EVALUATION OF THE CO₂ EMISSION IMPACTS OF USING VEHICLE SPEED LIMITERS (VSL) ON CLASS 8 HEAVY-DUTY ON-ROAD TRUCKS

California Air Resources Board

Phuong Ho, Donald Chernich, Wayne Sobieralski, Renee Littaua, Robert Ianni, David Quiros, Walter Ham, Tai Sea Yen, Chris Ruehl

> 7th International PEMS Conference & Workshop March 30 & 31, 2017

California Environmental Protection Agency

Outline

- * Background
- * Limited Existing On-Road Data
- * CARB In-House VSL Testing Project
 - First On-Road VSL Testing
 - On-Road Data Analysis
 - Main Conclusions

Background

- * Long history of limiting vehicle speeds to reduce fuel consumption, and for safety
 - Through roadway speed limits
 - Through on-vehicle speed governors, electronic controls
- Federal Phase 2 GHG standards allow emissions reduction credit for the use of tamper-proof VSL on heavy-duty vehicles

Limited Existing On-Road Data

- * Transportation Energy Data Book Oak Ridge National Laboratory (ORNL)*:
 - Evaluate fuel efficiency as function of vehicle tires
 - However, show an unexpected result better fuel economy at higher speed
- * Available PEMS studies of heavy-duty trucks:
 - Highly transient data between 45 and 70 mph, hence not directly comparable to steady-state highway driving
- * EMFAC 2014 (CA on-road emissions modeling) assumptions – lack of emission data at speed > 60mph

→ In-house VSL study needed to assess VSL's impact on emissions

*(ORNL, 2008) Oak Ridge National Laboratory, "Transportation Energy Data Book," Class 8 Trucks Fuel Economy as a Function of Speed and Tractor-Trailer Tire Combination and Percentage of Total Distance Traveled as a Function of Speed (Table 5.11), available at <u>http://cta.ornl.gov/data/chapter5.shtml</u>; "Class-8 Heavy Truck Duty Cycle Project Final Report," available at <u>http://cta.ornl.gov/cta/Publications/Reports/ORNL_TM_2008-122.pdf</u> 4

CARB In-House VSL Testing Project

- * Objectives: test heavy-duty trucks at various cruising speeds (45-80 mph) under steady conditions
 - Evaluate the applicability and CO2 impacts of VSLs on Class 8 vehicles at highway speed
 - Support CARB's Phase 2 GHG regulation development harmonization with federal Phase 2 requirements, with minor California differences
 - Refine assumptions in the EMFAC model
 - Support future sustainable freight strategies
- * Still an on-going project


VSL Project Testing Schedule

Test	Number of Tested Tractor-Trailers	Test Month	Status
Chassis Dynamometer Testing	1 (2008 MY Kenworth Sleeper Cab)	September 2016	Completed
First On-Road PEMS Testing: • coast-down test • constant-speed test	1 (2008 MY Kenworth Sleep Cab with 48- foot Curtain Trailer)	October 2016	Completed
 Chassis Dynamometer Testing Second On- Road PEMS Testing (constant-speed test) 	2 (2013 or newer tractors with 53-foot box trailers) 6	Spring 2017 (Upon procured vehicles' availability)	Not yet done

First On-Road VSL Testing

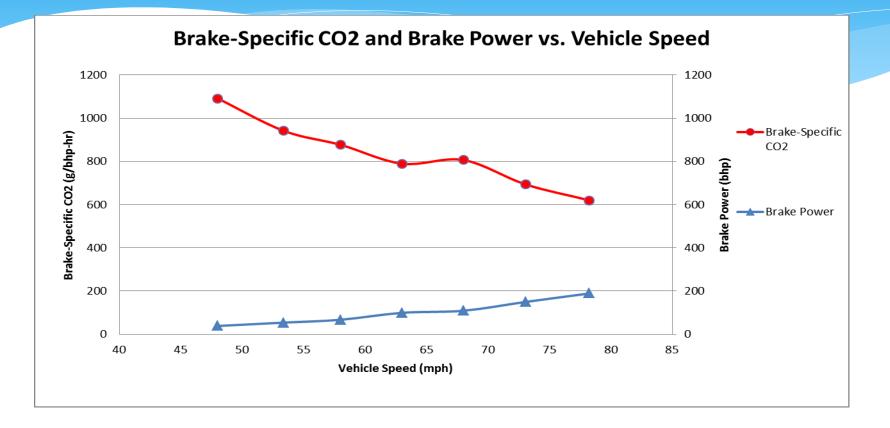
* Test Site:

- Straight, flat I-80 highway segment in Fernley, Nevada: between Exit 50 Nevada Pacific Boulevard and Exit 65 – Nightingale Hot Springs
- Test length ~7 miles; test stretch average road grade ~ +/- 0.4%, average elevation ~4,030 ft.
- Highway speed limit for a tractor-trailer up to 80 mph for this road section

Test Vehicle and Instrument Description

* Test vehicle:

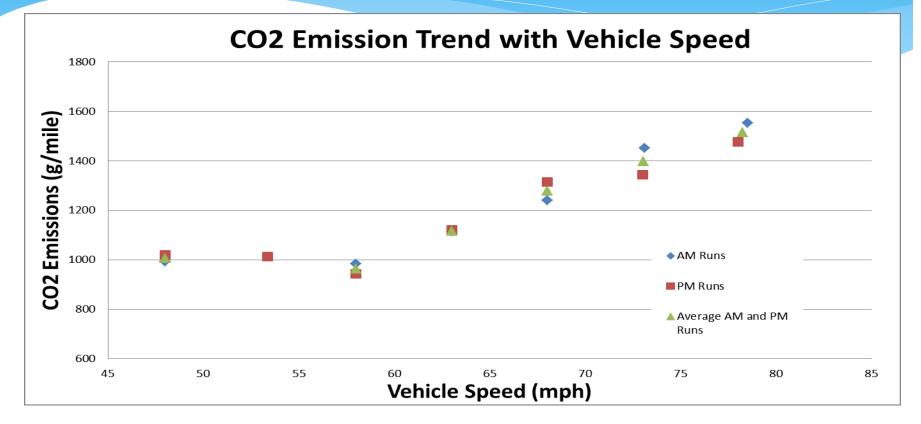
- 2008 Kenworth T660 (CARB-Owned)
- 48-foot curtain trailer
- Super single tires on tractor and trailer
- Total combined weight tractor and trailer: 34,880 lbs.
- * Test instrument:
 - J 1939 Dearborn Vehicle Interface
 - Sensor Semtech DS
 - Sensor High-speed Flowmeter
 - Zero, Spans, and Audits once every hour
 - Measuring CO, CO₂, NO, NO₂, THC
 - Wireless Weather Station: Davis 6250 Vantage Vue



On-Road Testing

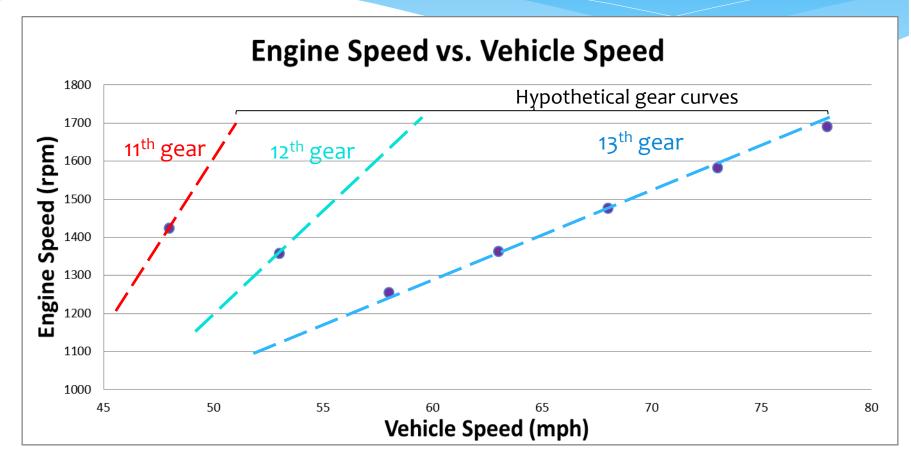
- * Coast-down testing: from 80 mph to 40 mph
- * Constant-speed testing:
 - 7 test speeds (48, 53, 58, 63, 68, 73, and 78mph)
 - Chose optimal gear for each speed (11th gear for 48 mph, 12th gear for 53 mph, and 13th gear for 58-78 mph)
 - Used cruise control to maintain constant speed
- * Ambient Condition:
 - Temperature : 50-76F; atmospheric pressure: 26in. Hg; wind speed: 0-11mph

On-Road Data Analysis


Brake-Specific CO2 and Brake Power

Brake specific fuel efficiency improved at higher speed; however, power demand increased at higher speed.

CO2 Emission Trend


2008 KW Tractor with 48-ft Curtain Trailer

• Sweet spot w.r.t. fuel efficiency around 58 mph (engine speed ~1250 rpm)

Engine Speed vs. Vehicle Speed

2008 KW Tractor with 48-ft Curtain Trailer

Main Conclusions

Optimal Cruising Speed

- Vehicle fuel efficiency is a function of not only vehicle speed but also engine speed
 - Drive truck at engine's sweet spot for optimal fuel efficiency
- Important to consult with manufacturer on optimal cruising speed
 - For a given transmission gearing, axle ratio, and tire size, there is a speed that truck can be driven that matches ideal engine speed

Preliminary VSL Benefit Quantification

* Cost Benefit Equation
$$\Delta \$ = 2.69 \cdot 10^{-3} \cdot \delta \cdot D \cdot p + D \cdot w \left(\frac{1}{v + \delta} - \frac{1}{v}\right)$$

Where: D – distance traveled (mile); p – diesel price (β /gallon); w – labor rate (β /hr); δ – speed increment (mph); v – speed (mph)

* Savings Analysis

$$\delta > \frac{372w}{p \cdot v} - v$$

Emissions Benefit (gCO2)
 27.343 · δ · D

* Analysis

- Sac to LA (~380 miles)
- Labor ~ \$20 / hr
- Diesel ~ \$2.58 / gallon
- Compare trip at 63 mph to trip at 58 mph
- * Results
 - \$3 lower cost
 - Lower emissions (~52 kg CO2)

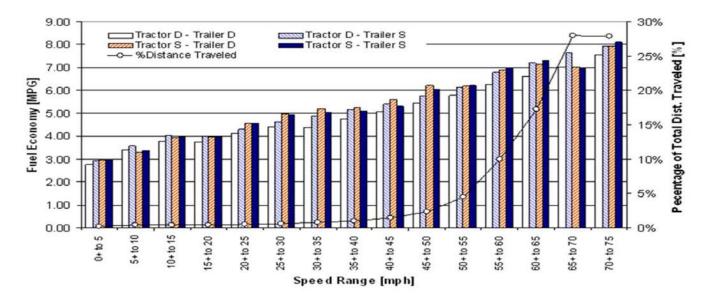
16

VSL Emission Benefit

* In Summary

- Increased fuel consumption at higher speeds
 - Leads to fuel saving and emissions reduction with the use of VSL
- Cost Benefit
 - Under certain driving conditions there is a cost benefit to VSL as well
- * Caveat
 - VSL benefit analysis assumes that truck speeds generally exceed the VSL
 - However, trucks have varying duty cycles some of which are well below VSL, which would lower the cost benefit of a VSL

CARB Contacts

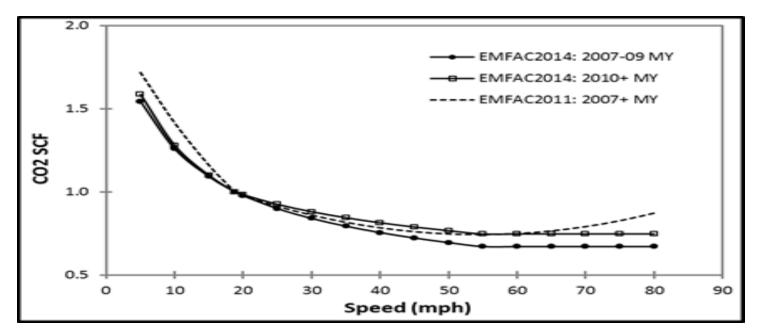

- Donald J. Chernich , Manager
 (916) 229-0366
 <u>don.chernich@arb.ca.gov</u>
- Phuong Ho, Air Resources Engineer
 (916) 322-4687
 phuong.ho@arb.ca.gov

Backup Slides

Available Data: Transportation Energy Data Book - Oak Ridge National Laboratory (ORNL)

Figure 5.3. Class 8 Truck Fuel Economy as a Function of Speed and Tractor-Trailer Tire Combination and Percentage of Total Distance Traveled as a Function of Speed

NOT ADJUSTED FOR TERRAIN: See note below.



Note: D = Dual tire. S = Single (wide) tire.

- Show better fuel economy at higher speed
- Data is the combination of transient and steady-state operation data
- The observed increased fuel efficiency at higher speed could be due to travelling downhill at higher speed or more efficient truck operation under steady condition

Current EMFAC Assumptions

EMFAC 2014 assumptions (emissions flatten out from 60-80 mph)

