DYNAMIC ENERGY AND EMISSIONS MANAGEMENT (DEEM)

PEMS Workshop 2018 March 22, 2018

Presented By Dr. Kent Johnson Kanok Boriboonsomsin, Matthew Barth

University of California - Riverside Bourns College of Engineering CE-CERT Center for Environmental Research and Technology (CE-CERT

kjohnson@cert.ucr.edu

EMISSIONS AND THEIR IMPACT

HIGH IMPACT AREAS AND FOCUSES

• For California, focus on disadvantaged communities.

DYNAMIC ENERGY AND EMISSIONS MANAGEMENT (DEEM)

- Managing Energy Consumption and Emissions in Real-Time
 - Dynamic in terms of both spatially and temporally
 - Management from both industry and regulatory perspectives
 - Emissions of greenhouse gases, criterial pollutants, and air toxics
- Objectives of DEEM strategies

Disadvantaged Communities

VEHICLE & INFRASTRUCTURE INTEGRATION: TRAFFIC SYSTEMS

Improved traffic systems using intelligent vehicles and infrastructure to maximize safety, health benefits, mobility and efficiency

Connected Vehicles and Infrastructure (above) feed into mapping tools (left) that improve routing for congestion and fuel use

MODERN COMPLIANCE CONCEPTS

1. Sensor-Based Tailpipe Compliance evaluations would enable simple real-time in-use compliance assessment during powertrain development and vehicle operation

Consider New Compliance Units: NOx ppm / Fuel Consumption

2. Independent Sensor-Based PEMS-Light would discourage defeat devices while enabling cost effective compliance data over-check

Consider New Compliance Units: NOx ppm / CO2 ppm

3. Telematic Compliance Summaries periodically submitted to regulators from manufacturer would provide engine family compliance tracking while minimizing 3rd party tampering and data ownership concerns

LOW COST MEASUREMENT SYSTEMS

Maha	Pegasor Mi3	TSI NPET			
			Instru	Instrument List	
			Instrument	Measure	
			Maha	NOx, CO ₂ , PM	
	VERL		Pegasor	PM	
Testo	parSYNC	NTK	TSI NPET	Solid PN	
			Testo	PN	
			parSYNC	NOx, CO ₂ , PM	
			NTK	NOx, PM, AFR, PN ECM	
ECM	Axion/Montana		ECM	NOx, CO2/CO,	
PENS PENS				O2/AFR,ECM	
			Axion	Nox, CO2, CO, THC, PM, ECM	

DEEM - TEMPORAL APPLICATION

 Based on realtime or historical air quality patterns.

 Figures show modeled fine particle concentration from on-road mobile sources in Riverside, California

(c) August 2012, AM period

(d) August 2012, PM period

DEEM STRATEGIES

- Transportation system level
 - $\sqrt{\text{Routing}}$ and navigation
 - $\sqrt{1}$ Lower speed limits (*aka*, intelligent speed adaptation or speed harmonization)
- Vehicle/driver level
 - $\sqrt{\text{Eco-driving}}$
- Engine/powertrain level
 - $\sqrt{\text{Energy management for HEVs and PHEVs}}$
 - $\sqrt{\text{Engine tuning}}$
 - Aftertreatment tuning

REAL-TIME EMISSION MODELING

Comprehensive Modal Emissions Model (CMEM)

VERIFICATION AND ASSURANCES

SUMMARY THOUGHTS

- Vehicle system design shift from a laboratory focus to a inuse focus
- Take advantage of technology (sensors, connectivity, database, public)
- Revise regulation for DEEM concept (simple levers to control future regulation decreases)
- New regulation approach will provide:
 - **•** Vehicle activity
 - O Measured/predicted in-use emissions
 - **•** Vehicle active population
 - **O** Spatially and temporal information

VEHICLE DESIGN IS A LABORATORY APPROACH

- 1970s Light duty emission standards
- 1980s Heavy duty emission standards
- 1990s Heavy duty in-use "Not-to-Exceed" standards and Light duty OBD
- 2000s Heavy duty compliance testing protocol developed
- 2010s Heavy duty OBD introduced

What about for 2020s we design the vehicle system from real world requirements under actual conditions?

