INVESTIGATION OF THE ATMOSPHERIC OZONE FORMATION POTENTIAL OF PARA TOLUENE ISOCYANATE AND METHYLENE DIPHENYLENE DIISOCYANATE

Final Report to the Chemical Manufacturers Association Diisocyanates Panel

by William P. L. Carter, Dongmin Luo, and Irina L. Malkina

March 8, 1999

College of Engineering Center for Environmental Research and Technology University of California Riverside, California 92521

ABSTRACT

Environmental chamber experiments and computer model calculations were conducted to assess the atmospheric ozone formation potentials of para toluene isocyanate (PTI), which is an analogue for methylene diphenylene diisocyanate (MDI), a compound of commercial importance which might be emitted into the atmosphere. MDI could not be studied directly because of its low vapor pressure, but PTI is considered to be a good analogue to MDI because of structural similarities. The experiments consisted of determining the effects of adding PTI on ozone formation, NO oxidation, and integrated OH radical levels in three different simulated photochemical smog systems in ~5000-liter, blacklight-irradiated Teflon environmental chambers. The rate constant for the reaction of PTI with hydroxyl radicals, its major expected atmospheric fate, was measured, and found to be essentially the same as that for toluene. PTI was found to have very small effects on ozone formation and OH radical levels under higher NO_x conditions, but was found to cause reduced ozone yields and OH radical levels in lower NO_x experiments. Although the mechanism for PTI's atmospheric reactions is unknown, the results of the experiments could be fit by simple parameterized models assuming significant formation of a cresol-like product, approximately 10% radical inhibition, some NO to NO₂ conversion, and some formation of a photoreactive product which is represented in the model by methyl glyoxyl.

The parameterized model which best fit the PTI chamber data and the PTI OH radical rate constant were used to estimate a mechanism to predict the atmospheric impact of MDI, which is essentially a dimer of PTI. It is concluded that MDI will probably have negative impacts on ozone formation under atmospheric conditions where NO_x limited or most favorable for ozone formation, which was the case in most of the scenarios used in this study to represent ozone exceedence episodes in various areas of the United States. However, MDI was calculated to have positive impacts and form comparable or more ozone than ethane under higher NO_x, MIR conditions where ozone is sensitive to VOC emissions. Therefore, MDI is expected to be a less general ozone inhibitor than TDI, which based on a previous study is expected to be an ozone inhibitor under all conditions.

ACKNOWLEDGEMENTS

The authors acknowledge Mr. Dennis Fitz for assistance in administering this program and Mr. Jeff Holmstead and members of the CMA Isocyanate panel for helpful discussions, and Mr. Kurt Bumiller for assistance in carrying out the experiments. We also thank Dr. Roger Atkinson and Dr Ernesto Tuazon of the Statewide Air Pollution Research Center for providing us with the methyl nitrite used in this study. Although this work was funded by the Isocyanate panel of the Chemical Manufacturers Association, the opinions and conclusions expressed in this report are entirely those of the primary author, Dr. William P. L. Carter. Mention of trade names or commercial products do not constitute endorsement or recommendation for use.

TABLE OF CONTENTS

Section	Page
LIST OF TABLES	. v
LIST OF FIGURES	. v
INTRODUCTION	. 1
METHODS	. 4
Environmental Chamber Experiments	. 4
Overall Experimental Approach	. 4
Environmental Chamber	. 5
Experimental Procedures	
Chamber Characterization Methods	
OH Radical Rate Constant Measurements	
Analytical Methods	
Data Analysis Methods	
Reactivity Data Analysis Methods	
Kinetic Data Analysis Methods	
Chemical Mechanisms Used in the Model Simulations	
General Atmospheric Photooxidation Mechanism	12
Models for PTI Reactions	13
Models for MDI Reactions	15
Environmental Chamber Modeling Methods	15
Atmospheric Reactivity Modeling Methods	16
Scenarios Used for Reactivity Assessment	16
Quantification of Atmospheric Reactivity	19
Chemical Models and Mechanisms Used	
RESULTS AND DISCUSSION	21
OH Radical Rate Constant Measurements	21
Summary of Chamber Experiments and Characterization Results	23
Results of The Reactivity Experiments	29
Atmospheric Reactivity Calculations	36
CONCLUSIONS	40
REFERENCES	43
APPENDIX A LISTING OF THE CHEMICAL MECHANISM	A-1

LIST OF TABLES

Numbe	<u>er</u>	age
1.	Summary of conditions of base case scenarios used for atmospheric reactivity assessment.	18
2.	Chronological listing of all the chamber experiments carried out for this program	24
3.	Summary of conditions and results of the incremental reactivity experiments	30
4.	Summary of calculated relative reactivities (gram basis) for ethane and for the alternative MDI mechanisms derived from the three PTI mechanisms which were adjusted to fit the chamber data	37
A-1.	List of species in the chemical mechanism used in the model simulations for this study.	A-1
A-2.	List of reactions in the chemical mechanism used in the model simulations for this study.	A-4
A-3.	Absorption cross sections and quantum yields for photolysis reactions	-10
A-4.	Values of chamber-dependent parameters used in the model simulations of the environmental chamber experiments for this study	- 14
	LIST OF FIGURES	
Numbe	<u>∍r</u>	age
1.	Plots of Equation (IV) for the PTI vs toluene relative rate constant determination experiments.	22
2.	Plots of Equation (V) for the PTI vs toluene relative rate constant determination experiments.	22
3.	Plots of selected results of the side comparison experiments	28
4.	Plots of selected results of the mini-surrogate + PTI experiment DTC601	31
5.	Plots of selected results of the mini-surrogate + PTI experiment DTC602	31
6.	Plots of selected results of the mini-surrogate + PTI experiment DTC618	32
7.	Plots of selected results of the high NO_x full surrogate + PTI experiment DTC610	32
8.	Plots of selected results of the low NO _x full surrogate + PTI experiment DTC604	33
9.	Plots of selected results of the low NO _x full surrogate + PTI experiment	33
10.	Plots relative ozone yield reactivities for MDI calculated using the "best estimate" Model B against the NO_x / NO_x^{MO} ratio for the base case and the adjusted NO_x averaged conditions scenarios	39

INTRODUCTION

Ozone in photochemical smog is formed from the gas-phase reactions of volatile organic compounds (VOCs) and oxides of nitrogen (NO_x) in sunlight. Although Los Angeles has one of the worst ozone problems in the United States, other areas of the country also have episodes where ozone exceeds the federal air quality standard. Ozone control strategies in the past have focused primarily on VOC controls, though the importance of NO_x control has become recognized in recent years. VOC and NO_x controls have differing effects on ozone formation. NO_x is required for ozone formation, and if the levels of NO_x are low compared to the levels of reactive VOCs, then changing VOC emissions will have relatively little effect on ozone. Since NO_x is removed from the atmosphere more rapidly than VOCs, ozone in areas far downwind from the primary sources tend to be more NO_x limited, and thus less responsive to VOC controls. VOC controls tend to reduce the rate that O_3 is formed when NO_x is present, so VOC controls are the most beneficial in reducing O_3 in the urban source areas, where NO_x is relatively plentiful, and where O_3 yields are determined primarily by how rapidly it is being formed. Because of this, any comprehensive ozone control strategy should involve reduction of emissions of both NO_x and VOCs.

Many different types of VOCs are emitted into the atmosphere, each reacting at different rates and having different mechanisms for their reactions. Because of this, they can differ significantly in their effects on ozone formation, or their "reactivities". Some compounds, such as CFCs, do not react in the lower atmosphere at all, and thus make no contribution to ground-level ozone formation. Others, such as methane, react and contribute to ozone formation, but react so slowly that their practical effect on ozone formation in urban atmospheres is negligible. Still others, such as volatile silicone compounds (Carter et al, 1992) react in such a way that they inhibit ozone formation in the atmosphere. Obviously, it does not make sense to regulate such compounds as ozone precursors. In recognition of this, the EPA has exempted certain compounds from such regulations on the basis of having "negligible" effects on ozone formation. Although the EPA has no formal policy on what constitutes "negligible" reactivity, in practice it has used the ozone formation potential of ethane as the standard in this regard. This is because ethane is the most reactive of the compounds that the EPA has exempted to date. Therefore, the ozone formation potential of a compound relative to ethane is of particular interest when assessing whether it might be a likely candidate for exemption from regulation as an ozone precursor.

Toluene diisocyanate (TDI) and methylene diphenylene diisocyanate (MDI) are used in a number of manufacturing processes, and the appropriateness of regulating them as an ozone precursors is of interest to their users and suppliers. We had previously studied the atmospheric ozone impacts of TDI and found it to be an ozone inhibitor under all atmospheric conditions which were considered (Carter et

al, 1997a). This suggests that other aromatic isocyanates, such as MDI, might be ozone inhibitors as well. However, the atmospheric reactions of MDI have not been studied, and its structure, having a single isocyanate group on each aromatic ring rather than two like TDI, could result in its having different reactivity characteristics. Therefore, additional data were needed to evaluate whether MDI may also be an ozone inhibitor in the atmosphere.

MDI is calculated to have a vapor pressure of approximately 17 ppb at 300°K (80°F). Although emissions of a compound with such a low vapor pressure would be slow, significant emissions might occur if the compound is exposed to the atmosphere for a sufficient amount of time, or if the process where the compound is used involves high temperature. However, this vapor pressure is too low for it to be practical to directly study MDI's ozone impacts using currently available experimental methods. Therefore, it is necessary to use a more indirect method to obtain information concerning the likely effects of MDI on ozone formation in the atmosphere.

MDI consists of two isolated aromatic rings joined by a methylene group, each with a single isocyanate group in a *para* position relative to the methylene. Because aromatic hydrocarbons react in the atmosphere primarily by addition of OH radicals to the aromatic ring (e.g., see Atkinson, 1990, and references therein), it is reasonable to expect that this is the primary reaction mode for aromatic isocyanates as well. TDI has been found to have a slightly higher rate constant for reaction with OH radicals than does toluene (Becker et al, 1988), which is consistent with the assumption that most of the reaction is at the aromatic ring¹. This suggests that a good analogue for MDI would be two para toluene isocyanate (PTI) molecules, each of which, like MDI, has an aromatic ring with an isocyanate group *para* to an alkyl group. Therefore, the mechanism for the reaction following OH radical addition to the aromatic ring should be similar in both cases. For this reason, if PTI can be shown to have the same type of ozone inhibiting characteristics as does TDI, it is reasonable to conclude that MDI will similarly be an ozone inhibitor. In any case, ozone reactivity data obtained for PTI can provide a significantly improved basis for estimating likely atmospheric ozone impacts for MDI, and significantly reduce the uncertainty range.

To obtain data needed to determine the ozone impact of PTI and thus improve our estimates for MDI, the Diisocyanate Panel of the Chemical Manufacturers Association contracted the College of Engineering Center for Environmental Research and Technology (CE-CERT) to carry out the

¹ The alternative mode of reaction is abstraction from a side group, which would be methyl groups in the case of toluene and TDI. This mode of reaction occurs somewhat less than 10% of the time in the case of toluene (Atkinson, 1990, and references therein.) Since this reaction is not expected to be strongly affected by substituents on the aromatic ring, it is reasonable to expect this to have a similar rate for TDI. Therefore, if this were the only mode of reaction of OH with TDI, the total rate constant would be estimated to be ∼10 times lower than the total OH rate constant for toluene, which is not the case.

environmental chamber experiments to measure the ozone impacts of PTI various simulated atmospheric conditions, to develop and evaluate models for its effects on ozone and other observations which are consistent with these data, and then to use these models to derive an atmospheric reactivity model for MDI which can be used to estimate its likely ozone impacts under a variety of atmospheric conditions. The results of this study are documented in this report.

METHODS

Environmental Chamber Experiments

Overall Experimental Approach

Most of the environmental chamber experiments for this program consisted of measurements of "incremental reactivities" of PTI under various conditions. These involve two types of irradiations of model photochemical smog mixtures. The first is a "base case" experiment where a mixture of reactive organic gases (ROGs) representing those present in polluted atmospheres (the "base ROG surrogate") is irradiated in the presence of oxides of nitrogen (NO_x) in air. The second is the "test" experiment which consists of repeating the base case irradiation except that the VOC whose reactivity is being assessed is added. The differences between the results of these experiments provide a measure of the atmospheric impact of the test compound, and the difference relative to the amount added is a measure of its reactivity. These data can then be used to test the ability of various chemical mechanisms or models for PTI's atmospheric reactions to predict the reactivities of similar compounds, such as MDI, under various conditions in the atmosphere.

To provide data to test predictions of reactivities of PTI under varying atmospheric conditions, three types of incremental reactivity experiments were carried out:

- 1. Mini-Surrogate Experiments. The base case for this type of experiment employed a simplified ROG surrogate and relatively high NO_x levels and low ROG/NO_x ratios. Low ROG/NO_x ratios represent "maximum incremental reactivity" (MIR) conditions (Carter, 1994a), which are most sensitive to VOC effects. Low ROG/NO_x experiments are useful because they provide a sensitive test for the model, and also because it is most important that the model correctly predict a VOC's reactivity under conditions where the atmosphere is most sensitive to the VOCs. The ROG mini-surrogate mixture employed consisted of ethene, n-hexane, and m-xylene. This same surrogate was employed in our previous studies (Carter et al, 1993a,b; 1995a,b.), and was found to provide a more sensitive test of aspects of the mechanism concerning radical initiation and termination effects than the more complex surrogates which more closely represent atmospheric conditions (Carter et al, 1995b). This high sensitivity to these important mechanistic effects makes the mini-surrogate experiments highly useful for mechanism evaluation.
- 2. <u>Full Surrogate Experiments</u>. The base case for this type of experiment employed a more complex ROG surrogate under somewhat higher, though still relatively low, ROG/NO_x conditions. While less sensitive to radical initiation and termination effects in the mechanisms of the VOCs studied, they provide a means to test other aspects of the mechanisms, such as numbers of NO to NO₂ conversions, etc.

Furthermore, experiments with a more representative ROG surrogate are needed to evaluate the mechanism under conditions that more closely resembling the atmosphere. The ROG surrogate employed was the same as the 8-component "lumped molecule" surrogate as employed in previous studies (e.g., Carter et al. 1995b), and consists of n-butane, n-octane, ethene, propene, <u>trans-2-butene</u>, toluene, m-xylene, and formaldehyde. Calculations have indicated that use of this 8-component mixture will give essentially the same results in incremental reactivity experiments as actual ambient mixtures (Carter et al. 1995b).

3. Full Surrogate, low NO_x Experiments. The base case for this type of experiment employed the same 8-component lumped molecule surrogate as used in the full surrogate experiments described above, except that lower NO_x levels (higher ROG/NO_x ratios) were employed to represent NO_x -limited conditions. Such experiments are necessary to assess the ability of the model to properly simulate reactivities under conditions where NO_x is low. The initial ROG and NO_x reactant concentrations were comparable to those employed in our previous studies (Carter et al. 1995b).

An appropriate set of control and characterization experiments necessary for assuring data quality and characterizing the conditions of the runs for mechanism evaluation were also carried out. These are discussed where relevant in the Modeling Methods or Results sections.

Environmental Chamber

The environmental chamber system employed in this study was the CE-CERT "Dividable Teflon Chamber" (DTC) with a blacklight light source. This consists of two ~5000-liter 2-mil heat-sealed FEP Teflon reaction bags located adjacent to each other and fitted inside an 8' x 8' x 8' framework, and which uses two diametrically opposed banks of 32 Sylvania 40-W BL black lights as the light source. The lighting system in the DTC was found to provide so much intensity that only half the lights were used for irradiation. The air conditioner for the chamber room was turned on before and during the experiments. Four air blowers which are located in the bottom of the chamber were used to help cool the chamber as well as mix the contents of the chamber. The CE-CERT DTC is very similar to the SAPRC DTC which is described in detail elsewhere (Carter et al, 1995b,c).

The DTC is designed to allow simultaneous irradiations of experiments with and without added test reactants under the same reaction conditions. Since the chamber is actually two adjacent FEP Teflon reaction bags, two mixtures can be simultaneously irradiated using the same light source and with the same temperature control system. These two reaction bags are referred to as the two "sides" of the chamber (Side A and Side B) in the subsequent discussion. The sides are interconnected with two ports, each with a box fan, which rapidly exchange their contents to assure that base case reactants have equal concentrations in both sides. In addition, a fan is located in each of the reaction bags to rapidly mix the reactants within each chamber. The ports connecting the two reactors can then be closed to allow separate injections on each side, and separate monitoring of each side.

Experimental Procedures

The reaction bags were flushed with dry air produced by an AADCO air purification system for 14 hours (6 PM - 8 AM) on the nights before experiments. The continuous monitors were connected prior to reactant injection and the data system began logging data from the continuous monitoring systems. The reactants were injected as described below (see also Carter et al, 1993a,, 1995c). The common reactants were injected in both sides simultaneously using a three-way (one inlet and two outlets connected to side A and B respectively) bulb of 2 liters in the injection line and were well mixed before the chamber was divided. The contents of each side were blown into the other using two box fans located between them. Mixing fans were used to mix the reactants in the chamber during the injection period, but these were turned off prior to the irradiation. The sides were then separated by closing the ports which connected them, after turning all the fans off to allow their pressures to equalize. After that, reactants for specific sides (the test compound in the case of reactivity experiments) were injected and mixed. The irradiation began by turning on the lights and proceeded for 6 hours. After the run, the contents of the chamber were emptied by allowing the bag to collapse, and then was flushed with purified air. The contents of the reactors were vented into a fume hood.

The procedures for injecting the various types of reactants were as follows. The NO and NO₂ were prepared for injection using a high vacuum rack. Known pressure of NO, measured with MKS Baratron capacitance manometers, were expanded into Pyrex bulbs with known volumes, which were then filled with nitrogen (for NO) or oxygen (for NO2). The contents of the bulbs were then flushed into the chamber with AADCO air. The other gas reactants were prepared for injection either using a high vacuum rack or a gas-tight syringes whose amounts were calculated. The gas reactants in a gas-tight syringe was usually diluted to 100-ml with nitrogen in a syringe. The volatile liquid reactants were injected, using a micro syringe, into a 1-liter Pyrex bulb equipped with stopcocks on each end and a port for the injection of the liquid. The port was then closed and one end of the bulb was attached to the injection port of the chamber and the other to a dry air source. The stopcocks were then opened, and the contents of the bulb were flushed into the chamber with a combination of dry air and heat gun for approximately 5 minutes. Formaldehyde was prepared in a vacuum rack system by heating paraformaldehyde in an evacuated bulb until the pressure corresponded to the desired amount of formaldehyde. The bulb was then closed and detached from the vacuum system and its contents were flushed into the chamber with dry air through the injection port.

Since PTI has a high boiling point (70-72°C at 10 mmHg) and may condense in cold spots using usual liquid injection, a heated injection system was employed to inject this compound. This was done by placing the desired quantity of PTI in a three-way (one port for the liquid injection) glass tube which was surrounded with heat tape. The tube was then heated to around 200°C and its contents were flushed into chamber with purified dry air at 2 liters/minute for about 15 minutes.

Chamber Characterization Methods

Three thermocouples were used to monitor the temperature of the reaction chambers, two of which were located in the sampling line of continuous analyzers drawing sample from each side, and the third being located in the chamber between the reaction gabs. The temperature in these experiments was typically in the 21-25 C range.

The light intensity in the DTC chamber was monitored by periodic NO_2 actinometry experiments utilizing the quartz tube method of Zafonte et al (1977), with the data analysis method modified as discussed by Carter et al. (1995c). The results of these experiments were tracked over time, and indicated a gradual decrease in light intensity during the period these experiments were carried out. The results of actinometry experiments were fit by a line, which was used to derive an NO_2 photolysis rate for modeling each experiment. This line predicted the NO_2 photolysis rates declined from 0.18 min⁻¹ to 0.16 min⁻¹ during the course of this program.

The spectrum of the blacklight light source is periodically measured using a LiCor LI-1200 spectra radiometer, and found to be essentially the same as the general blacklight spectrum recommended by Carter et al (1995c) for use in modeling blacklight chamber experiments.

The dilution of the DTC chamber due to sampling is expected to be small because the flexible reaction bags can collapse as samples are withdrawn for analysis. However, some dilution occurs with the aging of reaction bags because of small leaks. Information concerning dilution in an experiment can be obtained from relative rates of decay of added VOCs which react with OH radicals with differing rate constants (Carter et al., 1993a; 1995c). Most experiments had a more reactive compounds such as m-xylene and n-octane present either as a reactant or added in trace amounts to monitor OH radical levels. Trace amounts (~0.1 ppm) of n-butane were also added to experiments if needed to provide a less reactive compound for monitoring dilution. In addition, specific dilution check experiments such as CO irradiations are periodically carried out. Based on these results, the dilution rates were found to average ~1% per hour on both sides during the period of these experiments.

Various characterization runs were carried out to measure the chamber radical source, background effects, and to test side equivalency. The results of these experiments are described in the Results and in the Environmental Chamber Modeling Methods sections.

OH Radical Rate Constant Measurements

The rate constant for the reaction of OH radicals with PTI was determined using the relative rate method where the rates of consumption of PTI relative to a reference compound with known OH radical rate constant were measured in the presence of an OH radical source. If it is assumed that reaction with

OH radicals is the only significant process causing consumption of PTI and the reference compound, then the ratio of OH radical rate constants can be determined as discussed below.

Three kinetic experiments were carried out, all using Side A of the DTC chamber. Hydroxyl radicals were generated by the photolysis of methyl nitrite, with NO also present to suppress formation of O3 or of NO3 radicals. Toluene was used as the primary reference compound in this study, though m-xylene was also present as a potential reference compound n the first experiment. Initial concentrations in the first experiment (DTC605) were ~200-250 ppb for PTI, toluene, and m-xylene, ~2 ppm methyl nitrite, and ~3 ppm NO. Initial concentrations of the other two experiments (DTC606 and DTC611) were similar except that m-xylene was not present and the initial methyl nitrite concentration was increased to 4 ppm.

Several measurements of PTI and the reference compound(s) were made prior to beginning the irradiation to determine the initial reactant concentrations and check for possible wall losses. The lights were then turned at 100% intensity (twice that used in the reactivity experiments) for ~10 minutes and the PTI and reference compound(s) were then monitored after the lights were turned off. This was repeated several times until there was no significant measured change in PTI or the reference compound, indicating that all the initially present methyl nitrite had been reacted. The total irradiation time was typical 30~40 minutes and the total experimental time was approximately 300-360 minutes. The experiments were carried out using purified air as the dilution gas. The analysis and injection procedures were the same as employed for the reactivity experiments, as discussed above and below.

The reactants and their stated purity levels were as follows: PTI (99%), toluene (99.5%) and m-xylene (99%), Aldrich Chemical Company; NO (99.0%) and Matheson Gas Company. The methyl nitrite was provided by the Statewide Air Pollution Research Center, who prepared it by drop-wise addition of 50% H2SO4 to a saturated solution of NaNO2 and methanol (Taylor et al, 1980), and purified it on a vacuum line using bulb-to-bulb distillations.

Analytical Methods

Ozone and nitrogen oxides (NO_x) were continuously monitored using commercially available continuous analyzers with Teflon sample lines inserted directly into the chambers. The sampling lines from each side of the chamber were connected to solenoids which switched from side to side every 10 minutes, so the instruments alternately collected data from each side. Ozone was monitored using a Dasibi 1003AH UV photometric ozone analyzer and NO and total oxides of nitrogen (the latter also responding to HNO₃ and organic nitrates) were monitored using a Teco Model 14B chemiluminescent NO/NO_x monitor. The output of these instruments, along with that from the temperature sensors and the formaldehyde instrument, were attached to a computer data acquisition system, which recorded the data at 10 minutes intervals for ozone, NO and temperature (and at 15 minutes for formaldehyde), using 30

second averaging times. This yielded a sampling interval of 20 minutes for taking data from each side.

The Teco instrument and Dasibi CO analyzer were calibrated with a certified NO and CO source and CSI gas-phase dilution system. This was done prior to chamber experiment for each run. The NO₂ converter efficiency check was carried out in regular intervals. The Dasibi ozone analyzer was calibrated against a transfer standard ozone analyzer approximately once every three months and it was checked with a CSI ozone generator (set to 400 ppb) prior to each experiment to assure that the instrument worked properly. The details were discussed elsewhere (Carter et al, 1995c)

Organic reactants other than formaldehyde and were measured by gas chromatography with FID or ECD detections as described elsewhere (Carter et al. 1993a; 1995c). GC samples were taken for analysis at intervals from 20 minutes to 30 minutes either using 100 ml gas-tight glass syringes or by collecting the 100 ml sample from the chamber onto Tenax-GC solid adsorbent cartridge. These samples were taken from ports directly connected to the chamber after injection and before irradiation and at regular intervals after irradiation. The sampling method employed for injecting the sample onto the GC column depended on the volatility or "stickiness" of the compound. For analysis of the more volatile species, the contents of the syringe were flushed through a 2 ml or 3 ml stainless steel or 1/8' Teflon tube loop and subsequently injected onto the column by turning a gas sample valve.

Unlike TDI, which we found could not be monitored by GC and required special analysis methods (Carter et al, 1997a), we found that PTI could be monitored by GC/FID using both the Tenax and loop sampling method. However, the compound was sufficiently "sticky" that the data using the Tenax method tended to be less scattered than those from the loop analysis. Therefore, the Tenax data were primary method in the PTI analysis for both the kinetic and reactivity experiments.

The calibrations for the GC analyses for most compounds were carried out by sampling from chambers or vessels of known volume into which known amounts of the reactants were injected, as described previously (Carter et al, 1995c).

Data Analysis Methods

Reactivity Data Analysis Methods

The results of the environmental chamber experiments are analyzed to yield two measures of reactivity for PTI. The first is the effect of PTI on the change in the quantity $[O_3]$ -[NO], or $([O_3]_t$ - $[NO]_t)$ - $([O_3]_0$ - $[NO]_0)$, which is abbreviated as $d(O_3$ -NO) in the subsequent discussion. As discussed elsewhere (e.g., Johnson, 1983; Carter and Atkinson, 1987; Carter and Lurmann, 1990, 1991, Carter et al, 1993a, 1995a), this gives a direct measure of the amount of conversion of NO to NO_2 by peroxy radicals formed in the photooxidation reactions, which is the process that is directly responsible for ozone formation in

the atmosphere. (Johnson calls it "smog produced" or "SP".) The incremental reactivity of the compound relative to this quantity, which is calculated for each hour of the experiment, is given by

$$IR[d(O_3-NO)]_t^{VOC} = \frac{d(O_3-NO)_t^{test} - d(O_3-NO)_t^{base}}{[VOC]_0}$$
 (I)

where $d(O_3\text{-NO})_t^{test}$ is the $d(O_3\text{-NO})$ measured at time t from the experiment where the test compound was added, $d(O_3\text{-NO})_t^{base}$ is the corresponding value from the corresponding base case run, and $[VOC]_0$ is the amount of test compound added. The units used are ppm for O_3 , NO, and $[VOC]_0$, so the incremental reactivity units are moles of O_3 formed and NO oxidized per mole VOC sample added. An estimated uncertainty for $IR[d(O_3\text{-NO})]$ is derived based on assuming an ~3% uncertainty or imprecision in the measured $d(O_3\text{-NO})$ values. This is consistent with the results of the side equivalency tests, where equivalent base case mixtures are irradiated on each side of the chamber.

Note that reactivity relative to $d(O_3\text{-NO})$ is essentially the same as reactivity relative to O_3 in experiments where O_3 levels are high, because under such conditions $[NO]_t^{\text{base}} \approx [NO]_t^{\text{test}} \approx 0$, so a change $d(O_3\text{-NO})$ caused by the test compound is due to the change in O_3 alone. However, $d(O_3\text{-NO})$ reactivity has the advantage that it provides a useful measure of the effect of the compound on processes responsible for O_3 formation even in experiments where O_3 formation is suppressed by relatively high NO levels.

The second measure of reactivity is the effect of the test compound on integrated hydroxyl (OH) radical concentrations in the experiment, which is abbreviated as "IntOH" in the subsequent discussion. This is an important factor affecting reactivity because radical levels affect how rapidly all VOCs present, including the ROG surrogate components, react to form ozone. If a compound is present in the experiment which reacts primarily with OH radicals, then the IntOH at time t can be estimated from

$$IntOH_{t} = \int_{0}^{t} [OH]_{\tau} d\tau = \frac{ln \left(\frac{[tracer]_{0}}{[tracer]_{t}}\right) - D t}{kOH^{tracer}}, \tag{II}$$

where [tracer]₀ and [tracer]_t are the initial and time=t concentrations of the tracer compound, kOH^{tracer} is its OH rate constant, and D is the dilution rate in the experiments. The latter was found to be small and was neglected in our analysis. The concentration of tracer at each hourly interval was determined by linear interpolation of the experimentally measured values. M-xylene was used as the OH tracer in these experiments because it is a base case component present in all incremental reactivity experiments, its OH rate constant is known (the value used was 2.36x10⁻¹¹ cm³ molec⁻¹ s⁻¹ [Atkinson, 1989]), and it reacts sufficiently rapidly that its consumption rate can be measured with reasonable precision.

The effect of PTI on OH radicals can thus be measured by its IntOH incremental reactivity, which is defined as

$$IR[IntOH]_{t} = \frac{IntOH_{t}^{test} - IntOH_{t}^{base}}{[VOC]_{0}}$$
(III)

where IntOH_t^{test} and IntOH_t^{base} are the IntOH values measured at time t in the added compound and the base case experiment, respectively. The results are reported in units of 10⁶ min per ppm. The uncertainties in IntOH and IR[IntOH] are estimated based on assuming an ~2% imprecision in the measurements of the m-xylene concentrations. This is consistent with the observed precision of results of replicate analyses of this compound.

Kinetic Data Analysis Methods

The kinetic experiments consisted of monitoring the consumption rates of both toluene and PTI in experiments where OH radicals are generated by the photolysis of methyl nitrite. Methyl nitrate photolyzes relatively rapidly in our environmental chamber experiments, forming OH radicals through the following sequence of reactions:

$$CH_3ONO + hv \rightarrow CH_3O \cdot + NO$$

 $CH_3O \cdot + O_2 \rightarrow HCHO + HO_2$
 $HO_2 + NO \rightarrow NO_2 + OH$

If toluene and PTI are present in the same experiment and are consumed significantly only by reaction with OH radicals or some unimolecular loss process such as dilution or wall decay, then their rates of consumption are given by

$$\begin{split} d \; ln[PTI]/dt &= kOH^{PTI} \; [OH]_t + D^{PTI} \\ d \; ln[toluene]/dt &= kOH^{toluene} \; [OH]_t + D^{toluene} \end{split}$$

where [PTI]t and [toluene]_t are the PTI and toluene concentrations at time=t, kOH^{PTI} and $kOH^{toluene}$ are their respective OH radical rate constants, and D^{PTI} and $D^{toluene}$ are their respective first order loss rates. If first order loss processes are assumed to be negligible, then combining these equations and integrating yields

$$ln([PTI]_0/[PTI]_t) = (kOH^{PTI}/kOH^{toluene}) ln([toluene]_0/[toluene]_t)$$
 (IV)

In this case, plots of $ln([PTI]_0/[PTI]_t)$ <u>vs</u> $ln([toluene]_0/[toluene]_t)$ should yield a straight line with a slope of $kOH_{PTI}/kOH_{toluene}$ and an intercept near zero. If this plot is not linear, then it may indicate that other loss processes may be non-negligible. If this is assumed to be due dark decay processes such as wall losses, then the data should be fit by

$$ln([PTI]_{o}/[PTI]_{t})-D^{PTI} t = (kOH^{PTI}/kOH^{toluene}) \{ln([toluene]_{o}/[toluene]_{t})-D^{toluene} t\}$$
 (V)

where t refers to the time after the reactants were injected into the chamber. In this case, plots of $ln([PTI]_0/[PTI]_t)-D^{PTI}$ t \underline{vs} kOH^{toluene} $[OH]_t+D^{toluene}$ t can be used to determine the OH radical rate constant ratio. The value of D^{PTI} and $D^{toluene}$ can be determined either in separate dark decay experiments or by least squares fits of the data to Equation (V).

Chemical Mechanisms Used in the Model Simulations

General Atmospheric Photooxidation Mechanism

Ozone formation in photochemical smog is due to the gas-phase reactions of oxides of nitrogen (NO_x) and various reactive organic gases (ROGs) in sunlight. Various reaction schemes have been developed to represent these processes (e.g., Gery et al., 1988; Carter, 1990; Stockwell et al., 1990), but the one used in this work was an updated version of the detailed SAPRC mechanism (Carter, 1990, 1995; Carter et al., 1993b, 1997b). This is detailed in the sense that it explicitly represents a large number of different types of organic compounds, but it uses a condensed representation for most of their reactive products. The major characteristics of this mechanism are described by Carter (1990). The reactions of inorganics, CO, formaldehyde, acetaldehyde, peroxyacetyl nitrate, propionaldehyde, peroxypropionyl nitrate, glyoxal and its PAN analog, methyl glyoxal, and several other product compounds are represented explicitly. The reactions of unknown photoreactive products formed in the reactions of aromatic hydrocarbons are represented by model species whose yields and photolysis rate are adjusted based on fits of model simulations to environmental chamber experiments. A "chemical operator" approach is used to represent peroxy radical reactions. Generalized reactions with variable rate constants and product yields are used to represent the primary emitted alkane, alkene, aromatic, and other VOCs (with rate constants and product yields appropriate for the individual compounds being represented in each simulation). Most of the higher molecular weight oxygenated product species are represented using the "surrogate species" approach, where simpler molecules such as propionaldehyde or 2-butanone are used to represent the reactions of higher molecular weight analogues that are assumed to react similarly.

The mechanism of Carter (1990) was updated several times prior to this work. A number of changes were made to account for new kinetic and mechanistic information for certain classes of compounds as described by Carter et. al. (1993b) and Carter (1995). Further modifications to the uncertain portions of the mechanisms for the aromatic hydrocarbons were made to satisfactorily simulate results of experiments carried out using differing light sources (Carter et al. 1997b). The latest version of the general mechanism is discussed by Carter et al. (1997b). A complete listing of this mechanism is given in Appendix A to this report.

Models for PTI Reactions

There is no information available concerning the atmospheric reactions of PTI and only relatively limited information concerning the atmospheric reactions of related compounds. The best studied compound in this class appears to be TDI, as discussed by Carter et al (1997a). The primary initial mode

of reaction of these compounds is believed to be with OH radicals, as is the case with the simpler aromatic hydrocarbons. Becker et al. (1988), measured the rate constant for the reaction of OH radicals with TDI to be 7.4 x 10⁻¹² cm³ molec⁻¹ s⁻¹ at room temperature, which is very close to the toluene OH rate constant of 5.96 x 10⁻¹² cm³ molec⁻¹ s⁻¹ at 298K (Atkinson, 1989). This suggests that isocyanate groups on the aromatic ring do not significantly affect the OH radical rate constant, implying that PTI may have a similar rate constant. As discussed below, this is in fact what was observed in our studies, where the OH rate constant was measured to be the same, within experimental error, as that for toluene.

Despite considerable study of the reactions of OH radicals with aromatic hydrocarbons (e.g., see Atkinson 1990, 1994 and references therein), the details of the aromatic photooxidation reactions are still highly uncertain. The reactions of the aromatic isocyanates, where mechanistic data are much more limited or nonexistent, are even more uncertain. Given this, in our study of the ozone reactivity of TDI we made no attempt to construct a detailed or explicit mechanism to model the data. Instead a parameterized mechanism, showing the overall processes in as simple a manner as is chemically reasonable and consistent with the data, was used, with the values of the adjusted to fit the chamber data. This is analogous to the approach used for representing the unknown ring-opening reactions of aromatic hydrocarbons, and for representing the atmospheric reactions of phenols, cresols, and the uncharacterized aromatic ring fragmentation products in the mechanisms currently used for air quality modeling (Carter, 1990; Gery et al, 1988; Stockwell et al, 1990). In all these cases, our current knowledge does not justify any greater level of detail, which may not give any more reliable predictions of ozone impacts than a simpler, parameterized approach. Therefore, this approach will also be used for PTI.

The parameterization we found fit the chamber data for TDI was used as the starting point when modeling the PTI experiments, though some minor refinements were made. The product yield parameters were as follows:

- The parameter y_{OH} is the amount of OH radicals regenerated in the overall reaction the overall reaction when PTI reacts in the presence of NO_x . Note that $1-y_{OH}$ is the amount of radical inhibition involved in the overall OH + PTI photooxidation process. The TDI data were best fit by assuming $y^{OH} \approx 0.3$, indicating that TDI had significant radical inhibition characteristics.
- The parameter y_{NO_NO2} is the number of NO to NO_2 conversions involved in the reactions of PTI. The conversion of NO to NO_2 is the process by which VOCs cause ozone formation. This is represented in the model in different ways, depending on the value of y_{OH} and the number of NO to NO_2 conversions involved. If y_{NO_NO2} is between 0 and y_{OH} , it is represented by replacing y_{NO_NO2} of the OH formed by HO_2 . This is because in the presence of NO_x most of the HO_2 forms reacts with NO to form NO_2 and OH, so formation of HO_2 involves the formation of OH plus one NO to NO_2 conversion. If y_{NO_NO2} is between y_{OH} and 2 y_{OH} , then all of the OH is replaced by HO_2 and y_{NO_NO2} - y_{OH} of that HO_2 is replaced by the chemical "operator" RO2-R., which represents formation of peroxy radicals which react in the presence of NO_x to form HO_2 after one NO to NO_2 conversion. If y_{NO_NO2} is greater than 2 y_{OH} , then all of the OH is replaced by RO2-R., and an

additional y_{NO_NO2} - 2 y_{OH} R2O2.'s are added, where the operator R2O2. represents additional NO to NO₂ conversion (see Tables A-1 and A-2). If y_{NO_NO2} is negative, then a new operator, "xNO2" is added, which represents NO₂ to NO conversions in the presence of NO₂. Its reactions were included in the mechanism for the purpose of examining all mechanistic options (with rate constants based on those assigned for phenoxy — see Table B-2), though it was not needed in the best fit mechanisms used for atmospheric reactivity assessment.

- The parameter y_{NO} is the amount of NO generated from the isocyanate group. (Formation of NO_2 from the isocyanate group could be modeled by a combination of y_{NO} and $y_{NO\rightarrow NO2}$. The TDI data are best fit by assuming this is negligible, i.e., the isocyanate group does not react to release NO_x into the system.
- The parameter $y_{NO-NPHE}$ is the yield of organic nitrates from the reactions of peroxy radicals with NO. In the case of aromatics, the organic nitrates are represented by the nitrophenol, or NPHE, model species (Carter, 1990). Organic nitrate formation from the peroxy + NO reaction is important in the photooxidations of the higher molecular weight alkanes (Carter and Atkinson, 1989b), though it is somewhat less important a factor in the current mechanisms assumed for aromatics (Carter, 1990). However, this possibility was considered for completeness. In the presence of NO_x the operator RO2-NP. reacts with NO to form nitrophenols, while when NO_x is absent it reacts with other peroxy radicals to form nothing. Some of the alternative mechanisms which fit the chamber data for TDI are based on assuming that this is important.
- The parameter y_{CRES} is the yield of products which react like phenols or cresols. These are represented by the model species "CRES" in the base mechanism. Formation of this product is an important factor affecting reactivity under NO_x-limited conditions, because in the presence of O₃ and NO_x it reacts rapidly with NO₃ radicals via a mechanism which is assumed to remove NO_x from the system. Some of the alternative mechanisms which fit the chamber data for TDI are based on assuming that this is important.
- The parameter y_{MGLY} is the yield of products which are highly photoreactive and tend to initiate radical formation. It is necessary to assume significant formation of such species in aromatic ring fragmentation processes in order to account for the relatively high reactivities of aromatic hydrocarbons such as toluene or the xylenes (Carter, 1990). Although the model species "AFG2" is the most reactive of the several model species used to represent photoreactive aromatic products, for this study we used the slightly less reactive methyl glyoxal model species, MGLY, for this purpose. The TDI data are best fit by assuming that no photoreactive products are formed, i.e., $y_{AFG2} \approx y_{MGLY} \approx 0$.

Several alternative mechanisms were employed in this study when determining the best fit parameters and for sensitivity and uncertainty analysis. The specific parameter values used in the various simulations discussed where applicable in the Results sections. The way they were represented in the model is shown in Table A-2 under the reactions of PTI or MDI. The rate constants used were those measured or estimated in this program, as discussed below.

Models for MDI Reactions

The MDI molecule can be thought of as two PTI molecules which are joined by sharing a methylene group. MDI is therefore represented by using the mechanism (or mechanisms) derived to fit the PTI chamber data, except that the initial OH radical rate constant is assumed to be twice that of PTI, to account for the fact that there are two rings which could be attacked. This is based on assuming that most of the reaction of OH radicals with PTI or MDI involves addition to the aromatic ring, that the subsequent reactions are independent of any substituents on the methyl (or methylene) group on that ring, and the reactivities of the products formed would be similar in both cases. Since MDI has two aromatic rings where the OH can react, the reaction is assumed to be twice as fast. However, if the other aromatic ring does not affect the reactions of the subsequently formed radicals, and the major reactivity characteristics of the most reactive products are assumed to be the same, then the overall product yield parameters should be the same. Note that the two aromatic rings in MDI are separated by the methylene group, so direct interaction of resonance structures involving the other aromatic ring is not expected. Although some of the products formed may be different, it is assumed that subsequent reactions of these products do not significantly affect the overall reactivity of the PTI or MDI.

These assumptions involved with deriving estimated MDI mechanisms from those derived for PTI are obviously not without uncertainty. The implication of these uncertainties with regard to the predictions of MDI reactivity will depend on the parameters of the PTI mechanisms which are derived, and how aromatic substitution on the alkyl group might affect these parameters. This will be discussed where appropriate in the Results and Conclusions sections of this report.

Environmental Chamber Modeling Methods

The ability of the chemical mechanisms to appropriately simulate the atmospheric impacts of PTI was evaluated by conducting model simulations of the environmental chamber experiments from this study. This requires including in the model appropriate representations of chamber-dependent effects such as wall reactions and characteristics of the light source. The methods used are based on those discussed in detail by Carter and Lurmann (1990, 1991), updated as discussed by Carter et al. (1995c,d 1997b). Tables A-1 in Appendix A show the reactions used to represent the chamber effects in the simulations of the experiments for this program, and Table A-4 show the values of the chamber-dependent parameters which were used, and indicate how they were derived.

Results of the characterization experiments carried out prior to this program indicated that Side A had a slightly higher chamber radical source, due to increased exposure to vehicle exhaust. This slight inequivalency, which had only minor effects on results of surrogate runs (see results) was taken into account when modeling these runs (see Table A-4). As was the case with TDI (Carter et al, 1997a), characterization runs indicated that PTI exposure increased the radical source in the chamber. This affected Side A experiments on and after DTC600, and Side B experiments on and after DTC604. This

was also taken into account when modeling the runs, as indicated on Table A-4. Side equivalency tests, were carried out to determine how these differences affected the results of the experiments, and to evaluate the ability of the model to take these effects into account. These are discussed in the Results section.

The photolysis rates were derived from results of NO₂ actinometry experiments and measurements of the relative spectra of the light source. In the case of the blacklight light source used in these experiments, where the spectrum of the light source appears to be relatively constant, the general blacklight spectrum derived by Carter et al (1995c,d) was used. During the period of these experiments the light intensity was found to decrease approximately linearly with time, and the NO₂ photolysis rates for modeling purposes were derived by fitting the results of the actinometry experiments to a straight line as a function of the DTC run number. For example, based on these data the first added PTI run, DTC600, was assigned an NO₂ photolysis rate of 0.166 min⁻¹, while the last run, DTC616, was modeled using an NO₂ photolysis rate of 0.156 min⁻¹.

The thermal rate constants were calculated using the temperatures measured during the experiments, with the small variations in temperature with time during the experiment being taken into account. The computer programs and modeling methods employed are discussed in more detail elsewhere (Carter et al. 1995c).

Atmospheric Reactivity Modeling Methods

To estimate the effects of MDI emissions on ozone formation under conditions more representative of polluted urban atmospheres, incremental reactivities, defined as the change in O_3 caused by adding small amounts of test compounds the emissions, were calculated for ethane, MDI and the mixture representing the VOCs emitted from all sources (the base ROG). The modeling approach and scenarios is the same as used in our previous study of TDI reactivity (Carter et al, 1997a) and is described in detail elsewhere (Carter, 1994a,b, Carter et al, 1993b). Therefore, it is only briefly summarized here.

Scenarios Used for Reactivity Assessment

The scenarios employed were those used by Carter (1994a,b) to develop various reactivity scales to quantify impacts of VOCs on ozone formation in various environments. These were based on a series of single-day EKMA box model scenarios (EPA, 1984) derived by the EPA for assessing how various ROG and NO_x control strategies would affect ozone nonattainment in various areas of the country (Baugues, 1990). The characteristics of these scenarios and the methods used to derive their input data are described in more detail elsewhere (Baugues, 1990; Carter, 1994b). Briefly, 39 urban areas in the United States were selected based on geographical representativeness of ozone nonattainment areas and data availability, and a representative high ozone episode was selected for each. The initial non-methane organic carbon (NMOC) and NO_x concentrations, the aloft O₃ concentrations, and the mixing height inputs were based on measurement data for the various areas, the hourly emissions in the scenarios were obtained

from the National Acid Precipitation Assessment Program emissions inventory (Baugues, 1990), and biogenic emissions were also included. Table 1 gives a summary of the urban areas represented and other selected characteristics of the scenarios.

Several changes to the scenario inputs were made based on discussions with the California ARB staff and others (Carter, 1994b). Two percent of the initial NO_x and 0.1% of the emitted NO_x in all the scenarios was assumed to be in the form of HONO. The photolysis rates were calculated using solar light intensities and spectra calculated by Jeffries (1991) for 640 meters, the approximate mid-point of the mixed layer during daylight hours. The composition of the VOCs entrained from aloft was based on the analysis of Jeffries et al. (1989). The composition of the initial and emitted reactive organics (referred to as the "base ROG" mixture) was derived based on analyses of air quality data (Carter, 1994a, Jeffries et al, 1989). Complete listings of the input data for the scenarios are given elsewhere (Carter, 1994b). These are referred to as "base case" scenarios, to distinguish them from those where NO_x inputs are adjusted as discussed below.

In addition to these 39 base case scenarios, three adjusted NO_x scenarios were developed to represent different conditions of NO_x availability. NO_x levels were found to be the most important factor affecting differences in relative ozone impacts among most VOCs (Carter and Atkinson, 1989a; Carter, 1994a), and for such compounds the ranges of relative reactivities under various conditions can be reasonably well represented by ranges in relative reactivities in three "averaged conditions" scenarios representing three different NO_x conditions. These scenarios were derived by averaging the inputs to the 39 EPA scenarios, except for the NO_x emissions. In the "Maximum Incremental Reactivity" (MIR) scenario, the NO_x inputs were adjusted such that the final O_3 level is most sensitive to changes in VOC emissions; in the "Maximum Ozone Incremental Reactivity" (MOIR) scenario the NO_x inputs were adjusted to yield the highest maximum O_3 concentration; and in the "Equal Benefit Incremental Reactivity" (EBIR) scenario the NO_x inputs were adjusted such that relative changes in VOC and NO_x emissions had equal effect on ozone formation. As discussed by Carter (1994a), there represent respectively the high, medium and low ranges of NO_x conditions which are of relevance when assessing VOC control strategies for reducing ozone.

Table 1. Summary of conditions of base case scenarios used for atmospheric reactivity assessment.

City, State	Calc. Max O ₃	ROG /NO _x	NO _x /NO _x MOR	Final Height	Init.+Emit Base ROG	Aloft O_3
	(ppb)			(km)	(mmol m ⁻²)	(ppb)
Atlanta, GA	179	7.3	0.7	2.1	12	63
Austin, TX	175	9.3	0.5	2.1	11	85
Baltimore, MD	326	5.2	1.0	1.2	17	84
Baton Rouge, LA	247	6.8	0.8	1.0	11	62
Birmingham, AL	238	6.9	0.5	1.8	13	81
Boston, MA	195	6.5	0.6	2.6	14	105
Charlotte, NC	143	7.8	0.3	3.0	7	92
Chicago, IL	281	11.6	0.5	1.4	25	40
Cincinnati, OH	198	6.4	0.7	2.8	17	70
Cleveland, OH	251	6.6	0.9	1.7	16	89
Dallas, TX	213	4.7	1.2	2.3	18	75
Denver, CO	211	6.3	1.0	3.4	29	57
Detroit, MI	238	6.8	0.7	1.8	17	68
El Paso, TX	188	6.6	0.9	2.0	12	65
Hartford, CT	169	8.4	0.5	2.3	11	78
Houston, TX	307	6.1	0.9	1.7	25	65
Indianapolis, IN	211	6.6	0.8	1.7	12	52
Jacksonville, FL	156	7.6	0.6	1.5	8	40
Kansas City, MO	154	7.1	0.6	2.2	9	65
Lake Charles, LA	291	7.4	0.6	0.5	7	40
Los Angeles, CA	580	7.6	0.8	0.5	23	100
Louisville, KY	210	5.5	0.8	2.5	14	75
Memphis, TN	225	6.8	0.6	1.8	15	58
Miami, FL	133	9.6	0.4	2.7	9	57
Nashville, TN	166	8.1	0.4	1.6	7	50
New York, NY	363	8.1	0.7	1.5	39	103
Philadelphia, PA	242	6.2	0.9	1.8	19	53
Phoenix, AZ	275	7.6	0.8	3.3	40	60
Portland, OR	165	6.5	0.7	1.6	6	66
Richmond, VA	233	6.2	0.7	1.9	16	64
Sacramento, CA	202	6.6	0.8	1.1	7	60
St Louis, MO	322	6.1	1.0	1.6	26	82
Salt Lake City, UT	184	8.5	0.6	2.2	11	85
San Antonio, TX	132	3.9	1.0	2.3	6	60
San Diego, CA	196	7.1	0.9	0.9	8	90
San Francisco, CA	325	4.8	1.5	0.7	25	70
Tampa, FL	232	4.4	1.0	1.0	8	68
Tulsa, OK	225	5.3	0.9	1.8	15	70
Washington, DC	276	5.3	0.8	1.4	13	99

[[]a] Ratio of NO_x inputs to NO_x inputs which yield the highest ozone concentrations for the conditions of the scenario This provides a useful measure of NO_x availability (Carter, 1994a).

The use of averaged conditions, adjusted NO_x scenarios in this work is slightly different than the approach used by Carter (1994a), where the MIR, MOIR, and EBIR scales were derived by adjusting NO_x conditions separately for each of the 39 base case scenarios, and then averaging the reactivities derived from them. However, Carter (1994a) showed that both approaches yield essentially the same results.

Quantification of Atmospheric Reactivity

The reactivity of a VOC in an airshed scenario is measured by the change in ozone caused by adding the VOC to the emissions, divided by the amount of VOC added, calculated for sufficiently small amounts of added VOC that the incremental reactivity is independent of the amount added. The specific calculation procedure is discussed in detail elsewhere (Carter, 1994a,b). The incremental reactivities depend on how the amounts of VOC added and amounts of ozone formed are quantified. In this work, the amount of added VOC is quantified on a mass basis, since this is how VOCs are regulated. Two different ozone quantification methods were used, as follows:

- <u>"Ozone Yield"</u> incremental reactivities measure the effect of the VOC on the total amount of ozone formed in the scenario at the time of its maximum concentration. This is quantified as grams O₃ formed per gram VOC added. Most previous recent studies of incremental reactivity (Dodge, 1984; Carter and Atkinson, 1987, 1989a, Chang and Rudy, 1990; Jeffries and Crouse, 1991) have been based on this quantification method.
- <u>"Max 8 Hour Average"</u> incremental measure the effect of the VOC on the average ozone concentration during the 8-hour period when the average ozone concentration was the greatest. This provides a measure of ozone impact which is more closely related to the new Federal ozone standard, which is given in terms of an 8 hour average.

Since ratios of reactivities are generally more relevant to control strategy applications and are usually less sensitive to scenario conditions, the calculated atmospheric reactivity results in this work are given in terms of relative reactivities. This is defined as the incremental reactivity of the VOC divided by the incremental reactivity of the base ROG mixture, i.e., the mixture used to represent VOC emissions from all sources in the scenarios. These relative reactivities can also be thought of as the relative effect on O_3 of controlling emissions of the particular VOC by itself, compared to controlling emissions from all VOC sources equally.

In previous reports (e.g., see Carter et al, 1997a), we have reported reactivities in terms of integrated O_3 over the previous Federal standard of 0.12 ppm, referred to as "Int O_3 >0.12". This is the sum of the hourly ozone concentrations for the hours when ozone 0.12 ppm in the base case scenarios (Carter 1994a), and provides a measure of the effect of the VOC on exposure to unacceptable levels of ozone. This is replaced by the Max 8 Hour Average reactivities because (1) it is more representative of the new ozone standard and (2) the Int O_3 >0.12 relative reactivities were found to be between the Ozone Yield and the Max 8 Hour Average relative for those VOCs where they were different. Therefore, presenting both

ozone yield and maximum 8-hour average relative reactivities should be sufficient to provide information on how relative reactivities vary with quantification method.

Chemical Models and Mechanisms Used

The models used to represent the reactions of PTI and MDI in the atmospheric reactivity simulations were the same as used in modeling the chamber data, except that the unimolecular wall loss process was assumed to be negligible. All emitted MDI was assumed to be available for gas-phase reaction, and possible dry deposition processes, which may be non-negligible, were ignored. (It is likely that this approach will result in an overestimation of the MDI's actual ozone impact, since deposition may be significant for such a low volatility compound.) The mechanisms for the other species were also the same as employed in the chamber simulations, except that the reactions representing chamber effects were removed, and the reactions for the full variety of VOCs emitted into the scenarios (Carter, 1994a) were included. Most of the emitted VOCs are not represented in the model explicitly, but are represented using lumped model species whose rate constants and product yield parameters are derived based on the mixture of compounds they represent. The rate constants and mechanistic parameters for the emitted species in the scenarios were the same as those used previously (Carter et al, 1993b), except for the aromatics, whose unknown photoreactive product yields were reoptimized in a manner analogous to that discussed above for toluene and m-xylene (Carter et al. 1997b). The mechanism listing in Appendix A gives the reactions of the model species used in the atmospheric simulations to represent various types of anthropogenic and biogenic emissions, indicating the types of compounds each is used to represent, and giving their rate constants and product yield parameters.

RESULTS AND DISCUSSION

OH Radical Rate Constant Measurements

As discussed above, the kinetic experiments consisted of irradiating PTI - toluene - methyl nitrite - NO - air mixtures in the environmental chamber, and determining the ratio of OH radical rate constants for PTI and toluene from

$$ln([PTI]_0/[PTI]_t) = (kOH^{PTI}/kOH^{toluene}) ln([toluene]_0/[toluene]_t)$$
 (IV)

if reaction with OH radicals is assumed to be the only loss process for both PTI and toluene, or by

$$ln([PTI]_0/[PTI]_t)-D^{PTI} t = (kOH^{PTI}/kOH^{toluene}) \{ln([toluene]_0/[toluene]_t)-D^{toluene} t\}$$
 (V)

if unimolecular loss processes such as wall decay are non-negligible. Here, $[PTI]_0$, $[PTI]_t$, $[toluene]_0$, and $[toluene]_t$ are the initial and t=0 concentrations of PTI and toluene, respectively, kOH^{PTI} and kOH^{tol} are their respective OH radical rate constants, and D^{PTI} and D^{tol} are their respective unimolecular loss rates by other processes, which for these experiments should be primarily wall losses since dilution should be negligible.

Three kinetic experiments were carried out, designated runs DTC605, DTC609 and DTC611. Plots of Equation (IV) for these experiments are shown on Figure 1. Run DTC605 also contained nonnegligible amounts of m-xylene, whose presence resulted on only small amounts of consumption of PTI and toluene. However, the data from all three experiments are reasonably consistent with each other, though some curvature can be seen in the plots of Equation (IV) on the figure. In particular, the amount of PTI consumption relative to toluene consumption was somewhat less during the initial periods of the experiments than was the case subsequently, though this may be due to scatter in the analytical data. However, within the likely uncertainty of the experimental measurements, the data from the three experiments are fit by Equation (IV) sufficiently well to obtain at least an approximate OH radical rate constant ratio of 1.0 ± 0.08 .

The curvature in Figure 1 cannot be due to wall losses for PTI, since in that case one would expect a positive rather than a slightly negative intercept. (The intercept for the least-squares fit using Equation (IV) is -0.08 ± 0.03 .) On the other hand, the data are better fit using Equation (V) if a nonnegligible unimolecular loss process for toluene, rather than PTI, is assumed. Least squares optimizations using Equation (V) yield $D^{toluene}=4.5$ %/hour, $D^{PTI}\approx0$, and a rate constant ratio of 1.08. This is shown on Figure 2, which gives a plot of the kinetic data using the optimized D^{tol} and D^{PTI} values and

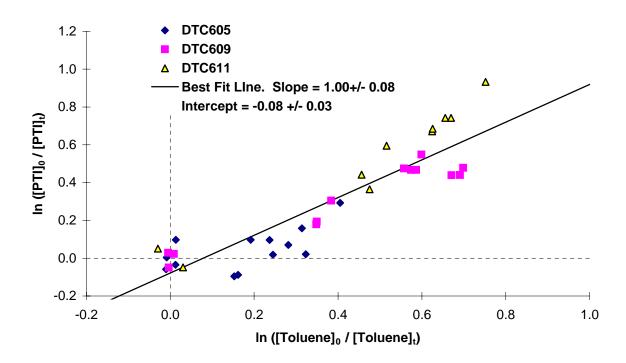


Figure 1. Plot of Equation (IV) for the PTI vs toluene relative rate constant determination experiments.

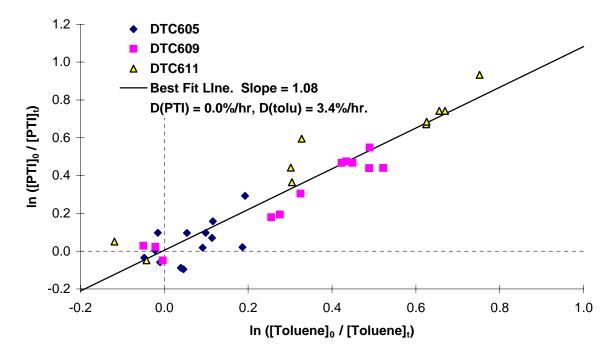


Figure 2. Plot of Equation (V) for the PTI vs toluene relative rate constant determination experiments.

the best fit line for Equation (V) using the optimized rate constant ratio. Note that assuming the slightly nonzero D^{toluene} completely removes the curvature in the plots. However, it is difficult to rationalize why there would be an apparent non-negligible loss rate for toluene but not for PTI. Toluene is used frequently in our chamber experiments, and there is no evidence for significant wall losses for this compound in our chamber.

