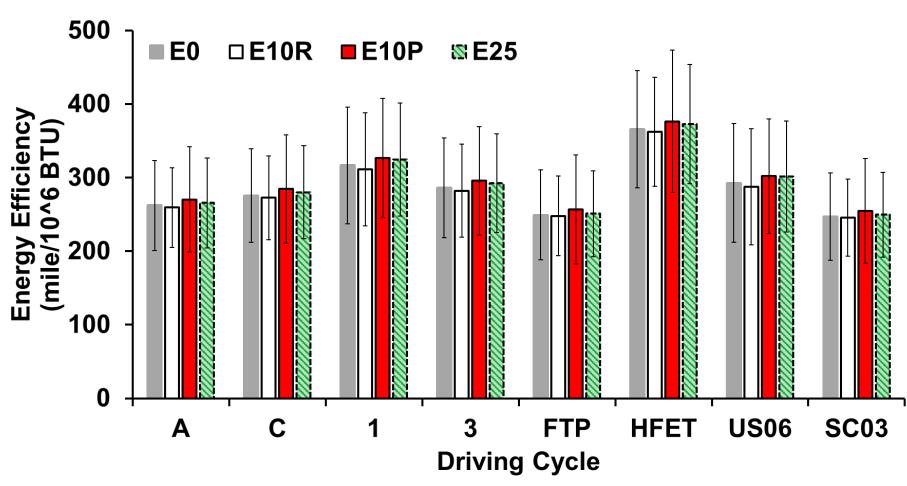

Where

- a = vehicle acceleration (m/s²)
- A = vehicle frontal area (m^2)
- C_D = aerodynamic drag coefficient (dimensionless)
- C_R = rolling resistance coefficient (dimensionless, ~ 0.0135)
- g = acceleration of gravity (9.8 m/s²)
- *m* = vehicle mass (in metric tons)
- r = road grade
- v = vehicle speed (m/s)
- *VSP* = Vehicle Specific Power (kw/ton)
- ε = factor accounting for rotational masses (~ 0.1)
- ρ = ambient air density (1.207 kg/m³ at 20 °C)

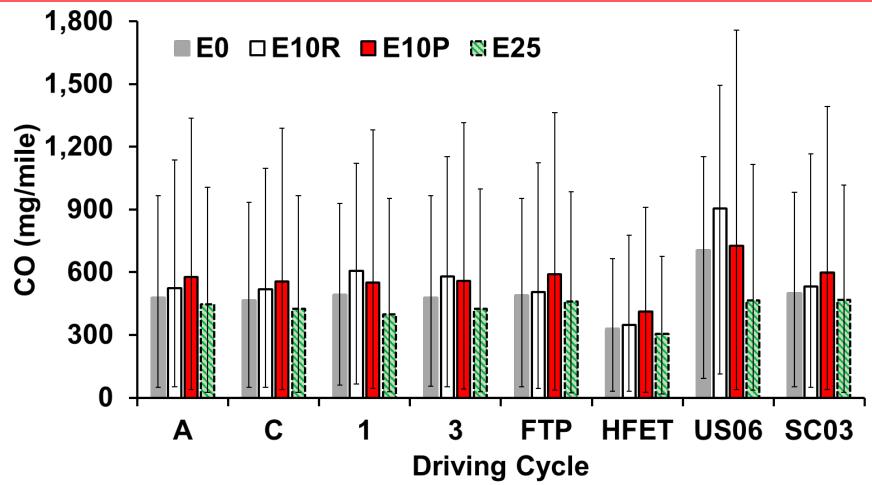
Vehicle Specific Power Modes


	VSP mode	Definition (kW/ton)
Deceleration	1	VSP < -2
or Downhill	2	-2 ≤ VSP < 0
Idle	3	0 ≤ VSP < 1
	4	1 ≤ VSP < 4
	5	$4 \leq VSP < 7$
	6	7 ≤ VSP < 10
	7	10 ≤ VSP < 13
Cruising,	8	13 ≤ VSP < 16
Acceleration,	9	16 ≤ VSP < 19
or Uphill	10	19 ≤ VSP < 23
	11	23 ≤ VSP < 28
	12	28 ≤ VSP < 33
	13	33 ≤ VSP < 39
	14	VSP Over 39

