

Advanced Aftertreatment Sensor Characterization Methods and Learnings

Yang Li, Tyler Rash

March 14, 2024

OSAR 2024 Conference

Outline

Introduction

- Sensor Fundamentals Team Overview
- NOx Sensor Operation and Performance

Methods

- Sensor Characterization Methods
- Sensor Test Matrix

Results

- Test Matrix Results
- NOx Sensor Broadcasting Zero
- \succ NH₃ Sensor

Implications and Conclusions

Sensor Fundamentals: Team Overview

We have assembled a substantial, dedicated, *sensor team & laboratory* at Cummins to:

- Mitigate risk with introduction of new, unusual, & difficult AT sensor technologies
- Drive supplier improvements.
- Reduce warranty and/or expand capabilities of mature technologies

NO_x Sensor Operation:

ceramic

This slide was based on a slide produced by Alok Joshi circa 2013

Environment That We Study

What to expect during the RMC-SET?

Cummins 5

Estimated NOx Emission with Diesel

Estimated NOx Emission Diesel (left) vs Natural Gas (right)

Sensor Characterization Methods: Sensor Exerciser and Test Instrument (SETI)

Gas Flow Bench Capabilities

- Test 9 sensors at a time
- Customizable sensor comm. interface.
- Temperature Range: 20-550 °C.
- Isobaric flow sweep capability (<40 psi)
- Flow Range: 20 250 LPM
- ≈0.2 sec response time measurements
- Independently controlled H₂, CH₄, C₃H₈, CO, CO₂, N₂, O₂, H₂O, NO, NO₂, & NH₃ concentrations.

Features FTIR O₂ Analyzer HCLD (NOx) Thermal MFCs Coriolis MFCs Humidity Sensors Pressure Sensors

Test Matrix

OSAR Test Matrix

Flag	NO	NO2	H2O	02	Temp	Flow
None	ppm	ppm	%	%	С	lpm
1	10	0	6	10.5	200	20
2	10	0	6	10.5	200	20
3	25	0	6	10.5	200	20
4	50	0	6	10.5	200	20
5	75	0	6	10.5	200	20
6	100	0	6	10.5	200	20
7	0	0	6	10.5	200	20
8	0	10	6	10.5	200	20
9	0	25	6	10.5	200	20
10	0	50	6	10.5	200	20
11	0	0	6	10.5	200	20
12	10	25	6	10.5	200	20
13	25	10	6	10.5	200	20
14	10	10	6	10.5	200	20
15	25	25	6	10.5	200	20
16	0	0	6	10.5	200	20
17	10	0	6	10.5	200	20
18	100	0	6	10.5	200	20
19	0	0	6	10.5	200	20
20	100	0	6	10.5	200	20
21	10	0	6	10.5	200	20
22	0	0	6	10.5	200	20
23	0	10	6	10.5	200	20
24	0	50	6	10.5	200	20
25	0	0	6	10.5	200	20
26	0	50	6	10.5	200	20
27	0	10	6	10.5	200	20
28	0	0	6	10.5	200	20

Factors replicated for fuel map simulation:

- 1. Temperature
- 2. Flow rate
- 3. NO/NO2/H₂O/CO₂/O₂ concentration

OSAR Matrix Result

Flag	NO	NO2	H2O	02	Temp	Flow
None	ppm	ppm	%	%	С	LPM
12	10	25	6	10.5	200	20
13	25	10	6	10.5	200	20
14	10	10	6	10.5	200	20
15	25	25	6	10.5	200	20

Fuel Map Simulation

Cummins Matrix Result

NOx Sensor Broadcasting Zero:

- The Average mean was computed by computing the mean for the last 15 s for each sensor for each of the runs and averaging them.
- The calculated NOx emission is based on a CO2 emission of 503 g/bhp-hr and engine operating at λ = 1.7.

Prepared by Cummins for OSAR

Implications and Conclusions

- Critical factors which impact sensor performance include temperature, pressure, lambda, NH₃, *etc.*
- Fuel economy and lambda determines the impact of NOx sensor errors on OBM/OBD-REAL type results. 1 ppm of NOx can be translated into 0.0065 g/bhp-hr under CO2 emission of 503 g/bhp-hr and engine operating at λ = 1.7.
- Empirically derived sensor models could be used to improve OBM/OBD-REAL type results, with qualitatively agreement being demonstrated between flow bench and test cell results.
- NOx sensor zero offset is sensitive to the sensor's age, type, and operating conditions (steady state and transient).
- OBM/OBD-REAL for NH3 would be a challenge.