WHAT TOOLS ARE AVAILABLE FOR EMISSIONS: DESIGN

- Telematics
- Seasonal weather adjustments
- Location-specific emissions (geo-fencing)
- On-board sensing for control and reporting
- Advanced sensing for compliance
- Mapping and self-learning algorithms
- Predictive thermal management
- Model based control

WHAT TOOLS ARE AVAILABLE FOR EMISSIONS: COMPLIANCE

- Telematics and big data queries
- Seasonal weather adjustments
- Location-specific emissions (geo-fencing)
- Independent low cost high frequency measurements and reporting

MICRO PORTABLE EMISSIONS MEASUREMENT SYSTEMS (UPEMS)

NTK NCEM System

- Setup is < 1hr
- Battery powered
- Reliability is very robust
- Calibration is not needed
- Unattended operation is reasonable

ECM System

UPEMS NOX ON AVERAGE ~ 20% OF REFERENCE METHOD

> A more simple NOx/CO2 ratio may be more reliable since exhaust flow adds to the bias.

UPEMS PM ON AVERAGE ~70% OF REFERENCE METHOD

- NTK PM was measured in-situ stack, PM2.5 was measured dilute from a CVS without a catalytic stripper
- > PM values were within 70% with PM2.5 for engine dyno test

3DATX PARSYNC NO MEASUREMENT SYSTEM

Data from 3DATX

3DATX PARSYNC CO2 MEASUREMENT SYSTEM

Data from 3DATX

A Sensory Array Measurement Strategy

parSYNC[®] Sensor Module

Data from Karl Ropkins, Leeds University

Multiplex Algorithm

Multiplex Sensor Fit

Agreement MPM4 / parSYNC[®] multiplex sensor R ≈ 0.92 (two sensor, scattering and opacity, parSYNC* model)

COMPREHENSIVE MODAL EMISSIONS MODEL (CMEM)

- Microscale emission model
 - Developed at UCR CE-CERT
 - Initially developed in the 1990's
- Sponsorship
 - National Cooperative Highway Research Program (NCHRP)
 - U.S. Environmental Protection Agency (EPA)
- Developed to model vehicle emissions
 - project level (sec-by-sec)
- Accurately reflect impacts of :
 - Vehicle speed, acceleration, road grade, starting conditions, and secondary engine load

CMEM EMISSION MODEL STRUCTURE

- Fuel is a function of Engine Power Demand and Engine Speed
- Fuel rate is related to emissions through analysis based on measured data
- Model Inputs
 - Operating parameters vehicle speed, road grade, accessory power, etc.
 - Vehicle parameters weight, gear ratios, calibrated emission parameters, etc.
- Model Outputs
 - Second-by-second emission data and fuel use

FUEL RATE CALCULATION

$$FR = \frac{\left(kND + \frac{P_e}{\eta}\right)}{LHV}$$

- *k* = engine friction term
- **N** = engine speed
- *D* = engine displacement
- P_e = engine power
- η = engine indicated efficiency
- *LHV* = lower heating value of fuel

$$P_e = \frac{P_t}{\varepsilon} + P_{run} + P_{acc}$$

- P_t = tractive power demand ε = drivetrain efficiency
- *P_{run}* = running losses
- P_{acc} = accessory power demand
- $N = \nu S \frac{R_L}{R_T} \qquad \begin{array}{c} S \\ R_L \\ R_{\rm T} \end{array}$
- S = engine-speed/vehicle-speed in top gear
 - R_L = gear ratio in Lth gear
 - R_{T} = gear ratio in top gear
 - v = vehicle speed

MEETS EMISSION OUTPUTS HC

Cold Start

HC (g/s)

Measured	0.514		
MEETS	0.483		
% Difference	-5.9		

MEETS EMISSION OUTPUTS CO

Cold Start

CO (g/s)

Measured	3.927		
MEETS	3.388		
% Difference	2.8		