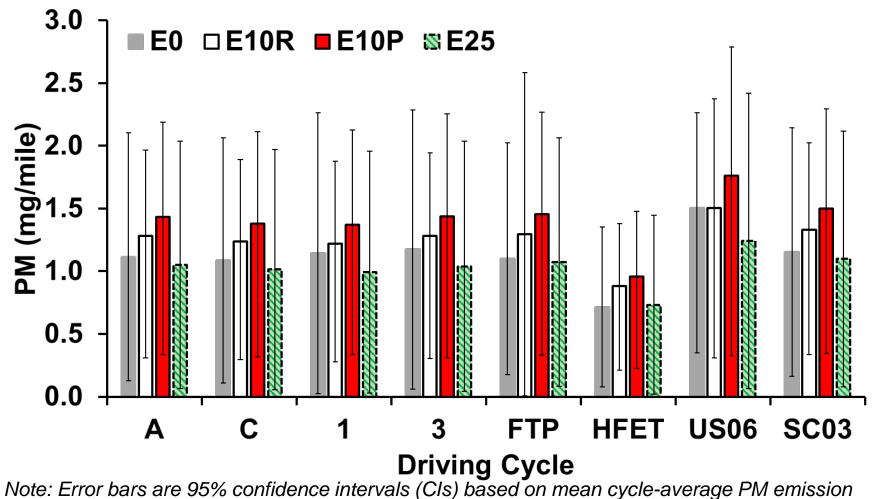
VSP Modal Average Fuel Use Rate By Fuel


Note: Error bars are 95% confidence intervals based on mean fuel use rates for 5 vehicles for each VSP mode.

Cycle Average Fuel Economy

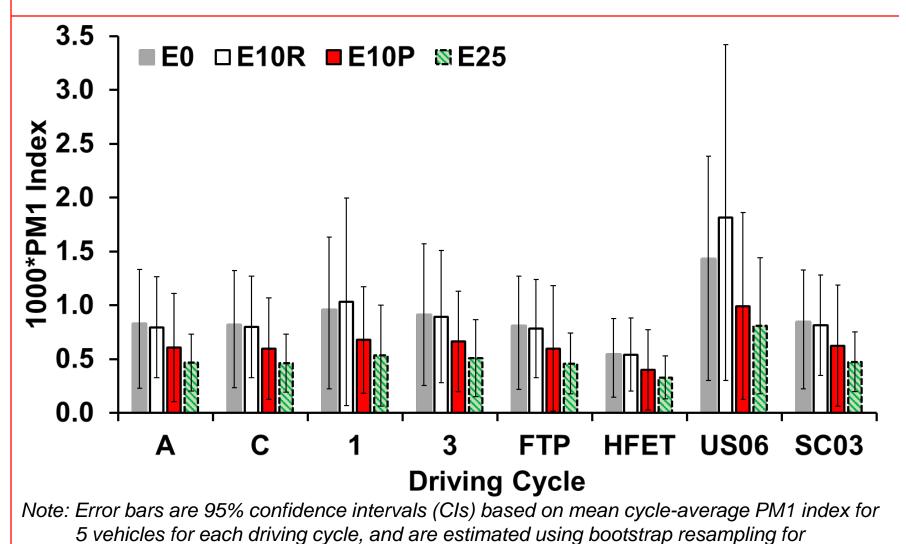

Note: Error bars are 95% confidence intervals based on mean cycle-average fuel economy for 5 vehicles for each driving cycle.

