

OSAR 2024 Conference

Application of the AVL M.O.V.E FT

A New Portable FTIR for In-Vehicle Emissions Measurement

Benjamin C. Shade, Ph.D.

- Aspects of global emission legislations focus on real driving emissions that are measured onboard during a test drive
- New regulations for additional gas components require new solutions
- The next generation of PEMS systems must be small, lightweight, and easy to handle, while still providing accurate results even within a wide range of ambient conditions

The Solution – AVL M.O.V.E FT

- An FTIR-based multi-component emission measurement system that can measure relevant gas components within one system
- Operates as an *add-on* to the well known AVL
 M.O.V.E iS+ and iX test systems **OR** as a *stand-alone* system

Technical Specifications

The AVL M.O.V.E FT

- The AVL M.O.V.E FT is based on an FTIR spectrometer that can simultaneously measure multiple pre-calibrated exhaust gas components.
- The system does not require any supply gases, which makes it ideal for mobile on-board measurements.
- The simplicity of the system makes it easy to transport and install, which is essential since these systems must frequently be mounted and dismounted to different vehicles.

General Specification			
Dimensions (W x D x H)	49.5 x 36 x 18.9 cm (~19 x 14 x 7")		
Weight	18 kg (~40 lbs)		
Power supply	22 – 28 VDC, max 20A, ~150W after warm-up @ 20 °C		
Ambient temperature	-10 – +45 °C (14 – 113 °F)		
Ambient pressure	800 – 1,100 hPa (~0 – 2,000 m)		
Ambient humidity	5 – 90 % rel., non-condensing		
Measurement Ranges of Selected Gas Components			

CO ₂	0 – 20 Vol.%
СО	0 – 5 Vol.%
NO	0 – 1,500 ppm
NO ₂	0 – 1,000 ppm
$NOx (NO + NO_2)$	0 – 1,500 ppm
NH ₃	0 – 1,500 ppm
N ₂ O	0 – 1,500 ppm
НСНО	0 – 200 ppm
Other Gas Components	
CH ₄ , THC _{FTIR equiv.} , NMHC, NMOG	and many more
Analyzer Specification	
Measurement principle	FTIR (Fourier Transform InfraRed)
Detector cooling	Thermoelectric
Optical bench purging	Not required

Communication interface LAN TCP/IP (AK protocol)

AVL M.O.V.E FT – Highlights

- One box including FTIR, sample pump and everything needed for the measurement
- No liquid nitrogen and no supply gases needed
- Measuring NH₃, N₂O, HCHO and CH₄ functioning as add-on for existing PEMS system
- Optional CO, CO₂, NO and NO₂ to function as a complete alternative to an existing PEMS system
- Other components on request for R&D purposes
- Low power consumption ~150 W after warm-up
- Small footprint and lightweight (~40 lb)

Correlation Testing Results

Chassis Dynamometer

Experimental Setup

Data Presentation Format

 Comparison of raw emission concentrations over Cold Start WLTCs of a gasoline vehicle

Legend:

- MOVE FT

– AMA SL

- SESAM i60

Public

Chassis Dynamometer Testing Findings

	Rel Δ		Abs Δ / Range		Range _{MOVE FT}
	AMA	SESAM	AMA	SESAM	(ppm)
NH ₃	-	-9.27%	-	0.0623%	1500
N ₂ O	-	14.1%	-	0.00580%	1500
нсно		-212%	-	0.187%	200
CH₄	35.3%	4.88%	1.49%	0.268%	100
NOx	-14.7%	-2.02%	0.121%	0.0145%	1500
NO	-14.5%	-4.50%	0.122%	0.00853%	1500
NO ₂	-	-	-	-	1000
CO2	0.0900%	0.679%	0.0337%	0.389%	200000
СО	0.577%	-1.65%	0.00152%	0.00352%	50000

Note: CH₄ range of 100 ppm is shown for calculation purposes only.

AMA Detector
HFID
HCLD
HCLD
HCLD
NDIR
NDIR

- The M.O.V.E FT correlates well with reference laboratory analyzers
 - For species where relative difference is >2% where the concentrations are quite low, the absolute difference compared to full scale range of the M.O.V.E FT is <2%

Correlation Testing Results

In-Vehicle (RDE)

Instrumented Test Vehicle

Vehicle Speed and RDE Validation

Testing of a *different* gasoline vehicle

Ammonia (NH₃)

Public

/ 23

- Relative Differences:
 - ▲_{M.O.V.E} = -1.50%

Oxides of Nitrogen (NOx)

Public

/ 25

Carbon Dioxide (CO₂)

Public

/ 26

Carbon Monoxide (CO)

Public

/ 27

In-Vehicle (RDE) Testing Findings

	Rel Δ	
	M.O.V.E	
NH ₃	-3.15%	
CH ₄	-1.50%	
NOx	-3.77%	
CO2	-1.74%	
СО	-2.04%	

- The M.O.V.E FT correlates well with the conventional M.O.V.E analyzers with all species being <4% relative difference
- There appears to be a negative bias which can be investigated further for reproducibility

What about H₂O?

Water (H₂O) – Bench Experiment

Public

/ 30

HovaCAL

 Driven by current in H₂ ICE, we will continue to investigate correlation between the M.O.V.E FT H2O measurement and the reference HovaCAL

Water (H₂O) over Cold Start WLTC Tests

Laboratory A Results

Laboratory B Results

Water (H₂O) over RDE Test

Conclusions and Recommendations

Conclusions and Recommendations

- The AVL M.O.V.E FT performed well as a measurement instrument in both laboratory (chassis dynamometer) and real-world, in-vehicle (RDE) environments
 - At low concentrations where relative comparisons can be misleading, the instrument performs well when considering the available range of the measured constituent
- The portable system is lightweight and user-friendly without the need for on-board gases
- The H₂O measured by the M.O.V.E FT compares well to the laboratory SESAM FTIR giving confidence to future in-use testing (potentially) of non-carbon containing fuels where H2O measurement is crucial
- Additional data collection (both laboratory and real-world) from exhaust from a variety of fuel types (e.g., diesel, CNG, H2, and blends) may pursue qualification the M.O.V.E FT as an alternative measurement device for in-use emissions measurement

Thank you

www.avl.com