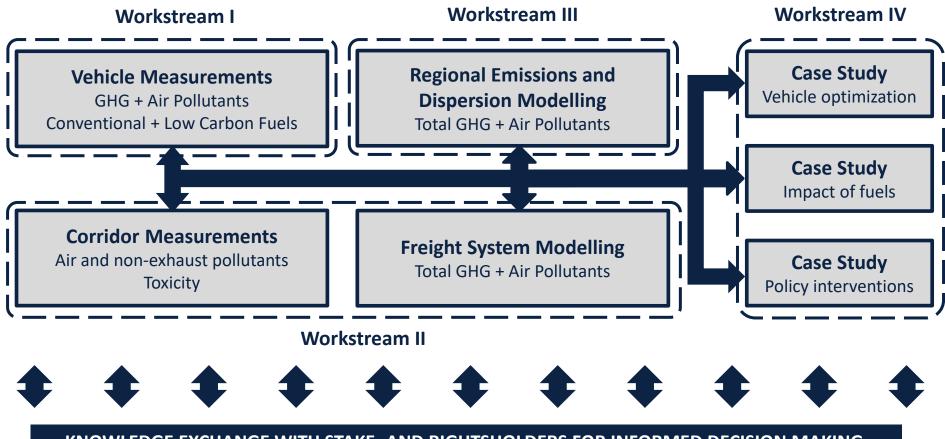
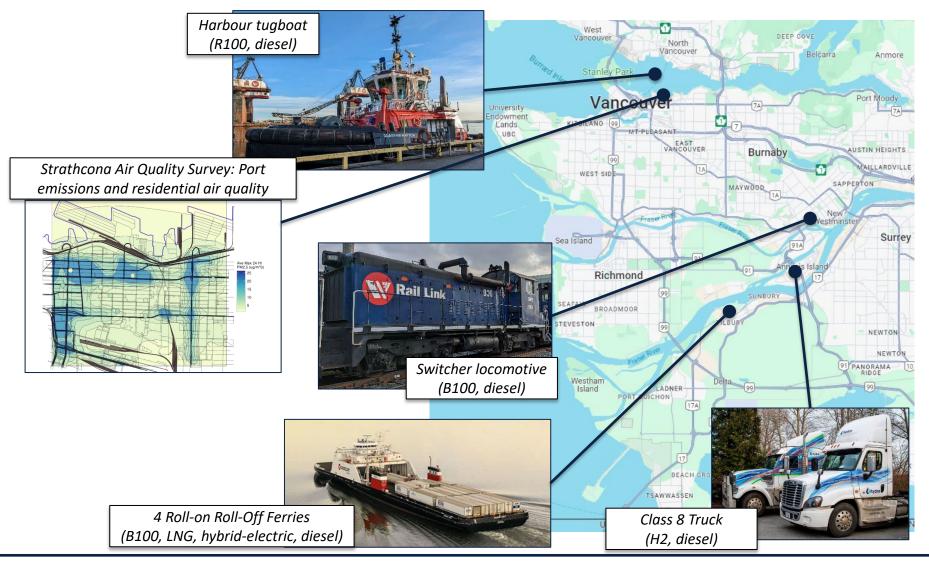


# IN-USE MEASUREMENTS TO QUANTIFY MARINE METHANE SLIP IN LNG DUAL-FUEL ENGINES


## **Dr. Jeremy Rochussen**

#### Program Manager – Urban Freight Emissions

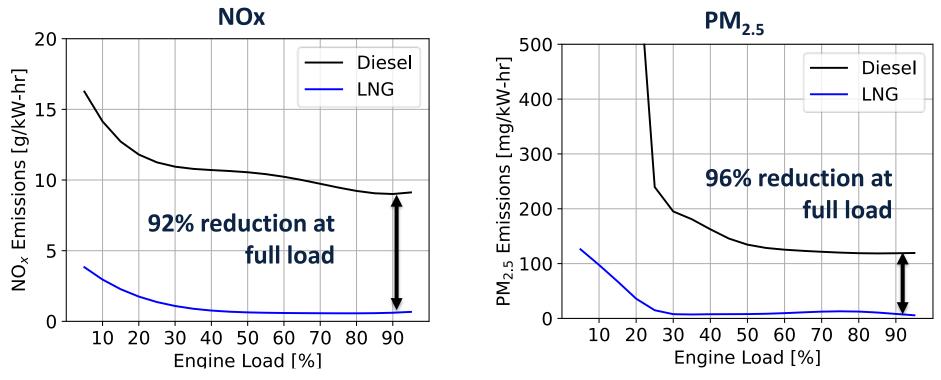
Dept. of Mechanical Engineering, University of British Columbia