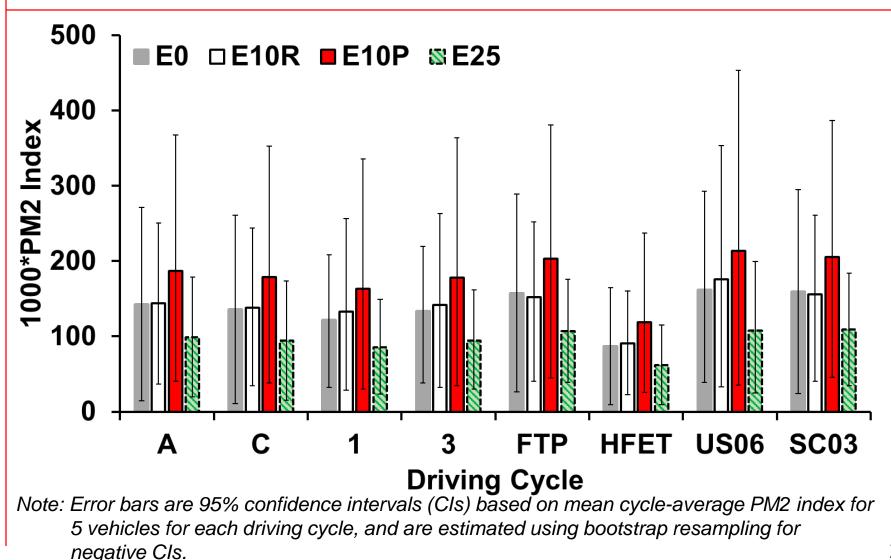
Cycle Average Energy Efficiency


Note: Error bars are 95% confidence intervals based on mean cycle-average energy efficiency for 5 vehicles for each driving cycle.

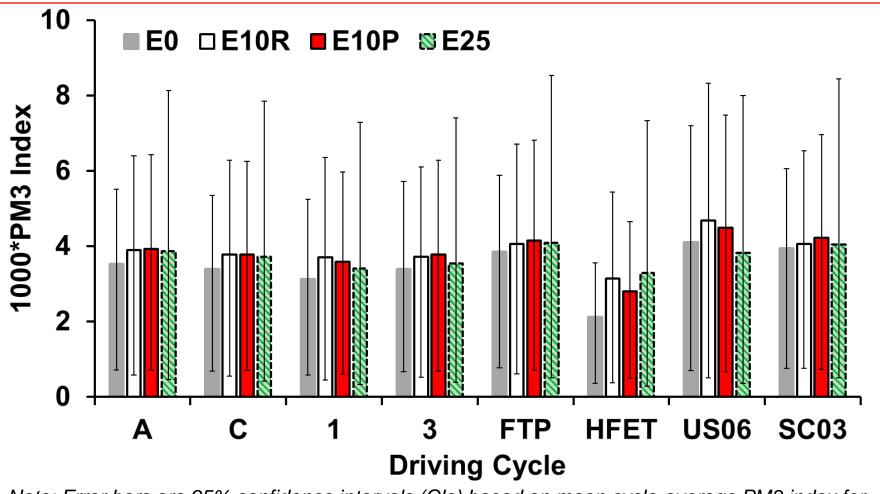
Cycle Average CO Emission Rates

Note: Error bars are 95% confidence intervals (CIs) based on mean cycle-average CO emission rates for 5 vehicles for each driving cycle, and are estimated using bootstrap resampling for negative CIs.


Cycle Average PM Emission Rate (Axion)


Note: Error bars are 95% confidence intervals (CIs) based on mean cycle-average PM emission rates for 5 vehicles for each driving cycle, and are estimated using bootstrap resampling for negative CIs.

negative Cls.


Cycle Average Scattering PM Index (ParSYNC)

Cycle Average Ionization PM Index (ParSYNC)

Cycle Average Opacity PM Index (ParSYNC)

Note: Error bars are 95% confidence intervals (CIs) based on mean cycle-average PM3 index for 5 vehicles for each driving cycle, and are estimated using bootstrap resampling for negative CIs.

