

Leveraging voluntary carbon offsets, evolving global markets, and OSAR technology for incentivizing fleet modernization/cleaner internal combustion in emerging economies

Alberto Ayala, PhD, MSE

Executive Director, Sacramento Metropolitan Air Quality Management District

Adjunct Professor, Mechanical, Materials, and Aerospace Engineering, West Virginia University

Former Deputy Executive Officer, California Air Resources Board

acknowledgments

David Miller and Dr. Gurdas Sandhu

Andrew Burnett

Dr. Alberto Ayala

Thank you CE-CERT for a decade+ of advancing PEMS knowledge

Who Should Attend:

- · Air quality scientists
- · Regulators
- · Policy makers
- Equipment manufacturers

Many researchers are engaging in complicated testing projects either to learn the inventory contribution to a community or to provide assurance that the diesel engines meet the standards. Special knowledge is essential to accurately measure in-use emissions.

Researchers considering in-use testing programs that involve hybrid, aerodynamic vehicles, aftertreatment, deterioration factors, and other in-use measurement approaches should attend this conference to learn about the latest tools and "lessons learned" from experienced measurement experts.

To Register visit:

UCR College of Engineering Center for

University of California, Riverside Bourns College of Engineering Center for Environmental Research and Technology 1084 Columbia Ave Riverside, CA 92507 (951) 781-5682 (951) 781-5790 fax www.cert.ucr.edu

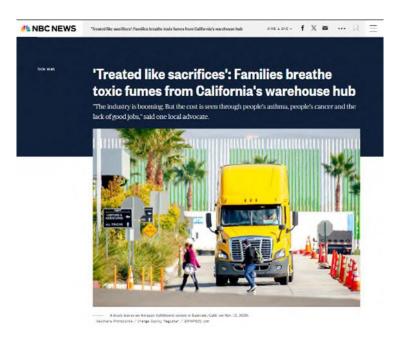
PEMS: The Latest Tools and Techniques for In-Use Measurements

Thursday, March 24, 2011

A workshop to explore comprehensive issues for testing programs in on-road, off-road, marine, and agricultural applications.

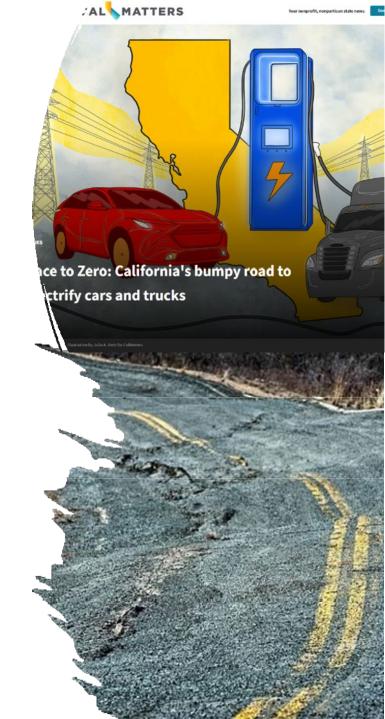
OSAR progress over the decades

- We've come a long way...
- And learned a lot
- From early days of SPOT and RAVEN
- To EPA/ARB/EMA measurement allowance program
- To today's PEMS and OSAR



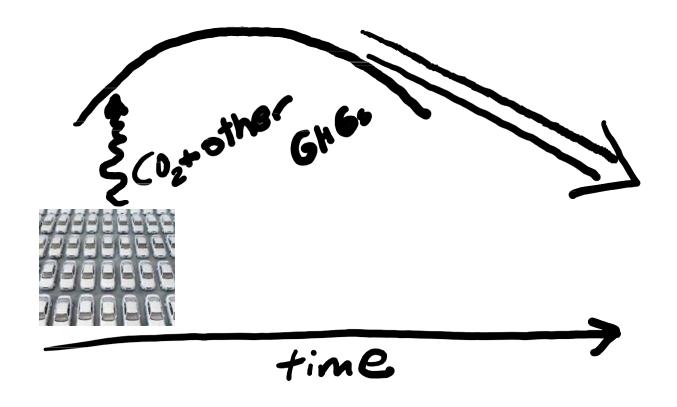
Early 2000s Today

- Expanding global policy drivers for climate action
- More/faster air and climate pollution reductions sorely needed
- "Burning fossil fuels is threatening human well-being and stability of much of life on Earth, and our chance to avoid most severe impacts is fast moving out of reach." IPCC