Generate data, tools, and strategies to mitigate the greenhouse gas and air quality pollutants from urban freight vehicles



## INVESTIGATING DECARBONIZATION AND AIR QUALITY IMPROVEMENTS FROM HEAVY FREIGHT OPERATIONS NEAR OUR COMMUNITIES

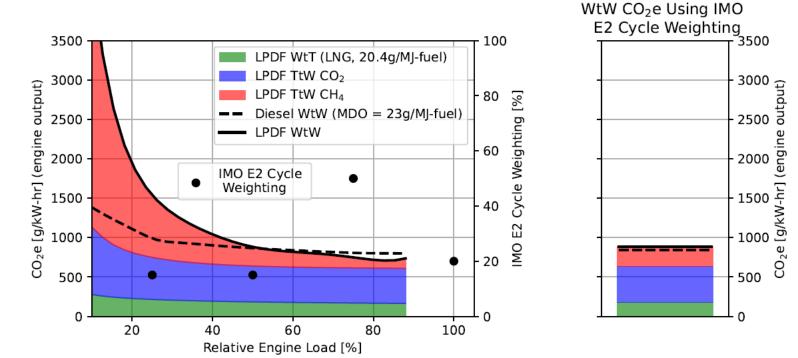





March 15<sup>th</sup>, 2024 OSAR 2024 J. Rochussen jrochussen@mech.ubc.ca

### LNG PROVIDES A SIGNIFICANT AIR QUALITY BENEFIT OVER DIESEL (ROLL-ON ROLL-OFF FERRY; RORO)

**Air Quality:** Each roundtrip sailing on LNG instead of diesel is equivalent to removing ~40k miles worth of NOx and ~47k miles of PM<sub>2.5</sub> from a class 8 truck **Under all circumstances, there will be air quality benefits to this fuel switching** 




Peng, Weihan, et al. Environmental Pollution 266 (2020): 115404.



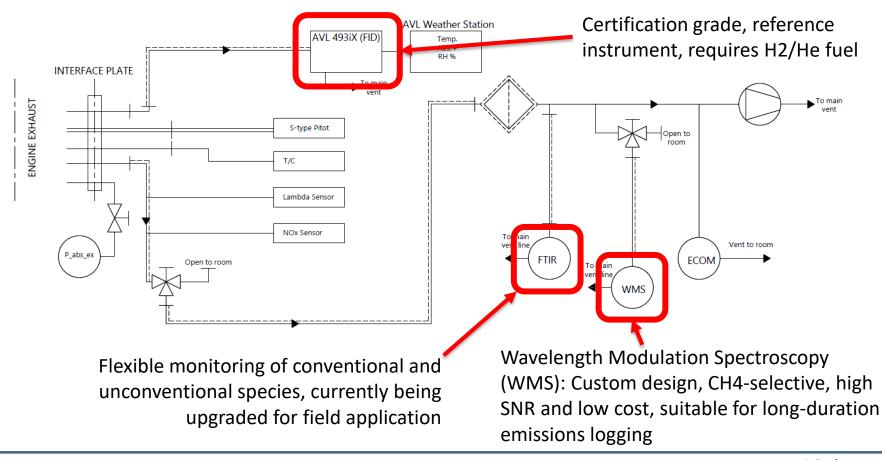
## METHANE SLIP IS CRITICAL TO WELL-TO-WAKE EMISSIONS ANALYSES AND FUEL-SWITCHING GHG ANALYSIS





- Methane slip is very load-sensitive and can be a much more significant source of GHG than upstream (WtT) emissions
- LCA and GHG models typically use a single legislation-weighted emission factor (EF) to represent marine applications
  - Can this be representative of the class of medium-speed LPDF engines?
  - How much confidence/uncertainty are there in these values when used for selecting fuels or propulsion technologies?