24

P-values for Paired-t Tests Cycle Average Fuel Economy

		Driving Cycles									
Pairs	A	С	1	3	FTP	HFET	US06	SC03			
E10R < E0	0.01	0.01	0.00	0.01	0.02	0.00	0.01	0.02			
E10P > E10R	0.21	0.19	0.13	0.14	0.29	0.23	0.10	0.26			
E25 < E10R	0.11	0.14	0.63	0.43	0.01	0.13	0.78	0.01			
E25 < E0	0.00	0.01	0.04	0.02	0.00	0.00	0.07	0.00			
E25 < E10P	0.03	0.02	0.01	0.01	0.07	0.04	0.02	0.05			
E10P < E0	0.62	0.63	0.63	0.62	0.68	0.60	0.62	0.68			

P-values for Paired-t Tests: Cycle Average CO₂ Emission Rates

Doiro	Driving Cycles									
Pairs	Α	С	1	3	FTP	HFET	US06	SC03		
E10R < E0	0.49	0.49	0.85	0.74	0.40	0.42	0.77	0.41		
E10P < E10R	0.89	0.81	0.40	0.53	0.89	0.88	0.30	0.95		
E25 < E10R	0.17	0.13	0.14	0.14	0.27	0.07	0.17	0.20		
E25 < E0	0.05	0.05	0.09	0.07	0.06	0.03	0.11	0.05		
E25 < E10P	0.44	0.37	0.15	0.13	0.64	0.27	0.22	0.59		
E10P < E0	0.59	0.53	0.35	0.36	0.76	0.66	0.35	0.70		

P-values for Paired-t Tests: Cycle Average CO Emission Rates

Doiro	Driving Cycles									
Pairs	Α	С	1	3	FTP	HFET	US06	SC03		
E0 < E10R	0.50	0.41	0.20	0.23	0.85	0.71	0.18	0.69		
E10R < E10P	0.54	0.67	0.69	0.84	0.37	0.28	0.59	0.47		
E25 < E10R	0.10	0.04	0.09	0.05	0.54	0.28	0.12	0.31		
E25 < E0	0.50	0.39	0.22	0.31	0.51	0.33	0.20	0.49		
E25 < E10P	0.29	0.28	0.21	0.25	0.37	0.21	0.23	0.36		
E0 < E10P	0.52	0.54	0.72	0.60	0.55	0.41	0.95	0.56		

Findings

- E25, splash-blended from E10R, had
 - low aromatic content
 - low PM index
 - Low T₉₀
 - Lower T_{50} except for E10R
 - Higher AKI octane except for E10P
- E0 and E10P had similar aromatic content
- PM indices were relatively high for E0, E10R, and E10P

Findings

- Able to obtain similar (although not identical) driving cycles when running real-world routes
- Ignition timing advance for the Cruze appeared to be sensitive to octane.
- Ignition timing advance for other vehicles did not change much among the fuels
- FFV was able to detect ethanol content
- Non-FFVs adjusted long-term fuel-trim during the conditioning trip

Findings

- There were few statistically significant differences between fuels:
 - Fuel Economy: E0 highest, E25 lowest
 - Energy economy: was slightly better for E25 and E10P versus E0 and E10R
 - $-CO_2$ emissions were lower for E25 vs. E0
 - CO, PM, PM Index 1 (scattering), PM2 Index 2 (ionization) tends to be lower for E25 than other fuels, but not significantly
 - No significant differences for NO, HC

Conclusions

- Results imply sensitivity to:
 - Ethanol content (e.g., potentially lower CO)
 - Aromatic content (e.g., the fuel with lowest aromatic content tends to have lower PM emission rates)
 - Octane rating (e.g., effect on spark timing advance for one of the vehicles)
- Non-FFVs easily adapted to E25 based on change in long term fuel trim

Conclusions

- The scattering, ionization, and opacity indices of the ParSYNC appear to provide complementary information
- Merits further investigation (e.g., also see talks byTrevits, Ropkins)
- Larger vehicle sample needed to obtain statistically significant comparisons between fuels for some of the emission rates