In any case, the rate constant ratios derived using Equation (IV) and (V) give essentially the same rate constant ratio within experimental error, both indicating that PTI reacts with OH radicals with a rate constant which is nearly the same as that for toluene. Based on an extensive review of the literature, Atkinson (1989) recommended $kOH_{tol} = 5.95 \times 10^{-12} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ at 298K, and this recommendation was not revised in subsequent reviews (Atkinson, 1994). Therefore, based on the results of these experiments, we conclude that

$$k (OH + PTI) = 5.9 \times 10^{-12} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1} \text{ at } 298 \text{K},$$

This was used when modeling the PTI experiments discussed in this report.

As discussed above, we assume that most of the reaction of OH with PTI and MDI are at the aromatic ring, and therefore kOH^{MDI} should approximately two times kOHPTI. Therefore, when estimating MDI's atmospheric reactivity, we assume that

$$k (OH + MDI) \approx 1.18 \times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}.$$

Any temperature dependence in this rate constant is likely to be small, so this rate constant was used for all scenarios.

Summary of Chamber Experiments and Characterization Results

Table 2 gives a chronological listing of all the experiments carried out for this program. In addition to the reactivity and kinetic experiments, characterization experiments were conducted to measure chamber wall effects, and side equivalency tests were conducted to determine differences between results of experiments in different chamber sides caused by PTI exposure. Table 2 includes characterization and control experiments carried out previously for other programs which are relevant to characterizing conditions of runs for this program. Relevant results of the control and characterization runs are summarized on the table, and are briefly discussed below.

The characterization and control runs consisted of NO_2 actinometry experiments to monitor light intensity, n-butane - NO_x experiments to measure the chamber radical source (see Carter et al, 1982, 1995c,d), a pure air irradiation to measure background effects, an ozone and CO dark decay experiment

Table 2. Chronolological listing of the environmental chamber experiments carried out for this program during this reporting period.

RunID	Date	Title	Comments
DTC580	11/11/97	NO2 Actinometry	NO2 photolysis rate was 0.204 min ⁻¹ , suggesting a slight downward trend in light intensity due to ageing of the lights.
DTC587	11/21/97	n-Butane + NOx	Characterization run to measure the chamber radical source. NO oxidation rate was somewhat greater on Side A than Side B. Side A results in good agreement with predictions of standard chamber model. Side B results lower than normal range
DTC597	12/11/97	Propene - NOx	Standard control run for comparison with previous propene - NOx runs and side equivalency test run. Results comparable with other propene runs. Model gives good simulation of data. Slightly faster O3 formation rate on Side A.
DTC599	1/13/98	Pure Air Irradiation	Control run to test for background effects. O3 after 6 hours was 30 ppb on Side A and 23 ppb on Side B. These are within the range of the predictions of the standard chamber model.
DTC600	1/14/98	Mini Surrogate Side Equivalency Test	Control run to test side equivalency. Slightly more ozone formed on Side A, but results in normal range. See Figure 2 and Table 2.
DTC601	1/15/98	Mini Surrogate + PTI (A)	Mini-Surrogate - NOx mixture added to both sides of chamber and 0.4 ppm PTI added to Side A. Very little difference in ozone formation or IntOH. See Figure 3 and Table 2.
DTC602	1/22/98	Mini Surrogate + PTI (A)	Mini-surrogate - NOx mixture added to both sides and 3.8 PTI added to Side A. Very little difference in ozone formation and only a slight reduction in IntOH caused by added PTI. See Figure 4 and Table 2.

Table 2 (continued)

RunID	Date	Title	Comments
DTC603	1/23/98	Mini Surrogate Side Equivalency Test	Control run to measure side differences caused by PTI exposure. Equal mini-surrogate - NOx mixture added to both sides. Side differences somewhat greater than observed in Run DTC600. See Figure 2 and Table 2.
DTC604	1/27/98	Low NOx Full Surrogate + PTI (B)	Low NOx full surrogate mixture added to both sides of chamber and 3.8 ppm PTI added to Side B. Added PTI caused reduction in both O3 yield and IntOH. See Figure 7 and Table 2.
DTC605	1/29/98	Kinetic study of PTI	One of three experiments carried out to measure the OH radical rate constant of PTI relative to toluene. Experiments involved irriadiating PTI and toluene in the presence of methyl nitrite. Side A used. See text and Figure 1.
DTC606	1/30/98	Kinetic study of PTI	Second of three experiments to measure the OH radical rate constant of PTI relative to toluene. Procedure same as DTC605 except more methyl nitrate added to achieve greater conversions. See text and Figure 1.
DTC607	2/3/98	n-Butane + NOx	Characterization run to measure chamber radical source. Radical source in Side B was in normal range but radical source in Side A was about two times higher. Chamber characterization model modified to account for these differences.
DTC608	2/4/98	Low NOx Full Surrogate + PTI (A)	Low NOx full surrogate mixture added to both sides of chamber and 7.2 ppm PTI added to Side A. Added PTI caused reduction in both O3 yield and IntOH. See Figure 8 and Table 2.
DTC609	2/5/98	Low NOx Full Surrogate Side Equivalency Test	Low NOx full surrogate mixture added to both sides to determine side differences for this mixture. Very little difference in ozone formation and IntOH. See Table 2 and Figure 2.

Table 2 (continued)

RunID	Date	Title	Comments
DTC610	2/6/98	Full Surrogate + PTI (A)	Full surrogate - NOx mixture added to both sides of chamber and 10 ppm PTI added to Side A. Added PTI caused a slight increase in NO oxidation and ozone formation during the middle period of the run. See Figure 6 and Table 2.
DTC611	2/10/98	Kinetic study of PTI	Third of three experiments to measure the OH radical rate constant of PTI relative to toluene. Same procedure employed as previous kinetic run. See text and Figure 1.
DTC613	2/12/98	NO2 Actinometry	NO2 photolysis rate was approximately 0.15 min ⁻¹ , significantly lower than observed previously, and indicating a downward trend in light intensity.
DTC614	2/13/98	O3 and CO dark decay	Ozone and CO were monitored in the dark to measure both dilution and O3 dark decay. The CO data indicated no significant dilution. The O3 decay rates were 1.1 and 0.8%/hour on Sides A and B, respectively, somewhat higher than average for this chamber.
DTC616	2/19/98	Full Surrogate Side Equivalency Test	Same full surrogate - NOx mixture added to both sides. The amount of NOx added being higher than in usual full surrogate runs, and because of this no ozone was formed. NO oxidation was slightly faster on Side A. See Table 2 and Figure 2.
DTC617	2/20/98	NO2 actinometry	The measured NO2 photolysis rate was consistent with DTC613 and confirmed a decrease in the light intensity in the chamber. The chamber effects model was updated to take this into account.
DTC618	2/25/98	Mini-Surrogate + PTI (A)	Mini-surrogate - NOx mixture added to both sides and 10 ppm PTI added to Side A. Added PTI caused reduction in ozone formation rate and IntOH. See Figure 5 and Table 2.
DTC619	2/26/98 - 3/2/98	NO2 actinometry	The measured NO2 photolysis rate was consistent with previous actinometry results and indicated a decrease in total light intensity in the chamber.

to measure O_3 wall losses and dilution, a propene - NO_x control run and various side equivalency tests where the same surrogate - NO_x mixture is irradiated on both sides of the chamber. As indicated on Table 2, the results of the actinometry experiments indicated a gradual decline in overall light intensity in the chamber but are consistent with trends observed in previous runs (see also the modeling methods discussion, above), and the propene - NO_x and pure air irradiation were also within the normal range for this chamber, and consistent with standard model predictions. The other experiments indicated some side inequavalencies, as discussed below.

The experiments for this program followed a series of experiments where dilute auto exhaust was injected and irradiated in Side A and various control or synthetic surrogate mixtures were irradiated in Side B. Apparently because of this unequal treatment, the n-butane - NO_x characterization runs indicated that the chamber radical source (which is a parameter which needs to be specified when modeling chamber experiments for mechanism evaluation) was about 35% higher in Side A than Side B (e.g., see comments for DTC587 on Table 2). The radical source for both these sides are within the normal variability observed for this chamber, though the side-to-side difference is greater than normal. Following the experiments where both sides were exposed to PTI (though more with PTI in Side A than Side B), the apparent radical source increased in both sides, but with the radical source still being higher in Side A than Side B. The ozone decay experiment carried out around the end of this program indicated a slight increase in the ozone decay rate as well, though in this case the difference may not be outside of the normal variability observed in this type of chamber. As indicated on Table A-4, the side differences in the radical source was taken into account when modeling these experiments, but the standard model for the ozone dark decay was not modified. The ozone decay in these chambers is relatively small and this degree of variability will not significantly affect results of modeling the reactivity experiments.

To evaluate the effect of this apparent side inequivalency on the reactivity experiments, and the ability of the model to take this into account when simulating these runs, several side equivalency tests were carried out; two with the mini-surrogate and two with the full surrogate. The experimental and calculated concentration-time profiles for $d(O_3\text{-NO})$ and m-xylene, and the side-by-side differences between them, are shown on Figure 3. Note that in all cases the differences plotted are values for Side B - values for Side A.

The mini-surrogate runs are expected to be the most sensitive to the chamber radical source, so some side inequivalency is expected based on the results of the n-butane runs. Only small side differences are seen in run DTC600 which was carried out prior to PTI exposure, but a larger difference is seen in run DTC603, which was carried out after Side A (but not Side B) was exposed to PTI. A smaller but still non-negligible side difference was observed in the full surrogate run DTC616 which was carried out after both sides were exposed to PTI. The figure shows that the model, using radical source

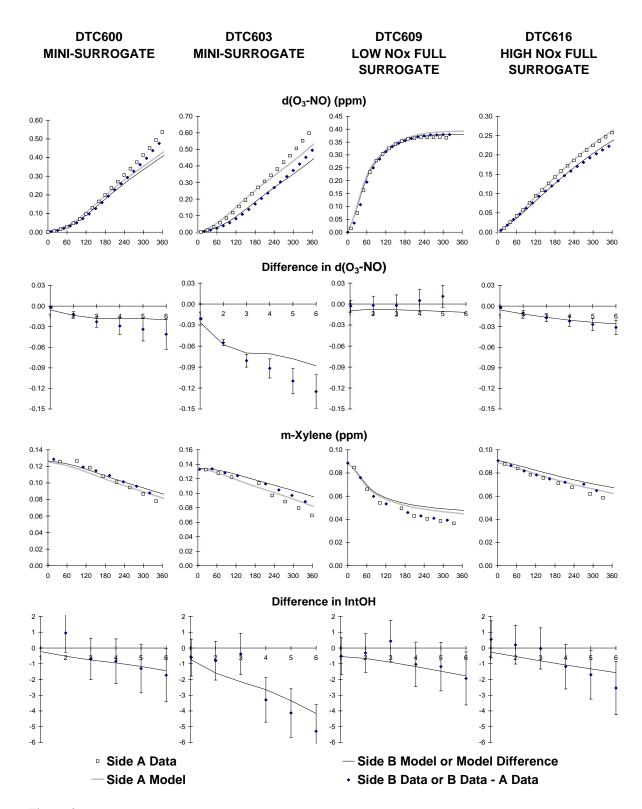


Figure 3. Plots of selected results of the side comparison test experiments.

differences derived from the results of the n-butane runs (see Table A-4), gives reasonably good predictions of these side differences. Low NO_x full surrogate experiments are expected to be much less sensitive to the chamber radical source, and consistent with this the low NO_x full surrogate side equivalency test (DTC609) had only small differences between the sides. This also was consistent with model prediction.

The side differences would be expected to affect the results of the incremental reactivity experiments, tending to increase the apparent incremental reactivity when the test compound is in Side A and reduce it when it is in Side B. However, if the model can account for these differences as caused by chamber effects, the results of model evaluation of these experiments, i.e., determination whether there are consistent biases caused by errors in the mechanism's ability to simulate the effects of the added PTI, should not be affected. The results of the simulations of the side equivalency tests, which are also shown on Figure 3, indicate that the model is reasonably successful in accounting for these differences.

Results of The Reactivity Experiments

A total of six reactivity experiments, three with the mini-surrogate, one with the high NO_x full surrogate, and two with the low NO_x full surrogate, were carried out for this program. Table 3 summarizes the conditions and selected results of these experiments, and also shows the results of the side equivalency tests for comparison purposes. Figures 4-9 show concentration-time plots of their major experimental and calculated results.

The addition of the 0.4 and \sim 4 ppm PTI to the mini-surrogate mixture had almost no effect on the results (see Figures 4 and 5), though addition of \sim 10 ppm caused a slight inhibition in O_3 and IntOH (see Figure 6). The addition of \sim 10 ppm PTI in the high NO_x full surrogate run had relatively little effect on $d(O_3\text{-NO})$, with the slightly higher $d(O_3\text{-NO})$ on the added PTI side (A) during the first half of the experiment being of comparable magnitude to that observed in the side equivalency tests (Figure 7). However, there was indications that the PTI was beginning to slightly inhibit the peak ozone around the end of the experiment, and it was clearly suppressing the IntOH levels. The largest effect of PTI was observed in the low NO_x full surrogate experiments (Figures 8 and 9), where significant inhibition in the peak $d(O_3\text{-NO})$ (i.e, peak O_3) was observed even in the run with less than 4 ppm added PTI. The IntOH inhibition also appeared to be somewhat greater in the low NO_x full surrogate runs than observed in the higher NO_x experiments.

Results of model simulations of these experiments are also shown on Figures 4-9. The model for the base case experiments tended to underpredict somewhat the $d(O_3-NO)$ formation rate in the minisurrogate runs, though the full surrogate base case experiments were reasonably well simulated. (Similar model performance is seen in the simulations of the side equivalency tests in Figure 2). These results are within the variability observed in the base case simulations using this mechanism. The discrepancy

Table 3. Summary of conditions and results of the incremental reactivity and side equivalency test experiments.

Run	Initia	Initial Reactants (ppm)	(mdd) s	t=3 d	t=3 d(O ₃ -NO) (ppm)	(mdd) (t=6 c	$t=6 \text{ d(O}_3\text{-NO) (ppm)}$	(mdd) (t=5 Int	t=5 IntOH (10 ⁻⁶ min)	6 min)
	NOx	Surg [a]	PTI	Base	Test	IR [b]	Base	Test	IR [b]	Base	Test	IR [b]
Mini-Surrogate +PTI	-PTI											
DTC-601 (A)	0.39	3.5	0.42	0.20	0.22	0.05	0.52	0.57	0.11	11	12	2.0
DTC-602 (A)	0.42	3.8	3.79	0.20	0.17	-0.007	0.54	0.50	-0.011	10	7	-0.7
DTC-618 (A)	0.28	2.8	10.18	0.36	0.38	0.002	0.54	0.53	-0.002	21	13	-0.7
Full Surrogate + PTI	PTI											
DTC-610 (A)	0.31	2.6	10.47	0.17	0.14	-0.003	0.48	0.41	-0.007	6	4	-0.5
Low NOx Full Surrogate + PTI	ırrogate +	- PTI										
DTC-604 (B)	0.17	2.6	3.83	0.37	0.33	-0.012	0.41	0.32	-0.025	26	11	-3.8
DTC-608 (A)	0.15	2.9	7.17	0.38	0.33	-0.007	0.41	0.30	-0.015	24	11	-1.8
Side Equivalency Tests [c]	' Tests [c]											
DTC-600 (A)	0.37	3.3		0.20	0.18	-0.004	0.50	0.54	0.007	6	11	0.2
DTC-603 (A)	0.37	3.6		0.25	0.17	-0.014	0.50	0.62	0.021	10	14	0.7
DTC-609 (A) [d]	0.14	2.9		0.36	0.36	0.000	0.38	0.37	-0.002	23	24	0.2
DTC-616 (A)	0.82	2.7		0.14	0.13	-0.003	0.23	0.26	0.005	6	11	0.3

[[]a] Total base ROG surrogate in ppmC.

concentration in the added PTI runs, or 5.14 ppm. In other words, the incremental reactivity shown for the side equivanency runs is the incremental reactivity corresponding to the d(O3-NO) or IntOH change if 5.14 ppm of PTI were added to Side A. [b] Incremental reactivity. For Side Equivalency tests, this is the difference between the sides divided by the average PTI

[[]c] Side A data tabulated under "Test" columns, Side B under "Base" columns. [d] d(O3-NO) data for t=5 hours.

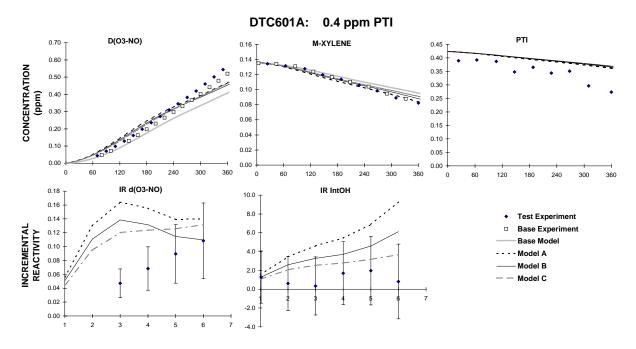


Figure 4. Plots of selected results of the mini-surrogate + PTI run DTC601...

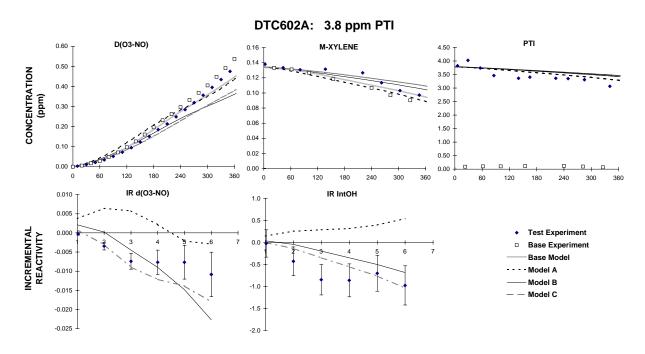


Figure 5. Plots of selected results of the mini-surrogate + PTI experiment DTC602.

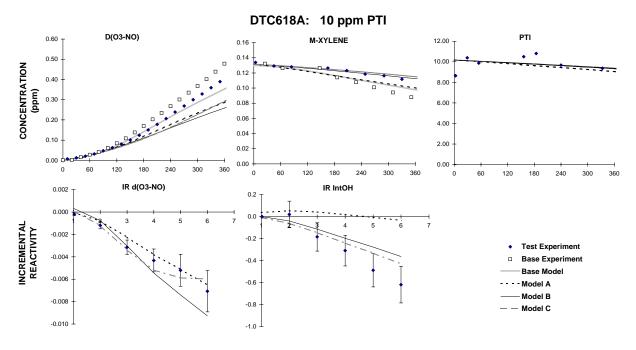


Figure 6. Plots of selected results of the mini-surrogate + PTI run DTC618..

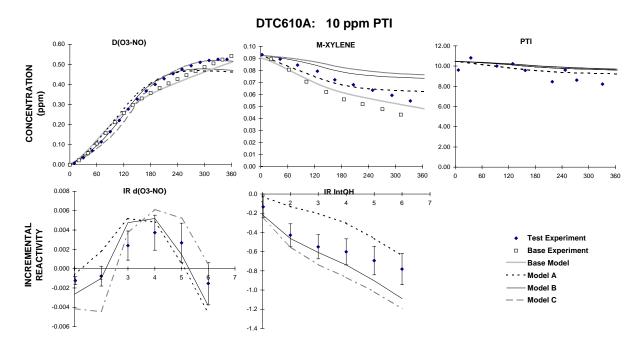


Figure 7. Plots of selected results of the full surrogate + PTI experiment DTC610.

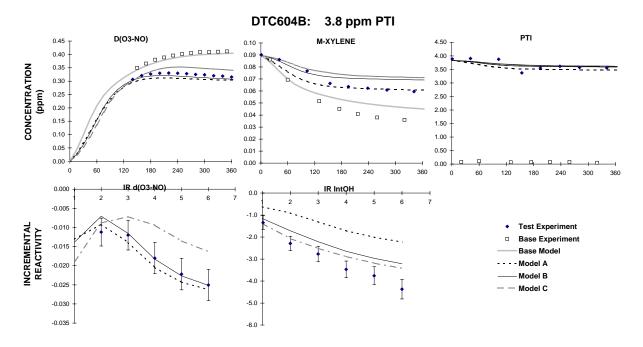


Figure 8. Plots of selected results of the low NOx full surrogate + PTI run DTC604...

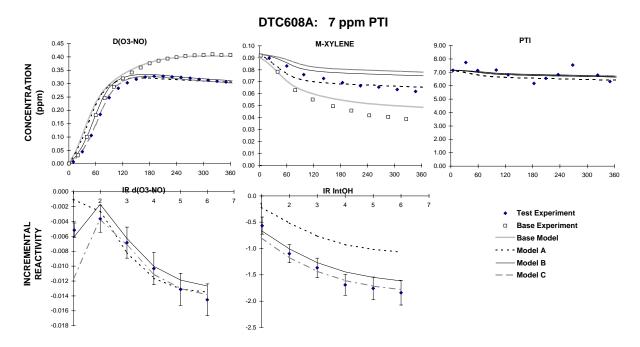


Figure 9. Plots of selected results of the low NOx full surrogate + PTI experiment DTC608.

in the case of the simulations of the base case runs is not considered a significant problem in evaluating reactivity effects, since the quantity of interest is the difference between the simulation of the base case and added test compound experiments. If the model for the test compound is approximately correct, the simulation of the added test compound experiment would have a similar underprediction, so the predicted difference between the base case and added test compound experiments should be about the same.

As discussed above, because the details of the atmospheric chemistry of aromatic isocyanates are unknown, the reactions of PTI were modeled using a highly simplified parameterized mechanism, with the various parameters adjusted to achieve the best fits to the chamber data. Although a number of alternative mechanisms with different sets of parameter values examined, we will present the results for three alternative mechanisms, designated Models A, B, and C, which gave the best fits to most of the data. These are discussed below.

Model "A" is the simplest parameterized mechanism which could fit the $d(O_3\text{-NO})$ reactivities in all the types of experiments. It is based on the assumption that the negative $d(O_3\text{-NO})$ reactivities in the low NO_x experiments is due to the formation of cresol-like products, whose reaction with NO_3 radicals remove NO_x from the system and thus reduce O_3 yields in systems which are NO_x -limited. If it is assumed that no other reactive products are formed in significant yields, then the $d(O_3\text{-NO})$ data in the various types of experiments can be fit if it is assumed that $y_{CRES}\approx 1$, $y_{OH}\approx 1$ and $y_{NO_xNO_2}\approx -0.12$. Note that this model assumes that PTI has no radical inhibition characteristics, but that it involves net NO_2 to NO conversions. This can be compared to TDI Model A, which also assumes that $y_{CRES}\approx 1$, but where $y_{OH}\approx 0.3$ and $y_{NO_xNO_2}\approx 0$ gives best fits to the data.

Figures 4-9 show that Model A gives reasonably good simulations of the $d(O_3$ -NO) reactivities in the various types of experiments, agreeing with the data within the experimental variability in most cases. However, this mechanism significantly underpredicts the IntOH reactivities in essentially all experiments. The generally negative IntOH reactivities observed in the PTI experiments indicates that this compound has some radical termination characteristics which are not being represented in this model, which assumes that 100% of the OH radicals reacting with the PTI are regenerated.

The IntOH reactivity data can only be fit if it is assumed that y_{OH} is in the 0.8 to 0.9 range, i.e., that 10-20% radical inhibition is occurring. However, if this is assumed, then it is necessary to assume either significantly positive y_{NO_NO2} values, or to assume significant yields of a highly reactive product such as MGLY, in order to counteract this inhibition to the extent needed to fit the $d(O_3-NO)$ reactivity data

in the mini-surrogate runs. If no reactive product is assumed (i.e, assuming $y_{MGLY}\approx 0$), then the y_{NO_NO2} needed to fit the mini-surrogate $d(O_3\text{-NO})$ reactivity data is so high that the $d(O_3\text{-NO})$ reactivities in the full surrogate runs, which are more sensitive to y_{NO_NO2} , is significantly overpredicted. However, the $d(O_3\text{-NO})$ and IntOH reactivity data for the various types of runs can be fit if both y_{NO_NO2} and y_{MGLY} are adjusted.

Model "B" is similar to Model A in that it assumes that the inhibition in the low NO_x experiments is due to the formation of cresol-like products (i.e., that $y_{CRES}\approx 1$), but allows y_{OH} , y_{NO_NO2} and y_{MGLY} to be optimized to fit both the $d(O_3\text{-NO})$ and the IntOH reactivities in the runs. The best fits are obtained using $y_{OH}\approx 0.9$, $y_{NO_NO2}\approx 0.7$, and $y_{MGLY}\approx 0.3$. Thus this model assumes ~10% radical inhibition, some NO to NO_2 conversions, and non-negligible formation of highly photoreactive products. This contrasts with the corresponding TDI mechanisms, which assume 70% inhibition, no NO to NO_2 conversions, and no significant formation of photoreactive products. Figures 4-9 shows that this mechanism gives reasonably good fits to $d(O_3\text{-NO})$ and IntOH reactivity data, in most cases to within the estimated experimental uncertainty. No obvious systematic biases are seen in the simulations using this mechanism.

The formation of cresol-like products is not the only route by which PTI's reactions could cause inhibition in the low NO_x experiments. Another possibility is formation of alkyl nitrates in the reactions of peroxy radicals with NO, which is a NO_x and radical sink process which is important in the photooxidations of the higher alkanes (Carter and Atkinson, 1989b), and which is assumed in the alternative TDI model "B" (Carter et al, 1997a). Since this is a significantly different mechanism for NO_x removal than that assumed in Models A and B, mechanisms based on this may yield different results when models adjusted to fit chamber data are extrapolated to atmospheric conditions.

In Model "C" it is assumed that the NO_x sink in the PTI mechanism is due to such a nitrate-forming peroxy reaction rather than formation of cresol-like products. This is represented in the model by assuming non-negligible values for $y_{NO \rightarrow NPHE}$, which is adjusted, along with y_{OH} , $y_{NO \rightarrow NO2}$ and y_{MGLY} to fit the $d(O_3\text{-NO})$ and IntOH reactivity data. Best fits to the data for the high NO_x mini- and full surrogate runs and for the low NO_x full surrogate run with the highest amount of added PTI is obtained if $y_{NO \rightarrow NPHE} \approx 0.2$, $y_{OH} = 1 - y_{NO \rightarrow NPHE}$, $y_{NO \rightarrow NO2} \approx 1$, and $y_{MGLY} \approx 1$. The results of the model simulations using this mechanism are shown on Figures 4-9.

Although Figures 4-7 and 9 show that Model "C" gives generally good fits to the $d(O_3\text{-NO})$ and IntOH reactivity data for the high NO_x mini- and full surrogate runs and for the low NO_x full surrogate run with the highest amount of added PTI (run DTC608), Figure 8 shows that has a definite bias towards underpredicting the $d(O_3\text{-NO})$ inhibition in the low NO_x full surrogate run with the lower amount of added PTI (run DTC604). Thus this model apparently does not correctly predict the dependence of the extent of low NO_x inhibition on the amount of PTI that is added. If this is the case, the discrepancy may be even

greater for more atmospherically representative simulations when the amount of added VOC is much lower.

Atmospheric Reactivity Calculations

The PTI mechanisms which were derived from the chamber data can be used as a basis for estimating mechanisms for MDI for the purpose of estimating its atmospheric ozone impacts. For this purpose, three estimated MDI mechanisms were derived, corresponding to each of the three PTI models which were derived from the chamber data as discussed above. These are referred to as MDI models "A", "B", and "C", to indicate the corresponding PTI model from which they were derived. The corresponding reactions used in the model simulations are given in Table A-2. Note that the predictions of the MDI Model B is considered to be our best estimate because of the superior performance of the corresponding PTI model in simulating the chamber data, and is therefore referred to as the "best estimate" mechanism. However, calculations using Models A and C are also shown, to give an indication of the sensitivity of the model predictions to alternative assumptions concerning the mechanism.

The relative ozone impacts of ethane and of MDI as predicted using the three mechanisms are shown on Table 4. The impacts are given as relative reactivities (see above), derived in terms of ozone formed per unit mass of ethane or MDI emitted, relative to ozone formed per unit mass for the total (or weighted average) of all VOC emissions into the scenarios. The ozone impacts are quantified both in terms of peak ozone (ozone yield) and in terms of maximum 8-hour average ozone. Since the ozone impacts are shown relative to the ozone impact caused by increasing the mass emissions of all VOCs, the numbers on the table can be considered to be an estimate of the relative effects of controlling emissions of MDI or ethane, compared to controlling emissions of VOCs from all sources equally. The data are shown for each of the 39 "base case" EKMA scenarios, together with the corresponding averages and standard deviations, and for the three adjusted NO_x scenarios. The predictions for ethane is shown for comparison with those MDI because ethane is the compound the EPA has used as the basis for determining VOC exemptions (Dimitriades, 1996).

