SOME OBSERVATIONS BASED ON COMPLEMENTARY INTERNATIONAL EVALUATIONS OF EDAR VEHICLE EMISSIONS REMOTE SENSING TECHNOLOGY

Karl Ropkins¹*; Timothy H. DeFries²; Francis Pope³; David C. Green⁴; Jim Kemper⁵; Sandeep Kishan²; Gary W. Fuller⁴; Hu Li⁶; Jim Sidebottom⁵,⁷; J. Stewart Hager⁷.

7th UCR PEMS WORKSHOP AND CONFERENCE
Riverside, California, March 30-31, 2017

¹ Transport Studies, Environment, University of Leeds, UK
² Eastern Research Group Inc, Austin, USA
³ School of Geography, Earth and Environmental Sciences, University of Birmingham, UK
⁴ Analytical & Environmental Sciences Division, King's College London, UK
⁵ Aurora High Altitude Research Laboratory, Colorado Department of Public Health and Environment (CDPHE), USA
⁶ School of Chemical and Process Engineering, University of Leeds, UK
⁷ Hager Environmental & Atmospheric Technology (HEAT) LLC, Knoxville, USA
The Technology: EDAR

(Emission Detection And Reporting)

- Down-facing DiAL VERSS
- Scans down onto road to remotely measure passing vehicle emissions
- Measures CO$_2$, CO, NO, NO$_2$, SO$_2$, HC* (e.g. discrete CH$_4$, C$_3$H$_8$, etc.), PM...
- One footprint for both heavy and light duty vehicles
Example EDAR deployment:
Marylebone Road, London, UK

EDAR units
(one Gases; one PM)

Reflector Strip

Example EDAR outputs:
Passing Vehicle Plume Image and Emissions Measurements
Project

CDPHE/ERG Simulated Exhaust Gas EDAR (Emissions Detection And Reporting) Study

EDAR Developers: HEAT LLC
Project Partners: Colorado Department of Public Health and Environment, Eastern Research Group

Project contact: Tim DeFries (ERG)

Project Implemented by: United States Environmental Protection Agency
Gas Audit Evaluation

EDAR (Boom Arm) Deployment

Simulated Exhaust Gas Release

Drive-through reference gas release sampling
 • Highly accurate/stable reference
 • Good measure of instrumental accuracy
Gas Audit Results

- Good agreement with references (\(R^2 > 0.99\) for CO and NO; \(R^2 > 0.95\) for HCs)
- Selectivity e.g. discrete hydrocarbons
Project

Birmingham and London EDAR (Emissions Detection And Reporting) Demonstration and Evaluation

EDAR Developers:

HEAT LLC

Project Partners:

King’s College London
University of Birmingham
University of Leeds

Project Funding:

DfT LOCAL TRANSPORT AIR QUALITY CHALLENGE INNOVATION GRANT
OCTOBER 2015

Department for Transport
Real-world Comparison

- Real-world (challenging) deployment
- Drive-through comparisons
 - PEMS
 - SNIFTER (car chaser)
PEMS Comparisons

- Good agreement (within experimental limits)
- $R^2 > 0.95$ for NO/CO$_2$;
- $R^2 > 0.90$ for CO/CO$_2$ and PM/CO$_2$;
- $R^2 > 0.80$ for NO$_2$/CO$_2$ (but arguably least certain measurement)
PEMS Comparisons

- Good agreement (within experimental limits)
 - $R^2 > 0.95$ for NO/CO$_2$
 - $R^2 > 0.90$ for CO/CO$_2$ and PM/CO$_2$
 - $R^2 > 0.80$ for NO$_2$/CO$_2$ (but arguably least certain measurement)
PEMS Comparisons

- Good agreement (within experimental limits)
- $R^2 > 0.95$ for NO/CO$_2$;
- $R^2 > 0.90$ for CO/CO$_2$ and PM/CO$_2$;
- $R^2 > 0.80$ for NO$_2$/CO$_2$ (but arguably least certain measurement)
PEMS Comparisons

- Good agreement (within experimental limits)
 - \(R^2 > 0.95 \) for NO/CO\(_2\);
 - \(R^2 > 0.90 \) for CO/CO\(_2\) and PM/CO\(_2\);
 - \(R^2 > 0.80 \) for NO\(_2\)/CO\(_2\) (but arguably least certain measurement)
SNIFTER (car chaser) Comparisons
• Measurement required correction for post-exhaust chemistry (e.g. NO depletion by O_3)
SNIFFER (car chaser) Comparisons

- Good agreement (within experimental limits)
 - e.g. $R^2 > 0.85$ for NO/CO$_2$
- Results also indicate similar agreement for different vehicle types
Conclusions

From the CDPHE/ERG Simulated Exhaust Gas Study:

EDAR has:
• High instrumental accuracy (e.g., $R^2 > 0.99$ CO, NO; >0.95 HCs)
• Low drift and negligible speed dependency

From the UoB/UoL/KCL Real-world Comparison:

(In conventional use) EDAR was:
• In good agreement with other real-world measurement methods
e.g., NO/CO$_2$ $R^2 = 0.96$ and 0.86 for PEMS and SNIFER, respectively
• Results for NO$_2$ and PM were also highly encouraging

NOTE: while we cannot say unequivocally that EDAR performs as well in the real-world as it does relative to a simulated exhaust gas, we have no evidence that it does not

BUT more generally…

This combination provides a comprehensive basis for the independent third-party evaluation of EDAR (or VERSS) performance
Thank you
…and any questions?

Acknowledgments

TD: contributions from Carl Fulper and US Environmental Protection Agency, colleagues at Eastern Research Group Inc and Colorado Department of Public Health and Environment

KR and FP: contributions of Jim Mills and the Air Monitors team as part of the Birmingham and London EDAR deployments; input, help and advice of multiple collaborators at UK Department for Transport, Transport Systems Catapult, UK Department for Environment, Food and Rural Affairs, Transport for London, Birmingham City Council, Greenwich Council, City of University of Westminster involved of the logistics of the same work

KR: Kent Johnson (UCR) on experimental design; Katrina Hemingway on slide preparation