Acknowledgements

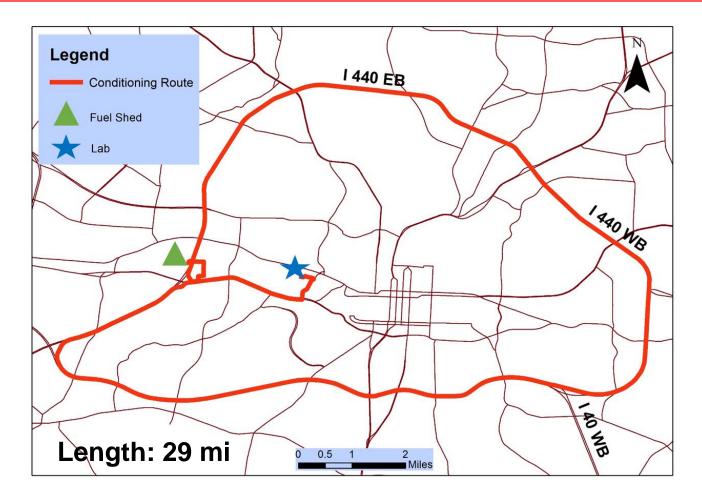
• This work was funded by the Urban Air Initiative

THANK YOU

Vehicle Characteristics

				#					
Vehicle	Body Type	# of Cyl.	Displ. (L)	Aspir.	Inject.	Comp. Ratio	FFV	of Spd.	Odo. (mi.)
Equinox	SUV	4	2.4	NA	GDI	11.2	Y	6	17K
Cruze	Sedan	4	1.4	тс	GDI	9.5	Ν	6	22K
Camry	Sedan	4	2.5	NA	GDI	13.0	Ν	8	7K
Quest	Mini- Van	6	3.5	NA	PFI	10.3	Ν	CVT	46K
Focus	Sedan	4	2.0	NA	GDI	12.0	Ν	6	37K

Switching Fuels


- Standard procedure of fuel switching:
 - 1. defuel original fuel
 - 2. add 1 gal new fuel
 - 3. defuel the 1 gal new fuel
 - 4. add new fuel
 - 5. disconnect battery terminals for 1 min then reconnect (except Equinox FFV)
 - 6. conditioning for new fuel by driving 29 (± 1) miles for
 - ~ 40 min (except Equinox FFV)
 - 7. emissions test
 - 8. verify fuel conditioning based on long-term fuel trim

Drivers

- Drivers:
 - One driver per vehicle for all fuels

 Two drivers in total
 Driver #1: Equinox
 Driver #2: Cruze, Camry, Quest, and Focus
 - Both drivers were trained on use of cruise control and waypoints.

Fuel Conditioning Route in Raleigh

Cruze, Camry, Quest, Focus

Test Conditions

Test	Vehicle	C	order o	of Fuel	S	Weather Condition [μ(±σ)]*		
Order		1	2	3	4	Temp. (°F)	Humidity (%)	
1	Equinox	E25	E10P	E0	E10R	64(±3)	80(±14)	
2	Cruze	E10R	E25	E10P	E0	59(±4)	42(±11)	
3	Camry	E10R	EO	E10P	E25	57(±6)	53(±12)	
4	Quest	E10R	EO	E10P	E25	49(±6)	49(±9)	
5	Focus	E10R	E0	E10P	E25	28(±2)	27(±2)	

* standard deviation is based on the daily variability for four-day measurement periods for four fuels.