The results on Table 4 show that the relative reactivities of MDI calculated using the best estimate model B are highly dependent on scenario conditions. Negative reactivities are calculated for most base case and the lower NO_x adjusted NO_x scenarios, but with positive reactivities for a few of the higher NO_x scenarios, including MIR. When ozone yields are considered, MDI is predicted to be an inhibitor under all but three of the 39 base case scenarios, and is predicted to be more reactive than ethane in only one of these scenarios. The results are similar for the 8-hour average reactivities, though the variability with scenario conditions appears to be somewhat less. MDI is predicted to inhibit the 8-hour average ozone in all but four of the base case scenarios, and is predicted to form more average ozone in only one of those cases. The results with the adjusted NO_x MIR, MOIR, and EBIR scenarios suggest that NO_x

Table 4. Summary of calculated incremental reactivities (gram basis) for ethane and the best fit PTI model for MDI, relative to the average of all VOC emissions.

			ield Relati	ive Reactiv	ities	Max 8 He	our Avg R	elative. Rea	ctivities		
	Scenario	Ethane		MDI		Ethane	MDI				
			A	B (best)	С		A	B (best)	C		
Adj'd	Max React	0.08	0.14	0.29	0.49	0.06	0.10	0.24	0.45		
NOx	Max Ozone	0.15	-0.44	-0.29	0.30	0.09	-0.08	0.06	0.40		
	Equal Benefit	0.19	-1.45	-1.27	0.06	0.11	-0.68	-0.54	0.21		
Base	Average	0.18	-1.13	-0.96	0.15	0.10	-0.52	-0.37	0.26		
Case	St.Dev	0.04	1.03	1.01	0.19	0.03	0.60	0.59	0.13		
	Maximum	0.28	0.10	0.25	0.49	0.18	0.07	0.21	0.45		
	ATL GA	0.17	-0.73	-0.57	0.17	0.10	-0.32	-0.17	0.28		
	AUS TX	0.20	-1.62	-1.42	0.00	0.12	-0.96	-0.80	0.11		
	BAL MD	0.16	-0.76	-0.60	0.28	0.08	-0.18	-0.04	0.38		
	BAT LA	0.16	-0.70	-0.54	0.23	0.10	-0.32	-0.17	0.31		
	BIR AL	0.24	-2.33	-2.13	-0.05	0.13	-1.22	-1.05	0.14		
	BOS MA	0.21	-1.08	-0.92	0.10	0.13	-0.56	-0.41	0.22		
	CHA NC	0.21	-1.58	-1.38	-0.05	0.14	-0.97	-0.80	0.09		
	CHI IL	0.28	-5.65	-5.36	-0.54	0.18	-3.50	-3.27	-0.26		
	CIN OH	0.20	-1.00	-0.83	0.15	0.10	-0.36	-0.22	0.29		
	CLE OH	0.15	-0.89	-0.73	0.23	0.09	-0.27	-0.12	0.34		
	DAL TX	0.12	-0.05	0.10	0.43	0.08	0.02	0.16	0.41		
	DEN CO	0.11	-0.48	-0.31	0.32	0.07	-0.09	0.05	0.39		
	DET MI	0.20	-1.12	-0.96	0.13	0.11	-0.38	-0.25	0.29		
	ELP TX	0.12	-0.51	-0.35	0.32	0.07	-0.17	-0.02	0.37		
	HAR CT	0.21	-1.28	-1.10	0.01	0.13	-0.66	-0.51	0.18		
	HOU TX	0.19	-0.84	-0.69	0.22	0.11	-0.35	-0.21	0.32		
	IND IN	0.16	-0.64	-0.48	0.23	0.09	-0.20	-0.06	0.34		
	JAC FL	0.17	-0.66	-0.49	0.14	0.10	-0.30	-0.14	0.26		
	KAN MO	0.20	-0.74	-0.57	0.14	0.11	-0.31	-0.16	0.27		
	LAK LA	0.23	-1.67	-1.50	-0.05	0.14	-1.11	-0.95	0.08		
	LOS CA	0.15	-2.16	-1.99	0.15	0.09	-0.82	-0.68	0.30		
	LOU KY	0.19	-0.51	-0.37	0.13	0.11	-0.32	-0.08	0.31		
	MEM TN	0.17	-1.15	-0.98	0.10	0.11	-0.55	-0.40	0.24		
	MIA FL	0.19	-1.13	-1.23	-0.06	0.12	-0.82	-0.40	0.24		
	NAS TN	0.19	-1.43	-1.23 -1.14	-0.03	0.12	-0.82	-0.83	0.09		
	NEW NY	0.24	-1.31 -3.97	-3.76	-0.03	0.17		-0.83	0.00		
	PHI PA						-1.35				
		0.17	-0.69	-0.53	0.21	0.10	-0.22	-0.08	0.32		
	PHO AZ	0.17	-1.24	-1.07	0.21	0.09	-0.42	-0.28	0.34		
	POR OR	0.18	-0.61	-0.45	0.17	0.11	-0.26	-0.11	0.28		
	RIC VA	0.19	-1.06	-0.89	0.13	0.10	-0.33	-0.20	0.29		
	SAC CA	0.18	-0.58	-0.42	0.23	0.10	-0.20	-0.05	0.35		
	SAI MO	0.14	-0.90	-0.73	0.25	0.08	-0.24	-0.10	0.35		
	SAL UT	0.19	-1.52	-1.34	0.08	0.11	-0.67	-0.51	0.25		
	SAN TX	0.13	-0.09	0.07	0.39	0.08	0.00	0.13	0.39		
	SDO CA	0.12	-0.72	-0.55	0.23	0.08	-0.28	-0.14	0.32		
	SFO CA	0.06	0.10	0.25	0.49	0.05	0.07	0.21	0.45		
	TAM FL	0.14	-0.22	-0.08	0.35	0.08	-0.04	0.09	0.39		
	TUL OK	0.18	-0.59	-0.44	0.23	0.10	-0.17	-0.04	0.34		
	WAS DC	0.20	-1.08	-0.92	0.16	0.10	-0.42	-0.28	0.29		

conditions is a major factor affecting whether MDI is calculated to inhibit or enhance O_3 formation, and by how much.

To examine the extent to which variations in NO_x conditions explain the differences in MDI relative reactivities among the various scenarios, Figure 10 shows a plot of the best estimate (Model B) relative MDI reactivities against relative NO_x levels in the various scenarios. The latter is quantified by the ratio of NO_x inputs (sum of initially present and emitted NO_x) in the scenarios divided by the NO_x inputs which give the highest peak ozone concentrations, i.e., the NO_x inputs of the corresponding MOIR scenario (referred to as NO_x^{MO}). This quantity is believed to be a good indicator of relative NO_x levels in scenarios as they affect VOC reactivity (Carter, 1994a). Figure 10 shows that although relative NO_x levels is clearly a major factor determining whether this model predicts MDI will inhibit or enhance ozone formation, the degree of inhibition under the lower NO_x conditions can be significantly affected by other factors as well. This dependence on NO_x conditions and variability of low NO_x inhibition is somewhat less when O_3 is quantified by the 8-hour average, with results being similar to ozone yield reactivities under high NO_x (e.g., MIR) conditions, but the inhibition being less extreme under low NO_x conditions.

Table 4 also shows the relative MDI reactivities calculated with the other MDI models. Model A gives qualitatively similar results to the best estimate Model B, though it calculates somewhat lower positive reactivities under MIR conditions (though still slightly higher than ethane), and somewhat greater inhibition when NO_x is low. However, Model C, which is based on assuming a different mechanism for NO_x removal than the other mechanisms, gives quite different results. Not only is the MIR reactivity calculated to be over 50% higher than for Model B, positive reactivities, often greater than that for ethane, are calculated even for most of the low NO_x scenarios. This indicates the sensitivity of the reactivity predictions to the type of mechanism used to extrapolate from chamber data to atmospheric conditions.

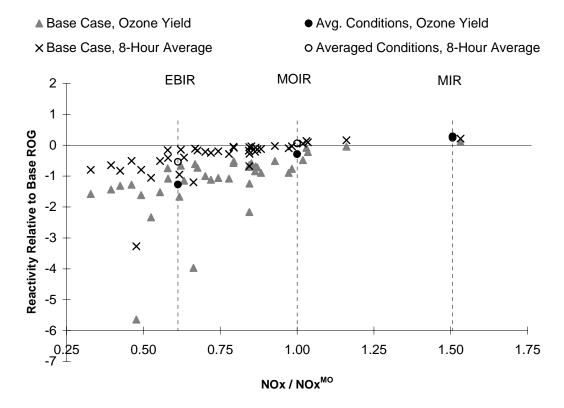


Figure 10. Plots relative ozone yield reactivities for MDI calculated using the "best estimate" Model B against the NO_x / NO_x^{MO} ratio for the base case and the adjusted NO_x averaged conditions scenarios.

CONCLUSIONS

The decision whether it is appropriate to regulate a compound as an ozone precursor requires a qualitative assessment of its ozone impacts under a variety of environmental conditions, taking into account the uncertainties involved. This involves developing a chemical mechanism or model for the compound's atmospheric reactions which can be used in airshed models to predict its atmospheric reactivity. Until this study, the only information concerning isocyanate reactivity was an experimental and modeling study which indicated that TDI probably inhibited ozone formation under most tropospheric conditions. There was no information available to indicate whether this was the case for other aromatic isocyanate species such as MDI. Our lack of knowledge of the details of aromatic atmospheric reaction mechanisms made extrapolations from one compound to another highly unreliable. The objective of this study was to provide data concerning whether the tendency of TDI to strongly inhibit ozone may be a characteristic of aromatic isocyanates in general, and of MDI in particular. This project was successful in obtaining kinetic and reactivity data for the model compound PTI, allowing atmospheric reactivity estimates to be made for it and related compounds. However, the project was not successful in the obtaining information needed to make unambiguous conclusions concerning the atmospheric ozone impacts of aromatic isocyanates as a class.

In particular, although PTI, like TDI, was found to inhibit ozone formation under most conditions, PTI was found to be a much less strong radical inhibitor than TDI, and was also predicted to have a small but positive impact on ozone formation in the higher NO_x scenarios where ozone is most sensitive to VOC emissions. Therefore, it cannot be concluded that all aromatic isocyanates will necessarily be like TDI in being probable ozone inhibitor under all conditions. Different types of aromatic isocyanates apparently differ in their radical inhibiting characteristics. On the other hand, since both TDI and PTI are shown to be inhibitors under low NO_x conditions, it is likely that this is the case for other aromatic isocyanates as well. However, these results indicate that the aromatic isocyanates can be much more variable in their effects on ozone formation under the higher NO_x conditions which are sensitive to radical inhibition or initiation effects.

Nevertheless, the data obtained from PTI can be used to make conclusions concerning the likely ozone impacts of MDI. The MDI molecule can be thought of as two PTI molecules joined at the methylene group, which isolates the two rings so that they should not significantly interact. It is reasonable to expect that reactions at the aromatic ring should occur with similar mechanisms, and also that most of the reaction will occur at the aromatic ring, which has a similar environment for both compounds. The fact that the rate constant for the reaction of OH radicals with PTI was found to be almost exactly the same as that for toluene is consistent with this.

The rate constant for the reaction of PTI with OH radicals was measured to be approximately 5.9 x 10^{-12} cm³ molec⁻¹ s⁻¹ at ~300K, from which we estimate an OH + MDI rate constant of ~1.2 x 10^{-11} cm³ molec⁻¹ s⁻¹. This indicates that MDI reacts relatively rapidly in the atmosphere. Based on the reactivity parameters which fit the chamber data for PTI, MDI is calculated to have a positive effect on O_3 formation under high NO_x , maximum incremental reactivity (MIR) conditions, but to inhibit ozone formation under most lower NO_x scenarios, which includes most of the "base case" EKMA scenarios designed to represent worst case or typical episodes in various ozone exceedence areas.

These ozone impact estimates for MDI are not without uncertainties. The best fit mechanism for PTI which was used to derive the MDI mechanism is a highly simplified parameterization of the actual chemistry which is occurring, which is unknown and may be quite complex. Since the best estimate model fit the chamber data under a variety of conditions reasonably well, it is assumed that it can be extrapolated to the range of conditions in the atmosphere. However, the isocyanate and NO, concentrations in the atmosphere will be much lower than the range of conditions in the experiments, so the extrapolation is uncertain. An alternative mechanism which assumes that the inhibition of peak O₃ in the low NO_x experiments was due to nitrate formation from peroxy + NO reactions rather than to formation of cresol-like products as assumed in the best estimate mechanism gives quite different predictions of atmospheric reactivities, especially under low NO_x conditions. Although we think that the best estimate mechanism is much more likely to give correct predictions in the atmosphere because it gave better predictions of the effects of changing PTI levels in the low NO_x experiments and because it is also more chemically reasonable, the difference in model predictions indicate that mechanism formulation is important in affecting how mechanisms which fit chamber data extrapolate to atmospheric conditions. That is why it is important to know as much as possible about the details of a VOC's actual mechanism when developing models to extrapolate from chamber data to atmospheric conditions.

There are also uncertainties involved in estimating the MDI mechanism from that derived from reactivity data for PTI. Reaction of OH radicals at the methylene group in MDI might be somewhat more likely than reaction at the methyl group in PTI, though it is probably still not important compared to reaction at an aromatic ring. In addition, the product expected to be formed after reaction at the methylene group, diphenyl ketone, is probably not highly reactive. Perhaps more significantly, any phenyl-substituted products formed in the photooxidation of MDI may have quite reactivity characteristics than the corresponding methyl-substituted products from PTI. The best fit PTI mechanism predicts a significantly reactivity contribution from highly photoreactive products represented by methyl glyoxal. The corresponding phenyl-substituted product may be less photoreactive, or have other photolysis routes which do not form radicals, thus giving correspondingly less reactivity to MDI than predicted in the mechanism derived from that for PTI. The reactive product(s) from MDI may also have a greater tendency to condense into the aerosol phase and thus not participate in O₃ formation. For these reasons, we think that modeling MDI reactions using a PTI-derived mechanism is more likely to cause overestimations of MDI's

ozone impacts than the other way around. Thus, the actual ozone impact of MDI is likely to be lower than estimated in this work.

Therefore, it is concluded that MDI will probably negative impacts on ozone formation under atmospheric conditions where NO_x is limited, including most of the "base case" scenarios designed to represent high ozone episodes in 39 urban areas in the United States. On the other hand, MDI was predicted to have positive impacts on ozone under high NO_x conditions where ozone is more sensitive to VOC emissions, and its ozone impact in the MIR scenario was calculated to be somewhat higher than that for ethane. Therefore, MDI is not expected to be as general and effective an ozone inhibitor as TDI, which appears to be a strong ozone inhibitor under all conditions relevant to ozone control. However, the conclusions for MDI are based on that for a surrogate compound, and it is possible that we are overestimating its atmospheric ozone impacts. More information concerning the atmospheric reactions mechanisms for aromatic isocyanates is needed to improve our ability to estimate impacts of compounds which cannot be studied directly.

Of course, these conclusions about the effects of MDI on ozone formation are only relevant to ozone control strategies if the use of MDI actually results in its being emitted into the open atmosphere, as opposed to being deposited on surfaces, or oxidized or converted to other substances before it is emitted. Given its very low vapor pressure and probable affinity to surfaces (based on the high surface affinity for the much less volatile TDI), it cannot necessarily be assumed that use of MDI will result in its reacting in the atmosphere. Our analysis also neglects any deposition processes MDI may undergo once it is emitted. If these are taken into account, the actual ozone impact of MDI may be considerably less than estimated in this work.