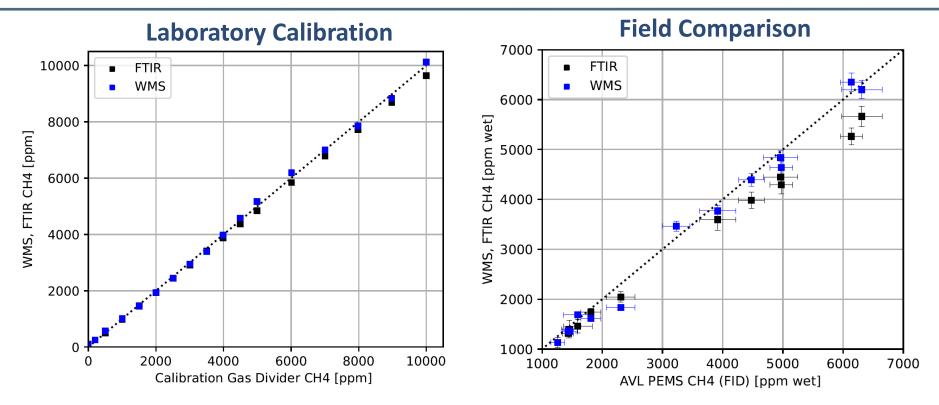
#### CALCULATION




#### A) Instrumentation / methods:

- i) 1065 compliant PEMS,
- ii) lab-grade FTIR,
- iii) custom methane sensor (WMS);
- iv) flow-measurement: pitot-tube,IMO NOx Technical Code carbonbalance




Simultaneous measurement of exhaust emissions from an in-use LPDF RORO ferry during: <u>i) steady-state sea-trials</u>, ii) dynamic commercial operations



## **MEASUREMENT UNCERTAINTY: INSTRUMENT & EXHAUST**



#### **PROCESS VARIABILITY**



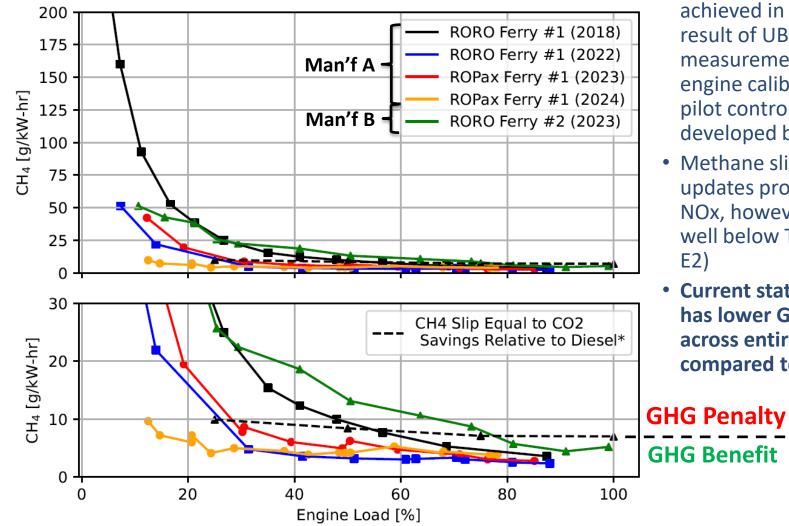
- Measurement error is higher in the field measurement than the dry calibration.
- Using error propagation, the largest source of uncertainty in the field measurements was identified as the intra-measurement variability (horizontal error bars);
  - e.g. imperfect load control during 'steady-state', propeller-pitch control feedback, etc.

## THE ROLE OF OTHER INSTRUMENTS IN CALCULATION OF **EMISSIONS FACTORS**



#### 40 **Measured Inputs for EF** [Steady-state bsCH4 AVL PEMS (FID) emission factors FTIR **Calculation**: measured during sea-35 WMS trials of RORO ferry CH4 concentration (2023)] 30 bsCH4 [g/kWhr] • Engine output 25 Exhaust flowrate 20 NG flowrate 15 **Diesel flowrate** Calculation 10 Pitot tube of EF 5 Fuel composition (g-CH4/kWhr) Major exhaust species 20 40 60 80 Engine Load [%] CO2, O2, HC Stack up of uncertainty from instrument • Atmospheric accuracy, and process variability for every conditions measured input parameter; high methane RH, P, T • slip conditions also have high uncertainty

March 15<sup>th</sup>, 2024 **OSAR 2024** 


Error bars are 95% confidence interval calculated using intrameasurement variability and instrument precision.

100

#### **REDUCTIONS IN METHANE SLIP WITH IMPROVING ENGINE**



#### TECHNOLOGY

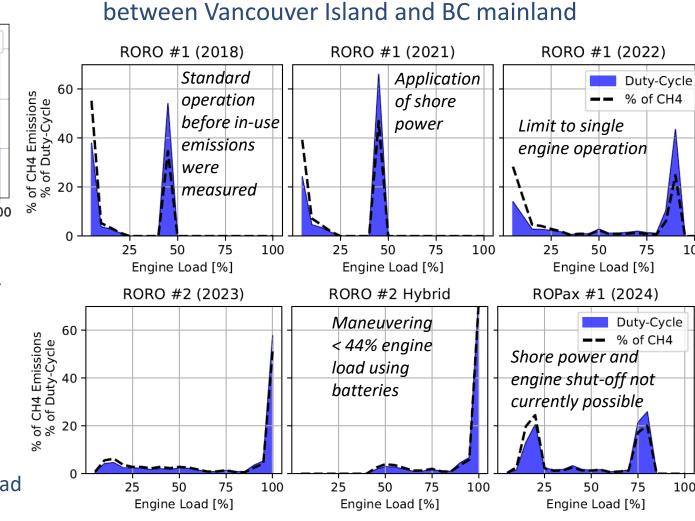


- Methane slip reductions achieved in Man'f A engines a result of UBC-Seaspan in-use measurements and updated engine calibrations (skip-fire, pilot control, air/fuel control) developed by Man'f A
- Methane slip reduction updates produce increased NOx, however engines remain well below Tier-III limits (IMO E2)
- Current state-of-the-art LPDF has lower GHG emissions across entire load range compared to diesel

March 15<sup>th</sup>, 2024 \* CH4 OSAR 2024 emissi

\* CH4 slip to offset CO2 savings calculated based on manufacturer B test-bed CO2 emissions data for diesel and gas mode operation,  $GWP_{CH4}$ =28

J. Rochussen jrochussen@mech.ubc.ca 10


### **DIVERSITY OF REAL-WORLD DUTY-CYCLES FOR RORO FERRIES**



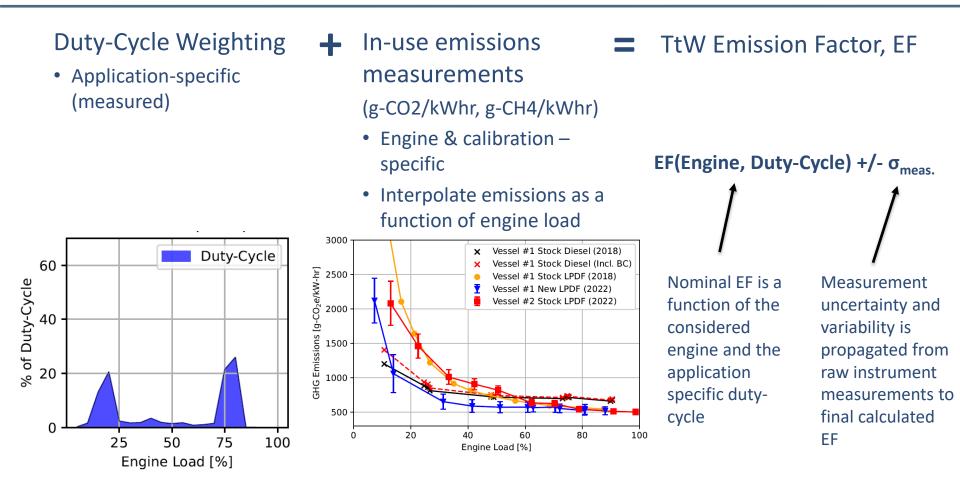
IMO E2 Duty-Cycle 60 % of Duty-Cycle 40 20 0 75 100 25 50 Engine Load [%]

IN BC

- Short-haul operations have a characteristic bimodal distribution, but there is still very significant differences between different applications
- Unlike CO2, CH4 emissions do not scale ~linearly with engine load or fuel consumption



All of these duty-cycles are measured from service


#### J. Rochussen jrochussen@mech.ubc.ca

100

100

### COMBINING REAL-WORLD EMISSIONS AND MEASURED DUTY-CYCLES TO CALCULATED WEIGHTED - EMISSION FACTORS





Note that this analysis assumes steady-state emissions measurements are representative of dynamic operations' emissions (experimentally evaluating this assumption for marine vessels is the focus of on-going research)

#### RANGE OF CALCULATED TTW CH4 EMISSION FACTORS FOR A RORO FERRY IN BC, USING RECENT DATA



|             |                    | TtW GHG EF: g-CH4/kW-hr   |                   |                   |                       |                    |
|-------------|--------------------|---------------------------|-------------------|-------------------|-----------------------|--------------------|
|             |                    | LPDF Engine & Calibration |                   |                   |                       |                    |
|             |                    | RORO #1<br>(2018)**       | RORO #1<br>(2022) | RORO #2<br>(2023) | ROPax #1<br>(2023)    | ROPax #1<br>(2024) |
| Duty-Cycle* | RORO #1<br>(2018)  | 84.7 ± 0.0                | 23.7 ± 4.1        | 32.4 ± 3.9        | 22.1 ± 5.1            | 6.6 ± 1.7          |
|             | RORO #1<br>(2021)  | 61.7 ± 0.0                |                   |                   |                       | 5.8 ± 1.5          |
|             | RORO #1<br>(2022)  | 41.6 ± 0.0                |                   |                   |                       | 5.6 ± 1.5          |
|             | RORO #2<br>(2023)  | 15 <b>EF(En</b>           | gine , Dut        | ty-Cycle)         | +/- σ <sub>meas</sub> | urement 3          |
|             | RORO #2<br>Hybrid  | 4.5 ± 0.0                 |                   |                   |                       | 4.1 ± 1.1          |
|             | ROPax #1<br>(2024) | 23.1 ± 0.0                |                   |                   |                       | 5.1 ± 1.4          |
|             | IMO E2             | 8.7 ± 0.0                 | $4.0 \pm 0.7$     | $11.0 \pm 0.8$    | $5.1 \pm 1.3$         | $4.1 \pm 1.1$      |

\*Note that extrapolation outside of measured operating ranges was required for this analysis

\*\* Incomplete instrument uncertainty data

Using application specific data (engine-specific emissions and application-specific duty-cycle) can yield up to two orders of magnitude difference in the TtW GHG emission factor

 Measurement uncertainty is ~ 7-30%

Quality emissions measurements are important, however they <u>must</u> be combined with application-specific dutycycle weightings and enginespecific data for actionable analysis of LNG LPDF marine engines

#### **SUMMARY**



- Engine-out CH4 slip is a critical limitation of NG-fueled marine engines that must be balanced against the NOx and PM reduction benefits
- In the last ~6 years there has been rapid and significant reductions in engine-out CH4-slip with new engine calibrations being offered
  - Emission inventories are rapidly becoming out of date, significantly limiting LCA and emission modelling activity accuracy
  - Current state-of-art LPDF engine has lower g-CO2e/kW-hr for nearly all operating conditions relative to diesel
- Quality exhaust concentration instrumentation is fundamental to reliable in-use emissions analysis, however test-conditions (e.g. load stability) and other measured parameters (e.g. fuel flow-rate) may introduce more significant uncertainty
- Calculated GHG emission factors for marine LPDF engines are <u>very</u> sensitive to the engine (and any applied calibrations) and the duty-cycle
  - RORO ferries operating between Vancouver Island BC mainland and equipped with medium-speed LPDF engines can have a factor of 6 different Tank-to-Wake GHG emission factors



- More granularity is needed in marine emissions LCA and modelling tools (e.g. GREET, GHGenius) for calculations to be actionable by policy-makers and fleet-operators
  - A single value for emission factors introduces too much uncertainty for LPDF engines where g-CO2e/kWhr are very sensitive to duty-cycle
  - More rapid uptake/utilization of recent in-use emissions measurements is needed to maintain emission inventory utility
- A shift in marine emissions measurement methodology is needed: Continuous emissions monitoring approach using lower-cost sensors and remote reporting to relevant jurisdictions
  - Most accurate duty-cycle, dynamic effects accounted for, immediate turnaround of data to decision- and policy-makers

## **THANK YOU TO OUR SPONSORS, PARTNERS & COLLABORATORS**



This project was undertaken with the financial support of the Government of Canada.

Ce projet a été réalisé avec l'appui financier du gouvernement du Canada.



The Government of Canada logo can not be used without the statement.







Clean Energy Research

Centre

Lead PI: Dr. Patrick Kirchen pkirchen@mech.ubc.ca

NSERC CRSNG

CERC Collaborators: Mhanna Mhanna (post-doc), Mark Guan (PhD Cand.), Isaac Becker (Engineer), Nick Jaeger (UCLA PhD student)



**NSERC CREATE Program:** 

**Clean Combustion** Engines