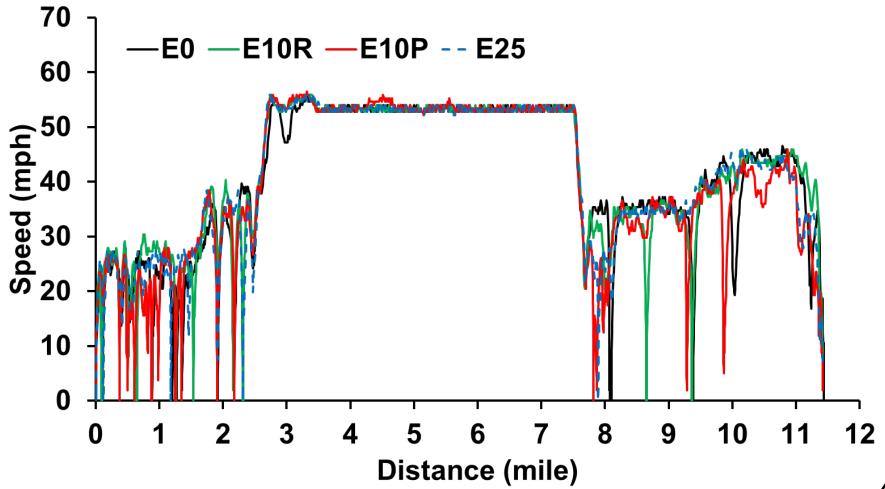
Axion PEMS

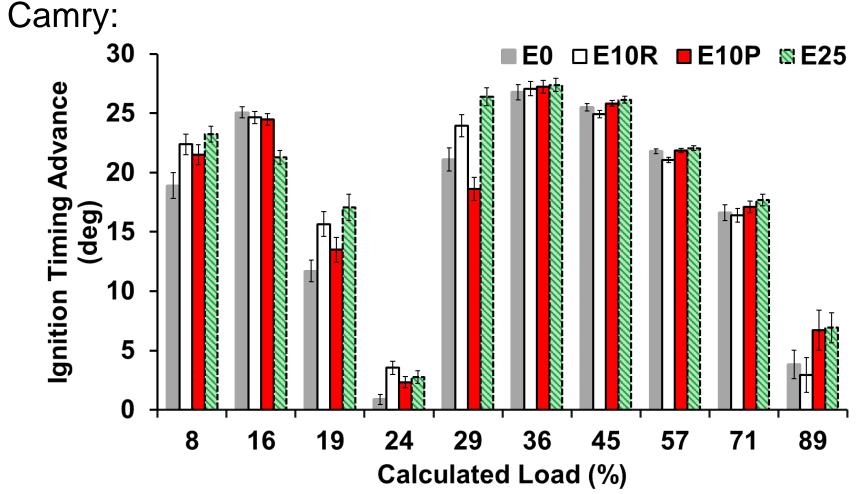
Portable Emissions Measurement System (PEMS): Carbon Dioxide (CO₂), CO, and Hydrocarbons (HC)- NDIR Nitric Oxide (NO) – electrochemical PM – laser light scattering

Global Positioning System (GPS) Receivers with Barometric Altimeter

On-board Diagnostic Data Logger (OBD)

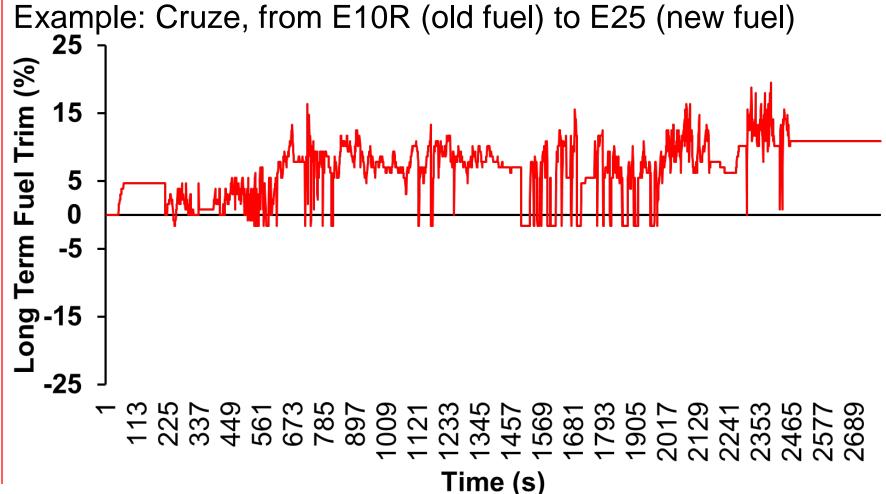
ParSYNC PEMS


- ParSYNC PEMS manufactured by 3DATX
- PM:
 - Light-scattering (PM1 index)
 - Ionization (PM2 index)
 - Opacity (PM3 index)
 - Used for relative



Driving Cycles: Route C (Outbound)

Example: 2018 Toyota Camry, Route C-outbound


Ignition Timing Advance vs. Calculated Load: Camry

Note: Error bars are 95% confidence intervals based on mean ignition timing advance for each engine calculated load bin for the Camry.

Example of Fuel Conditioning: Adjustment in Long Term Fuel Trim

Fuel Conditioning:

