

Statistical Evaluation of Euro 7 Laboratory Tests for Brake Emissions Factors

Carlos Agudelo 03.14.2024 CARB Riverside, CA

Variability components ILS2

Dyno test capabilities

Weighing process capabilities

Sections

Variability components ILS2

• ISO 5725 (2...6)

 repeatability, sample effect, lab effect, total Reproducibility

• s_r, s_H, s_L, s_R • CD_{r,} CD_R

Acknowledgment

Research members

<u>Carlos Agudelo</u>, Dr. Barouch Giechaskiel, Dr. Theodoros Grigoratos, Dr. Ing. Jarek Grochowicz, and Dr. Ing. Hartmut Niemann

TF3 members

To **AUDI** AG, **BMW** AG, **Ford-Werke** GmbH, **Stellantis** N.V., **Continental** AG, **DRiV** Inc., **Brembo** S.p.A, and **Volkswagen** AG For providing brake components

To M. Arndt (**AVL** List GmbH), K. Kolbeck and J. Von-Wild (**BMW AG**), M. Federici (**Brembo** S.p.A.), M. Morbach and C. Kölsch (**DRiV** Inc.), J. Grochowicz (**Ford-Werke** GmbH), G. Kanae Filler and D. Lugovyy (**HORIBA** Europe GmbH), A. Perez and J. Olive (Applus+ **IDIADA**), A. Sin and S. Balestra (**ITT** Inc.), H. Hagino (Japan Automobile Research Institute - **JARI**), R. Vedula and A. Hortet (**LINK**), H. Chong (**NIER**, South Korea), P. Nyhof (**TMD** Friction Services GmbH), H. Niemann and H. Kaminski (**TU DARMSTADT**), D. Hesse and C. Hamatschek (**TU ILMENAU**), and P. Jouy (**UTAC** France) For their technical support during the ILS2

WHY doing this

background and benefits

HOW we calculated the standard deviations

ISO 5725-5 for heterogenous materials using non-robust algorithms

OSAR 2024 | CE-CERT Riverside, CA. March 14-15

WHAT we measured

basis to establish critical differences (CD_r for test-to-test and CD_R for dyno-to-dyno) per ISO 5725-1, -6

4.1.4 In view of 4.1.1 to 4.1.3, when examining two single test results obtained under repeatability or reproducibility conditions, the comparison shall be made with the repeatability limit

$$r = 2,8\sigma_r$$
 ...between tests

or the reproducibility limit

 $R = 2,8\sigma_R$...between labs/dynos

STATISTICS for emissions factors

lab is main component for PM₁₀ variability, while repeatability is main component for PM_{2.5}

Overall mean and Reproducibility (error bar)

Percent contribution to total variance by component

STATISTICS for overall brake and cooling air temperatures

lab is main contributing factor to variability

Overall mean and Reproducibility (error bar)

Percent contribution to total variance by component

Components of variability for avg-by-time torque by event

larger scatter for all factors during ILS2

Sections

Variability components	Dyno test capabilities
• ISO 5725 (26)	• ISO 22514 (27) • GTR 24
 repeatability, sample effect, lab effect, total Reproducibility 	 Bias, repeatability, linearity
• s _r , s _H , s _L , s _R • CD _{r,} CD _R	• U _{MS} , Q _{MP} , P _{pk}

Acknowledgment

Research members

<u>Carlos Agudelo</u>, Dr. Ing. Hartmut Niemann, Maximilian Hense, Alejandro Hortet, James Boatwright, Dr. Frederik Weis

Those working behind the scenes

Barry Purtymun, from LINK-Arizona, for processing the dyno data using the UN GTR 24 test report output **Tyler Odom**, from LINK Technical Center-Dearborn, Michigan, for making the UN GTR 24 test report work

HOW to assess the different UN GTR 24 requirements

using three categories of data

HOW to assess the different UN GTR 24 requirements

using three categories of data

\mathcal{N}				
Continuous (ISO 22514-7)	Time-based (ISO 22514-2)			
Measurands that vary during the test:	Constant measurands during the test:			
 Braking / release speed 	Cooling airflow			
 Deceleration / torque 	 Cooling air temp. and %RH 			
 Event duration 	 PM/PN sampling flow 			
•	•			

HOW we compiled the data

LINK

(LINK)

use of dyno data from two standard configurations + brake emissions upgrade

(A) M3000 p	performance	(B) M3900 NVH			
Motor: 186 kW	FS torque: 5600 N·m	Motor: 186 kW	FS torque: 5600 N ⋅ m		
Maximum simulated inertia: 260 kg·m²		Maximum simulated inertia: 320 kg·m²			
Maximum speed: 300 km/h @ r _R : 0.4 m		Maximum speed: 375 km/h @ r _R : 0.4 m			
M6330 + M4222 per UN GTR 24		M6330 + M4222 per UN GTR 24			
Test loads: I _t = 80 kg⋅m²; r _R = 0.340 m		Test loads: I _t = 50 kg⋅m²; r _R = 0.290 m			
Brake size: r _{eff} = 120 mm; d _{piston} = 60 mm × 1		Brake size: r_{eff} = 108 mm; d_{piston} = 60 mm \times 1			

OSAR 2024 | CE-CERT Riverside, CA. March 14-15

HOW we selected the levels for the one-way ANOVA (ISO 22514-7)

minimum + 20th percentiles + maximum level (3-parameter lognormal distribution)

HOW do the statistics work (ISO 22514-7 + VDA Guide 5) for brake work

- using Maximum Permissible Errors to estimate the allowable relative uncertainties
- combining torque and revolutions to stop (uncorrelated components per GUM)
- expressed as relative uncertainties (%)

WHAT we calculated for average-by-time torque

correlation of test averages with reference values, bias, and components of uncertainty

Metrics for uncertainty		Dyno (A)	Dyno (B)
BIAS [N·m]	U _{BI}	0.428 6	0.382 8
LINEARITY [N·m]	U _{LIN}	0.261 4	0.751 4
REPEATABILITY [N·m]	U _{EVR}	0.100 2	0.151 1
Combined uncertainty [N·m]	U _{MS}	0.512 0	0.856 7
Combined exp. uncertainty [N·m]	U _{MS}	1.024 0	1.807 6
COMBINED EXPANDED UNCERTAINTY	—	0.41%	0.96%
Performance ratio (≤ 30%)	Q _{MP}	8.2%	19.2%

HOW do the statistics work (ISO 22514-7)

- using ANOVA to estimate the actual relative uncertainties
- combining torque and revolutions to stop (uncorrelated components per GUM)
- expressed as relative uncertainties (%)

HOW to assess the different UN GTR 24 requirements

using three categories of data

HOW we assessed time-based data (ISO 22514-2)

high-level workflow for performance metrics (before confirming process is under statistical control)

Table 7.2. Summary of cooling air temperature, humidity, and flow requirements					
Parameter	Cooling air temperature	Cooling air relative humidity	Cooling airflow		
Nominal value	23 °C	50 %	Set value (Q _{set}) per paragraph 10.		
Average value: Maximum permissible tolerance	±2 °C	±5 %	± 5 % of Q_{set}		
Instantaneous values (1Hz): Maximum permissible tolerance	±5 °C	±30 %	± 5 % of Q_{set}		
Instantaneous values (1Hz): Permissible deviation beyond the maximum permissible tolerance	Not defined	Not defined	± 10 % of Q_{set}		
Instantaneous values (1Hz): Maximum time exceeding the maximum permissible tolerance	10 % of each test section's duration	10 % of each test section's duration	5 % of each test section's duration		

PM sampling flow — 12.1.2.3.(d) The average sampling volumetric flow shall be within ± 2 per cent of the set value [...]

PN sampling flow — 12.2.3.2. (c) The actual normalised sampling flow shall not deviate more than ±10 per cent of the average value [...]

WHAT was the compliance for cooling airflow conditions

using test-specific set values and UN GTR 24 tolerances on Table 7.2

Parameter	Cooling air temperature	Cooling air relative humidity	Cooling airflow
Nominal value	20 °C	50 %	200 m³/h
Average value: Maximum permissible tolerance	- 1.07 °C (± 2 °C)	- 0.11 % (± 5%)	- 0.4 % (± 5%)
Instantaneous values (1Hz): Maximum permissible tolerance	±5°C	$\pm \ 30 \ \%$	\pm 5 % of $\rm Q_{set}$
Instantaneous values (1Hz): Permissible deviation beyond the maximum permissible tolerance	Not defined	Not defined	± 10 % of $\ensuremath{Q_{\text{set}}}$
Instantaneous values (1Hz): Maximum time exceeding the maximum permissible tolerance	0 % (± 10%)	0 % (± 10%)	0.0385% (± 5%)

WHAT was the performance for cooling airflow conditions

using test-specific set values and ISO 22514-2 indexes

Sections

Variability components	Dyno test capabilities	Weighing process capabilities
•ISO 5725 (26)	• ISO 22514 (27) • GTR 24	• ISO 22514 (2…7) • GTR 24 • DIN EN 12341
 repeatability, sample effect, lab effect, total Reproducibility 	• Bias, repeatability, linearity	 Filter (integrity, charge, stability) Room (repeatability, conditions) Sampler (bias, repeatability, linearity, correlation)
• s _r , s _H , s _L , s _R • CD _{r,} CD _R	• U _{MS} , Q _{MP} , P _{pk}	• P _{pk}

GTR 24 — Weighing room and weighing process requirements (extract)

Including microbalance, room, filter conditioning, and variability

	<u>∆</u> _∆ Microbalance	Process
 Free of contaminants (22 ± 2)°C & (45 ± 8) %RH Filter storage (pre & post) Buoyancy correction 	 Isolation from vibration Calibration report Calibrated weights Resolution ≤ 1 µg 	• ± 10 µg reference filters • $ m_1 - m_2 \le 10 \mu g$ or range $ m_1m_4 \le 15 \mu g$

DIN EN 12341 — C.2. Filter integrity

condition & weigh → holder → wait 1 hour → remove weigh

DIN EN 12341 — C.2. Static charge

condition & weigh (without discharge)
 static discharge > reweigh

DIN EN 12341 — D.1. Accuracy and stability of room conditions

Experimental setup for level and detection and Two-Way ANOVA

Gtr 24-modified to accommodate measurements close to DIN EN 12341

- Non-rotating brake
- 20° balanced flow splitters
- 3 0.95...0.98 isokinetic ratio @ 33.3 lpm
- Manual and automatic filter changers
- 5 PALAS RBG Basic dust generator

Experimental setup for level and detection and two-way ANOVA

PALAS adjustable generator to inject ISO 12103-1 Arizona fine dust

AZ fine dust

RBG working principle

AZ fine dust size distribution

RBG industrial embodiment

AZ fine dust cylinders

Injection at brake enclosure

ISO 22514-7 between samplers ANOVA

Two sampling systems (manual and auto) and five filter load levels

Test case	PM ₁₀ EF (mg km ⁻¹ veh ⁻¹)	Estimated filter load (mg)
EN 12341 lower limit (~1 µg m ⁻³)	1.2	0.070 3
Euro 7 target	7.1	0.432 6
Euro 7 target + 20%	8.2	0.496 7
Five times Euro 7 target	38.7	2.351 8
EN 12341 upper limit (~150 μ g m ⁻³)	148.7	9.035 4

160 O v = 1.0387x - 0.6633 $R^2 = 0.9999$ Auto sampler 40 20 Q 0 20 40 60 80 160 140 Manual sampler - Average PM10 EF (mg km-1 veh-1) 20 PM10 EF (mg km-1 veh-1) 10 - Average Auto sampler 5 10 15 20 0 5

Manual sampler - Average PM10 EF (mg km-1 veh-1)

OSAR 2024 | CE-CERT Riverside, CA. March 14-15

...in closing

Laboratory effect dominates total test Reproducibility (from ILS1 and ILS2) With due diligence, a test facility can meet the UN GTR 24 requirements Automatic sequential samplers correlate within 5% with manual filter holders

Carlos Agudelo

Director Applications Engineering LINK Group Plymouth, Michigan US

c.agudelo@linkeng.com

+1 313 319 9819

www.linkeng.com

STATISTICS for brake torque and coefficient of friction

both dominated by lab effect

Overall mean and Reproducibility (error bar)

Percent contribution to total variance by component

Summary on test variability

- for brake work and brake temperature, lab variability is key
- ILS3 needs to (and it is) including test repeats to ensure proper statistics

Events	Standard deviations (repeat., Sample, Lab, Reproducibility)								
	as percent of the general average								
	ILS1						ILS	62	
	S _{rj}	s _{Hj}	S _{Lj}	s _{Rj}		s _{rj}	S _{Hj}	S _{Lj}	S _{Rj}
303	1.4%	0.1%	6.1%	6.3%		5.7%	0.0%	12.9%	14.3%
50 th	1.3%	0.0%	5.4%	5.5%		4.7%	0.0%	12.3%	13.5%
95 th	2.0%	0.5%	11.2%	11.3%		14.2%	0.0%	20.6%	25.0%

Average-by-Time Torque

WHAT was the performance for PM₁₀ and TPN sampling airflows

using test-specific values and ISO 22514-2 indexes