Transition to zero has begun

- Private sector bringing to market growing number of EVs, low-carbon fuels, and other mobility solutions
- But, globally, a bumpy road ahead for EVs
- Electrified technologies (and their e-fuels) too costly and unproven for many end-uses
- Lack of a sufficient and readily available charging/fueling infrastructure
- And supply/distribution/storage of renewable energy
- Decades are likely needed to reach scale and lower costs
- We need harmony with cleaner combustion technology (and its fuels)
- Clean combustion necessarily plays a role in transition to zero-carbon future



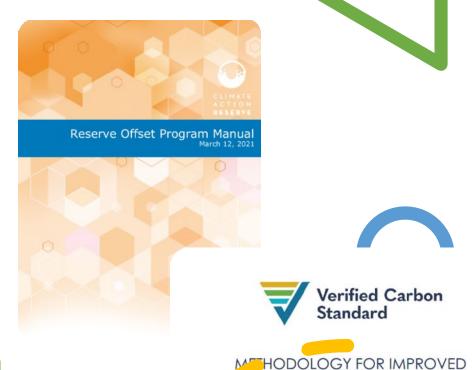
- Given <u>barriers</u> in low- and middleincome economies, there is <u>skepticism</u> and <u>reluctance</u> about EV transition
- "Air pollution is a threat to health in all countries, but it hits people in low- and middle-income countries the hardest" WHO Director-General Dr. Ghebreyesus.
- Might there be another way to <u>incentivize</u> cleaner/affordable/lower carbon vehicles in emerging economies?

Ref: Ayala, A., Unforced errors in public policy can lead to forced pollution exposures – putting the health of all urban breathers first. *Environment*. Vol.6, No.2, tandfonline.com/env. March/April 2024.

- Command and control is preferred rich world approach
- Increasingly stringent emission standards are traditional regulatory intervention
- A declining cap on mobile source emissions
- Costly, complicated, and lengthy
- Is there another option?

"The markets" – carrots balancing sticks

Emission Credits, Banking, and Trading


- Not a new "thing" in the US
- Acid rain program was first "market-based" mechanism (1990, aka cap and trade)
- Then came NO_x budget trading program and others
- Today we have: Europe Emission Trading System (ETS), New Zealand ETS, California/Quebec ETS, US Northeast RGGI, Korea ETS, China ETS, Washington Cap-and-Invest, etc.
- Long-standing option in most regulatory policies tackling conventional pollution
- We call it "flexibility" for regulated entities
- Examples: ERCs, California Carl Moyer (30 year program) and other incentive programs

OSAR and integrity of credits/offsets

	OSAR	Definition
Real (surplus)		reductions must not already be required by any law, rule, regulation, agreement, or orders
Quantifiable		using actual historical emissions in comparison to proposed post-project
Enforceable		Verifiable and legally binding limitations which are enforceable
Verifiable		
Permanent		continuing without change for life of ERC

The Promise of Carbon Markets

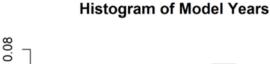
- Compliance and voluntary carbon markets (VCMs) primed for growth
- Due to Paris Agreement and Nationally Determined Contributions (NDCs)
- VCMs driven by demand from companies to meet voluntary climate commitments
- VCMs as bridge as companies make "harder transitions"
- VCMs are short game play more immediate role in unlocking climate finance
- Compliance markets are <u>long game</u> key to meeting longer term goals
- Today, many countries lack institutional capacity and infrastructure to participate in compliance markets, and it will take time to establish these systems
- In the interim, VCMs can build capacity and deliver results

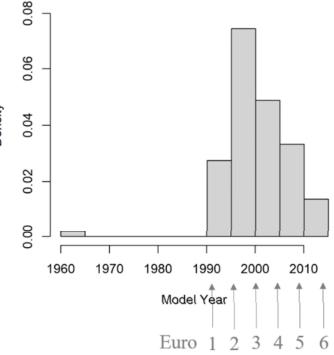
A VERRA STANDARD

COMBUSTION ENGINES

Revision of CDM Methodology AMS-III.BC.

Prepared by dynaCERT


Carbon offsets for fleet modernization – *how would it work*?


- Related methodologies already exist
- We can do better by:
 - Including all related climate forcers: CO₂, PM/BC, NO_x
 - Direct emission measurements:
 - OSAR to quantify baseline project emissions
 - OSAR for verification and monitoring
- GHG Assessment Boundary and Baseline GHG emissions for a candidate fleet (i.e., project)
- Implement fleet modernization intervention (no EVs)
- Incentivizing vehicle scrap and replacement
- GHG reductions = baseline project
- Realistic carbon reductions in emerging economies
- Value based on market rates + other co-benefits

Case study – 3DATX Abuja pilot project

- Nigeria has stated climate agenda
- NDC, desire for ETS, no fuel subsidy, and other climate commitments
- Prominent economy in African continent
- Facing challenges typical of emerging economies (i.e., poor fuel quality, resources/capacity to develop/implement policy interventions)
- Promise of access to global climate finance
- <u>Early Euro models dominate Abuja on-road passenger car fleet</u>

Let's do the math...

Pollutant	Baseline emission ¹ (mg/km)	Project emission (mg/km)	Global Warming Potential ²	Reduction	CO2e (mg-e reduction/km/vehicle)
CO2	140,000	95,000 ³	1	45,000	45,000
BC (PM)	3	1.54	4400	1.5	6,600
NOx	2,500	150 ⁵	30	2,350	70,500

Definitions & assumptions:

Reduction = baseline – project

¹Measured values by 3DATX parSYNC [®] FLEX

²GWP - CO2(100yr), NOx & PM(20yr)

³(EU)2019/631 target

⁴50% reduction. Assume PM = BC

⁵Euro 3 standard or better

30,000 km/year/vehicle

10 yr project life

Carbon offset	units	
122,100	Total mg CO2e reductions/km/vehicle	
36.63	Total project metric tons/vehicle+	

VOLUNTARY CARBON OFFSET CREDIT MARKET INDICATIVE PRICING - INTERNATIONAL

PRODUCT TYPE	REGISTRY	INDICATIVE SPOT PRICE
International Forest Carbon - Asia & South America	VERRA	\$1.00 - \$35.00
India - Wind/Hydro/Solar	VERRA	\$1.85 - \$6.25
International Forestry - Mangroves	VERRA	\$25.00 - \$35.00
Waste Handling & Disposal	VERRA	\$2.00 - \$9.50
Africa - Cookstoves	GS	\$3.00 - \$6.00
India - Cookstoves	GS	\$4.70 - \$8.00
Turkey - Wind/Hydro	GS	\$1.60 - \$5.75
Biochar	VERRA	\$110.00 - \$165.00
Plugging Orphaned Oil and Gas Wells	ACR	\$20.00 - \$30.00

Nature Based Carbon Offset

carboncredits.com

Does it pencil out with carbon offsets?

- Not likely
- Carbon offsets alone not enough revenue at current prices
- Offsets/vehicle too small (\$36 to ~\$5,000 per vehicle?)
- VCM is just one tool
- What if prices go up because of global pressures?
- Or might there be other incentives?

CALIFORNIA CAP & TRADE PRODUCTS

Bay Area ERCs \$8,500 \$12,500 \$6,000 \$15,000 \$20,000 \$30,000 San Diego ERCs \$60,000 \$110,000 Yolo-Solano ERCs ASK /TPY \$30,000 \$50,000 \$30,000 \$50,000 \$10,000 \$20,000 PM10 \$10,000 \$20,000 Santa Barbara ERCs ASK /TPY \$125,000 \$125,000 \$100,000

Et S77 Vo

European Carbon Credit Market

PRODUCT	BROKER SPOT OFFER
CCA	\$41.90
CCO ₃	\$16.17
CCO_8	\$16.08
GCCO	\$18.00 - \$19.00
GCCO DEBs	\$35.00 - \$36.00

LOW CARBON FUEL STANDARD CREDITS

DELIVERY DATE	\$ / LCFS CREDIT
CURRENT	\$60.00
DECEMBER 2023	\$63.31

What about compliance market for new regulatory interventions in Africa? In Nigeria?

