UNDERSTANDING REAL-WORLD ACTIVITY DATA FOR HEAVY-DUTY VEHICLES - TELEMATICS, PAMS AND PEMS

8th PEMS Conference

March 22-23, 2018

Carl Fulper

U.S. EPA, Office of Transportation and Air Quality

Tom Durbin, Kent Johnson, Kanok Boriboonsomsin

University of California, CE-CERT

Andrew Kota, Ken Kelly and Adam Duran

National Research Emission Laboratory

Outline

- Background
- New Analysis and Preliminary Findings
- Testing Equipment
- Fields to Record OBD Data
- Future Analysis

Background - Telematics Data

- Telematics refers to any technology that provides a continuous stream of vehicle activity data.
- Challenges include:
 - Providing privacy for vehicle owners
 - Processing massive amounts of data
 - Potential bias in self selecting samples
- Opportunities include:
 - Detailed region-specific activity
 - Extremely large samples
- EPA has obtained heavy-duty telematics results from NREL and CE-CERT.

NREL Heavy-Duty Telematics

• The National Renewable Energy Laboratory (NREL) operates the Fleet DNA clearinghouse of commercial fleet vehicle operating data

 The DNA collects real-world vehicle operation data for medium- and heavy-duty commercial vehicles from a variety of vocations and locations

https://www.nrel.gov/transportation/fleettest-fleet-dna.html

CE-CERT Heavy-Duty Data

- University of California Riverside, Bourns College of Engineering – Center for Environmental Research and Technology (CE-CERT)
 - Instrumented heavy-duty trucks selected by vocation from 19 different groups
 - Sampling was done second-by-second
 - All trucks were 2010 and newer model year
 - Under contract to CARB and supported through CRADA with EPA

CE-CERT and NREL Vehicle Sample Sizes

MOVES		Diesel Vehicles		Days Tested		Avg Days per Vehicle	
SourceTypeID	Description	CE-CERT NREL		CE-CERT	NREL	CE-CERT	NREL
42	Transit Buses	16	27	1,449	401	90.6	68.5
43	School Buses	6	7	597	230	99.6	118.2
51	Refuse Trucks	30	65	2,765	1,137	92.2	60.0
52	Single Unit Short-Haul	2	146	132	3,588	66.0	25.5
61	Combination Short-Haul	27	160	10,270	5,523	380.4	98.7
62	Combination Long-Haul	9	85	536	4,177	59.6	55.4
	Totals	90	490	15,748	15,056	175.0	62.9

Note:

- Vehicle Sample Size are different but the days of testing are about the same
- The average days of tested on the vehicles is greater in most MOVES sourcetype categories in the CE-CERT dataset

Analysis Issues

- Screening to eliminate bad data
- Identify and account for variations
 - Which factors significantly affect results?
 - Are regional differences important?
 - Are seasonal differences necessary?
- Identify and account for potential vehicle selection bias
 - Do samples include a sufficient number of seldom used and inactive vehicles?
- Some vehicles enter and leave the data collection during the sampling period
- What is the minimum period of data collection to properly determine starts, soaks, and usage distribution patterns?

ARB/University of California Study Preliminary Data

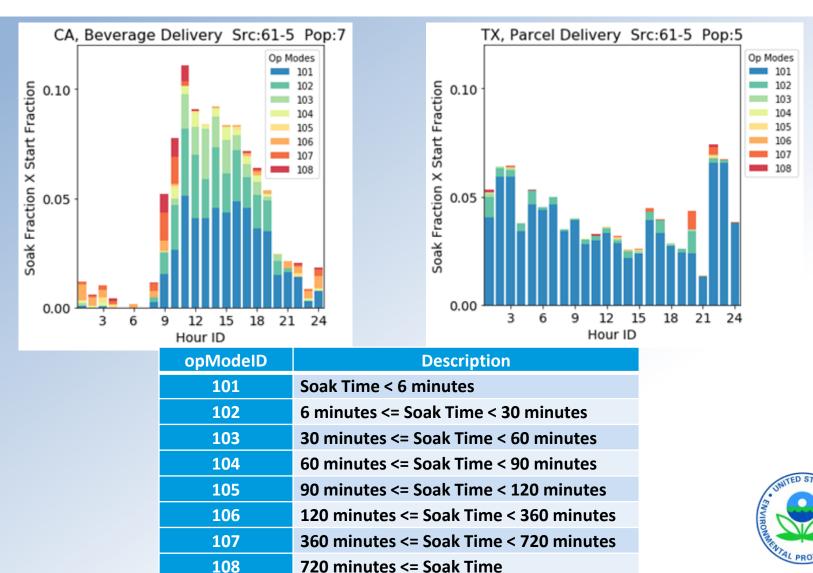
VMT Distributions for Refuse Trucks

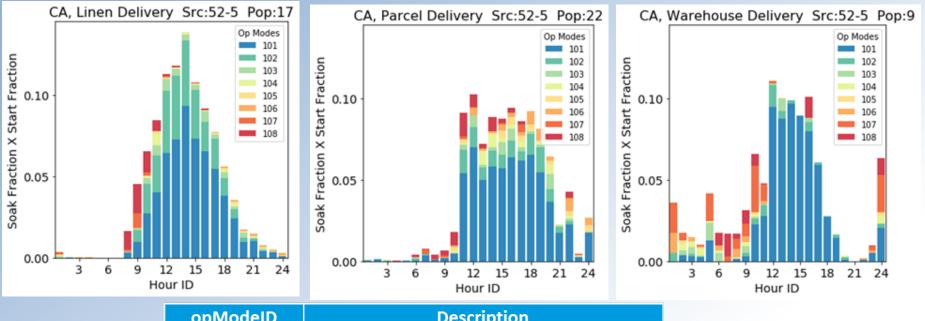
VMT Distributions for Line-Haul Trucks

Vocational Differences within a MOVES Source Type

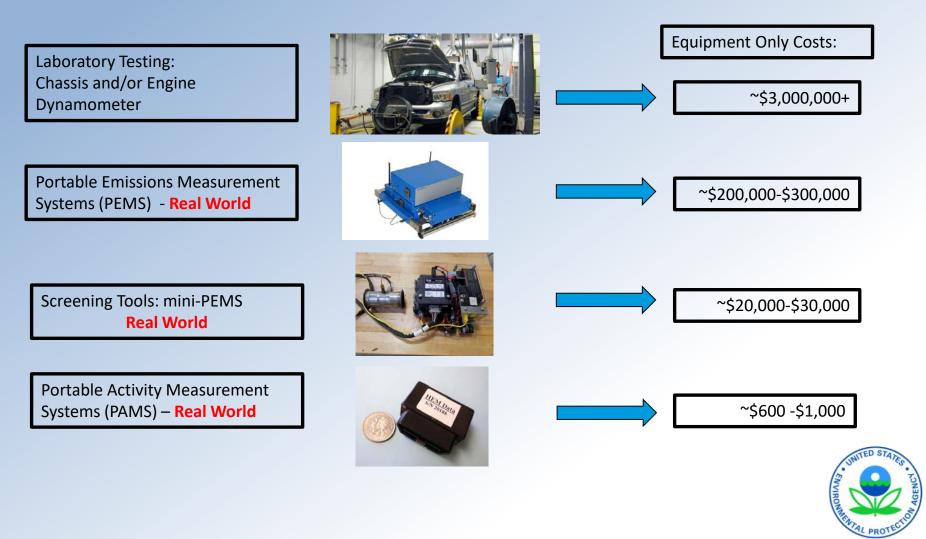

Single Unit Short Haul - Source Type 52						
		Avg. Miles				
Vocation	Vehicles	per Day				
Concrete	3	96.29				
Delivery	1	266.62				
Dump Truck	3	101.74				
Food Delivery	30	41.93				
Linen Delivery	17	63.14				
Parcel Delivery	39	47.11				
Propane Tank	1	82.66				
Shredder	1	65.56				
Snow Plow	11	79.46				
Towing	4	123.12				
Warehouse Delivery	9	65.39				

Comb. Omt Short Haur - Source Type of							
	Avg. Miles						
Vehicles	per Day						
10	88.60						
28	113.39						
3	147.22						
5	159.09						
13	123.80						
7	128.52						
6	496.66						
7	131.77						
29	173.95						
	Vehicles 10 28 3 5 13 7 6 7						


Comb. Unit Short Haul - Source Type 61


Different Vocations and Source Types

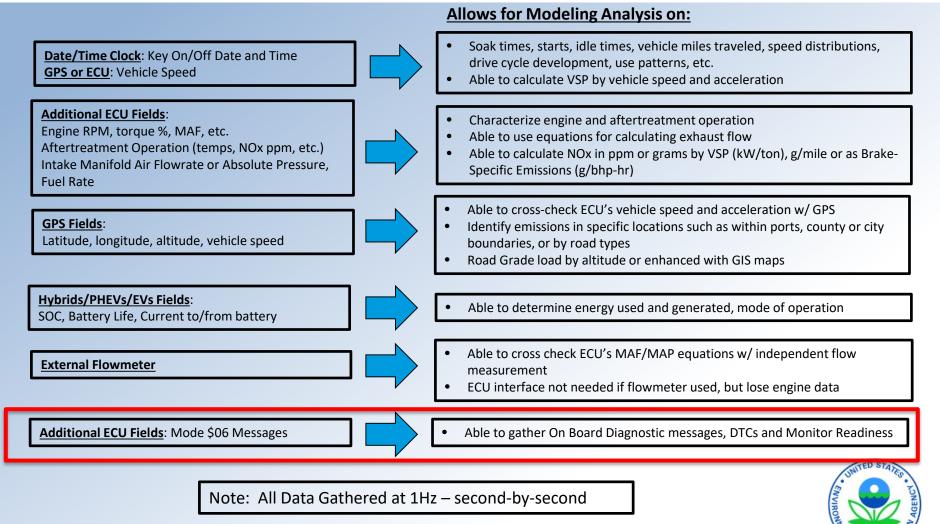
Comb. Short Haul - Source Type 61 Soak Distributions


Single Unit Short Haul - Source Type 52 Soak Distributions

opiniodelD	Description
101	Soak Time < 6 minutes
102	6 minutes <= Soak Time < 30 minutes
103	30 minutes <= Soak Time < 60 minutes
104	60 minutes <= Soak Time < 90 minutes
105	90 minutes <= Soak Time < 120 minutes
106	120 minutes <= Soak Time < 360 minutes
107	360 minutes <= Soak Time < 720 minutes
108	720 minutes <= Soak Time

Suite of Tools to Measure Activity and Emissions

Suite of Tools: PAMS



Portable Activity Measurement Systems (PAMS)

- Small data loggers interface with on-board vehicle computers to gather very detailed activity and engine parameters in "real-world" operations from light-duty, heavy-duty, and nonroad
 - Activity: vehicle miles traveled distribution, number of starts, soak periods
 - Engine: Engine RPM, engine load, aftertreatment
- Major advancements:
 - <u>Cellular</u> PAMS Data Loggers
 - Created a "Dashboard" to monitor data logger and vehicle
 - "Real-time" notification of issues with data logger and/or vehicle
 - Allows for "Real-time" data analysis

Mini-PEMS/PAMS Data Logger: Data Fields

On Board Diagnostic Messages HDVs GVWR > 14,000 lbs

As the Heavy-Duty OBD regulations have been implemented recently, it is important for the instrumentation to evolve and gather this data

Model Year	OBD
2007 and later	Required engine manufacturer diagnostics (EMD) systems
2010 – 2012	Full OBD for engine rating with highest weighted sales and extrapolated OBD for all other ratings; and exempted from standardization requirements
2013 – 2015	 Full OBD for all engines ratings subject to MY2010-2012 OBD requirements; Full OBD for engine ratings within each OBD group w/ highest projected weighted sales; Extrapolate OBD for other ratings and engines; and More strict monitoring threshold values
2016 and later	Full OBD on all engines

OBD Monitors

	Thresholds					
Monitor	Model Year	NMHC	со	NOx	PM	
	Diesel					
NOx Catalyst System	2010 - 2012			+0.6		
	2013+			+0.3		
Diesel Particulate Filter (DPF) System	2010 - 2012	2.5x			0.05/+0.04	
	2013+	2.0x			0.05/+0.04	
Air-Fuel Ratio Sensor Upstream	2010 - 2012	2.5x	2.5x	+0.3	0.03/+0.02	
	2013+	2.0x	2.0x	+0.3	0.03/+0.02	
Air-Fuel Ratio Sensor Downstream	2010 - 2012	2.5x		+0.3	0.05/+0.04	
	2013+	2.0x		+0.3	0.05/+0.04	
NOx Sensor	2010 - 2012			+0.6	0.05/+0.04	
	2013+			+0.3	0.05/+0.04	
Other Monitors w/ Emission Thresholds	2010 - 2012	2.5x	2.5x	+0.3	0.03/+0.02	
	2013+	2.0x	2.0x	+0.3	0.03/+0.02	
	Gasoline					
Catalyst Converter System	2010+	1.75x		1.75x		
Other Monitors w/ Emission Thresholds	2010+	1.5x	1.5x	1.5x		
Evaporative Emissions	2010+	0.150" leak				

Legend:

- 2.0x means a multiple of 2.0 times the applicable emission standard or family emission limit (FEL)
- +0.3 means the standard or FEL plus 0.3
- 0.05/+0.04 means an absolute level of 0.05 g/hp-hr or an additive level of the standard or FEL plus 0.04, whichever level is higher

Important Diagnostic Messages to Record

DM Description			HDV J1939 DM/PGN						
Active DTCs			DM1/ (65226)						
Previously Active DTCs (Historic)			DM2/(65	227)					
Pending Emission Related DTCs			DM6/(65	231)	Existing	g HD Vehic Monitor I			
Previously Active Emission Related DTCs			DM23/(6	4949)	•	MIL light	On	'n	
All Pending DTCs		DM27/(6	4898)	•	DTCs – Ac	tive O	nly		
All Permanent DTCs			DM28/(6	4896)					
Regulated Exhaust Emissions Exceedance		DM32/(4	1472)						
			➡						
DM	Controller Controller Name	SPN	SPN N	ame	FMI	FMI Name		Count	
DM27	0 Engine #1	3226	Aftertreatment 1	Outlet NOx 1 10		Abnormal Rate of Change		0	
								UNIT STALLBOARD	ED STATES

AL PROT

Findings

- Key tools are being developed for researchers to use to better understand how new technologies are being used in real-world:
 - Suite of Tools (Lab, PEMS, mini-PEMS and PAMS)
 - New DMs/DTCs required to be monitored and recorded
 - New testing methodologies and procedures are being used to reduce cost

Future Analysis

- Larger datasets are needed to better understand how medium and heavy-duty vehicles using new technologies are being used in real-world:
 - Need more activity data including engine parameters, DMs/DTCs and GPS to improve:
 - Vocation, Regional and Seasonal Usage Patterns
 - Longitudinal data for aging vehicles, maintenance, warranty issues through DMs/DTCs
 - Second-by-second data
 - Need to compare how different engine/electric technologies, modes and management software are being used.

Questions

Contact Information

Carl Fulper PEMS/PAMS Coordinator US Environmental Protection Agency Office of Transportation and Air Quality Assessment and Standards Division National Vehicle and Fuel Emissions Laboratory 2000 Traverwood Drive Ann Arbor, MI 48105 734-214-4400 fulper.carlr@epa.gov

Other Slides