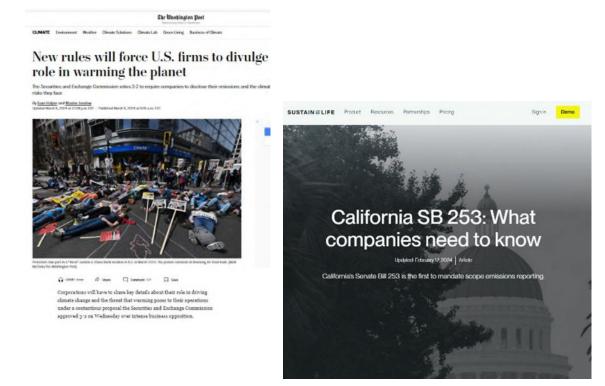
California low carbon transportation program

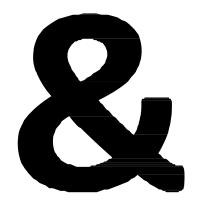
Proposed Project	Average GHG Cost- Effectiveness per Project (\$/weighted ton GHG)	Average Cost- Effectiveness per Project (\$/weighted ton)
Vehicle Purchase Incentives		
CVRP (Standard)	\$711	\$258,705
CVRP (Increased)	\$1,739	\$581,936
CC4A	\$2,000	\$463,187
Financing Assistance for Low- Income Consumers	\$2,700	\$912,243
Clean Mobility Incentives		
Clean Mobility Options	\$6,000	\$6,043,789
Clean Mobility in Schools	\$698	\$1,283,000
Agricultural Worker Vanpools	\$1,164	\$714,020
Rural School Bus Pilot	\$1,202	\$78,234
Heavy-Duty Vehicle and Off-Road Equipment Incentives		
Heavy-Duty Demos and Pilots	\$2,997	\$760,000
HVIP	\$277	\$213,776
CORE	\$1,472	\$222,458
Truck Loan Assistance Program	Not applicable	\$16,093

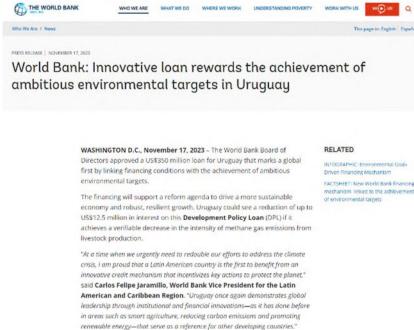
Table H- 3: Carl Moyer Memorial Air Quality Standards Attainm

Project/Source Category	Average GHG Cost- Effectiveness per Project (\$/weighted ton GHG)	Average Cost- Effectiveness per Project (\$/weighted ton (NOx+ROG+20*PM))
Infrastructure	Not applicable	Not applicable
Locomotives	Not applicable	\$12,000
Marine Vessels	Not applicable	\$14,000
Off-Road Agricultural	Not applicable	\$12,000
Off-Road Other	Not applicable	\$18,000
On-Road	Not applicable	\$39,000
Car Scrap	Not applicable	\$12,000

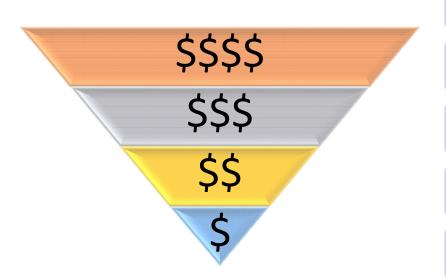
Table H- 4: Community Air Protection Incentives

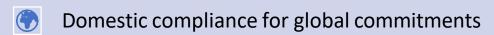

Project/Source Category	Average GHG Cost- Effectiveness per Project (\$/weighted ton GHG)	Average Cost- Effectiveness per Project (\$/weighted ton (NOx+ROG+20*PM))
Infrastructure	Not applicable	Not applicable
Locomotives	\$6,402	\$18,000
Marine Vessels	Not applicable	\$23,000
Off-Road Agricultural	\$2,050	\$8,000
Off-Road Other	\$1,520	\$24,358
On-Road	\$783	\$101,000

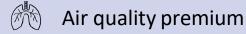

What about a premium for health co-benefits from air pollution reductions?

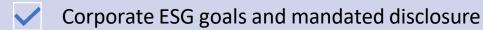

The writing is on the wall...

New regulatory requirements for corporate disclosure of GHG emissions (Scope 1, 2, 3)

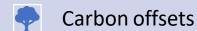





Linking favorable financing with achievement of ambitious environmental targets



An opportunity for Nigeria/Abuja — a modified VCM offset from stackable incentives



Favorable financing with achievement of environmental targets