REFERENCES

- Atkinson, R. (1989): "Kinetics and Mechanisms of the Gas-Phase Reactions of the Hydroxyl Radical with Organic Compounds," J. Phys. Chem. Ref. Data, Monograph no 1.
- Atkinson, R. (1990): "Gas-Phase Tropospheric Chemistry of Organic Compounds: A Review," Atmos. Environ., 24A, 1-24.
- Atkinson, R. (1994): "Gas-Phase Tropospheric Chemistry of Organic Compounds," J. Phys. Chem. Ref. Data, Monograph No. 2.
- Baugues, K. (1990): "Preliminary Planning Information for Updating the Ozone Regulatory Impact Analysis Version of EKMA," Draft Document, Source Receptor Analysis Branch, Technical Support Division, U. S. Environmental Protection Agency, Research Triangle Park, NC, January.
- Becker, K. H., V. Bastian, and Th. Klein (1988): "The Reactions of OH Radicals with Toluene Diisocyanate, Toluenediamine and Methylenedianiline Under Simulated Atmospheric Conditions," J. Photochem. Photobiol A., 45 195-205.
- Carter, W. P. L. (1990): "A Detailed Mechanism for the Gas-Phase Atmospheric Reactions of Organic Compounds," Atmos. Environ., 24A, 481-518.
- Carter, W. P. L. (1994a): "Development of Ozone Reactivity Scales for Volatile Organic Compounds," J. Air & Waste Manage. Assoc., 44, 881-899.
- Carter, W. P. L. (1994b): "Calculation of Reactivity Scales Using an Updated Carbon Bond IV Mechanism," Report Prepared for Systems Applications International Under Funding from the Auto/Oil Air Quality Improvement Research Program, April 12.
- Carter, W. P. L. (1995): "Computer Modeling of Environmental Chamber Measurements of Maximum Incremental Reactivities of Volatile Organic Compounds," Atmos. Environ., <u>29</u>, 2513-2517.
- Carter, W. P. L., R. Atkinson, A. M. Winer, and J. N. Pitts, Jr. (1982): "Experimental Investigation of Chamber-Dependent Radical Sources," Int. J. Chem. Kinet., <u>14</u>, 1071.
- Carter, W. P. L. and R. Atkinson (1987): "An Experimental Study of Incremental Hydrocarbon Reactivity," Environ. Sci. Technol., <u>21</u>, 670-679
- Carter, W. P. L. and R. Atkinson (1989a): "A Computer Modeling Study of Incremental Hydrocarbon Reactivity", Environ. Sci. Technol., <u>23</u>, 864.
- Carter, W. P. L. and R. Atkinson (1989b): "Alkyl Nitrate Formation from the Atmospheric Photooxidation of Alkanes; a Revised Estimation Method," J. Atm. Chem. 8, 165-173.

- Carter, W. P. L., and F. W. Lurmann (1990): "Evaluation of the RADM Gas-Phase Chemical Mechanism," Final Report, EPA-600/3-90-001.
- Carter, W. P. L. and F. W. Lurmann (1991): "Evaluation of a Detailed Gas-Phase Atmospheric Reaction Mechanism using Environmental Chamber Data," Atm. Environ. <u>25A</u>, 2771-2806.
- Carter, W. P. L., J. A. Pierce, I. L. Malkina, and D. Luo (1992): "Investigation of the Ozone Formation Potential of Selected Volatile Silicone Compounds," Final Report to Dow Corning Corporation, Midland, MI, November.
- Carter, W. P. L., J. A. Pierce, I. L. Malkina, D. Luo and W. D. Long (1993a): "Environmental Chamber Studies of Maximum Incremental Reactivities of Volatile Organic Compounds," Report to Coordinating Research Council, Project No. ME-9, California Air Resources Board Contract No. A032-0692; South Coast Air Quality Management District Contract No. C91323, United States Environmental Protection Agency Cooperative Agreement No. CR-814396-01-0, University Corporation for Atmospheric Research Contract No. 59166, and Dow Corning Corporation. April
- Carter, W. P. L, D. Luo, I. L. Malkina, and J. A. Pierce (1993b): "An Experimental and Modeling Study of the Photochemical Ozone Reactivity of Acetone," Final Report to Chemical Manufacturers Association Contract No. KET-ACE-CRC-2.0. December 10.
- Carter, W. P. L., J. A. Pierce, D. Luo, and I. L. Malkina (1995a): "Environmental Chamber Study of Maximum Incremental Reactivities of Volatile Organic Compounds," Atmos. Environ. <u>29</u>, 2499-2511.
- Carter, W. P. L., D. Luo, I. L. Malkina, and J. A. Pierce (1995b): "Environmental Chamber Studies of Atmospheric Reactivities of Volatile Organic Compounds. Effects of Varying ROG Surrogate and NO_x," Final report to Coordinating Research Council, Inc., Project ME-9, California Air Resources Board, Contract A032-0692, and South Coast Air Quality Management District, Contract C91323. March 24.
- Carter, W. P. L., D. Luo, I. L. Malkina, and D. Fitz (1995c): "The University of California, Riverside Environmental Chamber Data Base for Evaluating Oxidant Mechanism. Indoor Chamber Experiments through 1993," Report submitted to the U. S. Environmental Protection Agency, EPA/AREAL, Research Triangle Park, NC., March 20..
- Carter, W. P. L., D. Luo, I. L. Malkina, and J. A. Pierce (1995d): "Environmental Chamber Studies of Atmospheric Reactivities of Volatile Organic Compounds. Effects of Varying Chamber and Light Source," Final report to National Renewable Energy Laboratory, Contract XZ-2-12075, Coordinating Research Council, Inc., Project M-9, California Air Resources Board, Contract A032-0692, and South Coast Air Quality Management District, Contract C91323, March 26.
- W. P. L. Carter, D. Luo and I. L. Malkina (1997a): "Investigation of the Atmospheric Ozone Formation Potential of Toluene Diisocyanate," Final Report to The Society for the Plastics Industry, Inc., December 2.

- Carter, W. P. L., D. Luo, and I. L. Malkina (1997b): "Environmental Chamber Studies for Development of an Updated Photochemical Mechanism for VOC Reactivity Assessment," Draft final report to California Air Resources Board Contract 92-345, Coordinating Research Council Project M-9, and National Renewable Energy Laboratory Contract ZF-2-12252-07. March 10.
- Chang, T. Y. and S. J. Rudy (1990): "Ozone-Forming Potential of Organic Emissions from Alternative-Fueled Vehicles," Atmos. Environ., 24A, 2421-2430.
- Dimitriades, B. (1996): "Scientific Basis for the VOC Reactivity Issues Raised by Section 183(e) of the Clean Air Act Amendments of 1990," J. Air Waste Manage. Assoc. <u>46</u>, 963-970.
- Dodge, M. C. (1984): "Combined effects of organic reactivity and NMHC/NOx ratio on photochemical oxidant formation -- a modeling study," <u>Atmos. Environ.</u>, 18, 1657.
- Duff, P. B. (1984): "Fate of Toluene Diisocyanate in Air. Phase II Study," Proceedings of the SPI 29th Annual Technical/Marketing Conference. 9-24.
- EPA (1984): "Guideline for Using the Carbon Bond Mechanism in City-Specific EKMA," EPA-450/4-84-005, February.
- Gery, M. W., G. Z. Whitten, and J. P. Killus (1988): "Development and Testing of the CBM-IV For Urban and Regional Modeling,", EPA-600/ 3-88-012, January.
- Johnson, G. M. (1983): "Factors Affecting Oxidant Formation in Sydney Air," in "The Urban Atmosphere -- Sydney, a Case Study." Eds. J. N. Carras and G. M. Johnson (CSIRO, Melbourne), pp. 393-408.
- Jeffries, H. E. (1991): "UNC Solar Radiation Models," unpublished draft report for EPA Cooperative Agreements CR813107, CR813964 and CR815779". Undated.
- Jeffries, H. E., K. G. Sexton, J. R. Arnold, and T. L. Kale (1989): "Validation Testing of New Mechanisms with Outdoor Chamber Data. Volume 2: Analysis of VOC Data for the CB4 and CAL Photochemical Mechanisms," Final Report, EPA-600/3-89-010b.
- Jeffries, H. E. and R. Crouse (1991): "Scientific and Technical Issues Related to the Application of Incremental Reactivity. Part II: Explaining Mechanism Differences," Report prepared for Western States Petroleum Association, Glendale, CA, October.
- Pitts, J. N., Jr., E. Sanhueza, R. Atkinson, W. P. L. Carter, A. M. Winer, G. W. Harris, and C. N. Plum (1984): "An Investigation of the Dark Formation of Nitrous Acid in Environmental Chambers," Int. J. Chem. Kinet., 16, 919-939.
- Stockwell, W. R., P. Middleton, J. S. Chang, and X. Tang (1990): "The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling," J. Geophys. Res. <u>95</u>, 16343- 16376.
- Taylor, W. D., T. D. Allison, M. J. Moscato, G. B. Fazekas, R. Kozlowski, and G. A. Takacs (1980): Int. J. Chem. Kinet. 12, 231-240.

- Tuazon, E. C., R. Atkinson, C. N. Plum, A. M. Winer, and J. N. Pitts, Jr. (1983): "The Reaction of Gas-Phase N_2O_5 with Water Vapor," Geophys. Res. Lett. <u>10</u>, 953-956.
- Zafonte, L., P. L. Rieger, and J. R. Holmes (1977): "Nitrogen Dioxide Photolysis in the Los Angeles Atmosphere," Environ. Sci. Technol. <u>11</u>, 483-487.

APPENDIX A LISTING OF THE CHEMICAL MECHANISM

The chemical mechanism used in the environmental chamber and atmospheric model simulations discussed in this report is given in Tables A-1 through A-4. Table A-1 lists the species used in the mechanism, Table A-2 gives the reactions and rate constants, Table A-3 gives the parameters used to calculate the rates of the photolysis reactions, and Table A-4 gives the values and derivations of the chamber-dependent parameters used when modeling the environmental chamber experiments. Footnotes to Table A-2 indicate the format used for the reaction listing.

Table A-1. List of species in the chemical mechanism used in the model simulations for this study.

Name	Description

Constant Species.

O2 Oxygen M Air H2O Water

Active Inorganic Species.

O3 Ozone NO Nitric Oxide NO₂ Nitrogen Dioxide NO3 Nitrate Radical N2O5 Nitrogen Pentoxide **HONO** Nitrous Acid HNO3 Nitric Acid Peroxynitric Acid HNO₄ Hydrogen Peroxide HO2H

Active Radical Species and Operators.

HO2. Hydroperoxide Radicals

RO2. Operator to Calculate Total Organic Peroxy Radicals RCO3. Operator to Calculate Total Acetyl Peroxy Radicals

Active Reactive Organic Product Species.

CO Carbon Monoxide HCHO Formaldehyde CCHO Acetaldehyde

RCHO Lumped C3+ Aldehydes

ACET Acetone

MEK Lumped Ketones

PHEN Phenol

Table A-1, (continued)

Table A-1, (cont	mucu)
Name	Description
CD 776	
CRES	Cresols
BALD	Aromatic aldehydes (e.g., benzaldehyde)
GLY	Glyoxal
MGLY	Methyl Glyoxal
BACL	Biacetyl or other lumped α -dicarbonyls, including α -keto esters
AFG1	Reactive Aromatic Fragmentation Products from benzene and naphthalene
AFG2	Other Reactive Aromatic Fragmentation Products
AFG3	Aromatic Fragmentation Products used in adjusted m-xylene mechanism
RNO3	Organic Nitrates
NPHE	Nitrophenols
ISOPROD	Lumped isoprene product species
PAN	Peroxy Acetyl Nitrate
PPN	Peroxy Propionyl Nitrate
GPAN	PAN Analogue formed from Glyoxal
PBZN	PAN Analogues formed from Aromatic Aldehydes
-OOH	Operator Representing Hydroperoxy Groups
Non-Reacting S	
CO2	Carbon Dioxide
-C	"Lost Carbon"
-N	"Lost Nitrogen"
H2	Hydrogen
Steady State Sp	ecies and Operators.
HO.	Hydroxyl Radicals
O	Ground State Oxygen Atoms
O*1D2	Excited Oxygen Atoms
RO2-R.	Peroxy Radical Operator representing NO to NO ₂ conversion with HO ₂ formation.
RO2-N.	Peroxy Radical Operator representing NO consumption with organic nitrate formation.
RO2-NP.	Peroxy Radical Operator representing NO consumption with nitrophenol formation
R2O2.	Peroxy Radical Operator representing NO to NO ₂ conversion.
CCO-O2.	Peroxy Acetyl Radicals
C2CO-O2.	Peroxy Propionyl Radicals
HCOCO-O2.	Peroxyacyl Radical formed from Glyoxal
BZ-CO-O2.	Peroxyacyl Radical formed from Aromatic Aldehydes
HOCOO.	Intermediate formed in Formaldehyde + HO ₂ reaction
BZ-O.	Phenoxy Radicals
BZ(NO2)-O.	Nitratophenoxy Radicals
HOCOO.	Radical Intermediate formed in the HO ₂ + Formaldehyde system.
(HCHO2)	Excited Criegee biradicals formed from =CH ₂ groups
(CCHO2)	Excited Criegee biradicals formed from =CHCH ₃ groups
(RCHO2)	Excited Criegee biradicals formed from =CHR groups, where R not CH ₃
(C(C)CO2)	Excited Criegee biradicals formed from =C(CH ₃) ₂ groups
(C(R)CO2)	Excited Criegee biradicals formed from =C(CH ₃)R or CR ₂ groups
(BZCHO2)	Excited Criegee biradicals formed from styrenes
(C:CC(C)O2)	Excited Criegee biradicals formed from isoprene
(C:C(C)CHO2)	Excited Criegee biradicals formed from isoprene
(C2(O2)CHO)	Excited Criegee biradicals formed from isoprene products

Table A-1, (continued)

Table A-1, (coll	Table A-1, (continued)						
Name	Description						
(НОССНО2)	Excited Criegee biradicals formed from isoprene products						
(HCOCHO2)	Excited Criegee biradicals formed from isoprene products						
(C2(O2)COH)	Excited Criegee biradicals formed from isoprene products						
xNO2	Operator causing NO ₂ to NO conversions in the presence of NO _x						
Primary Organ	ics Represented explicitly						
CH4	Methane						
ETHANE	Ethane						
N-C4	n-Butane						
N-C6	n-Hexane						
N-C8	n-Octane						
TOLUENE	Toluene						
M-XYLENE	m-Xylene						
ETHE	Ethene						
PROPENE	Propene						
T-2-BUTE	<u>trans</u> -2-Butene						
ISOP	Isoprene						
APIN	α-Pinene						
UNKN	Unknown biogenics.						
PTI	para Toluene Isocyanate						
MDI	Methylene Diphenylene Diisocyanate						
Lumped species	s used to represent the Base ROG mixture in the EKMA model simulations.						
ALK1	Alkanes and other saturated compounds with $k_{OH} < 10^4$ ppm ⁻¹ min ⁻¹ .						
ALK2	Alkanes and other saturated compounds with $k_{OH} \ge 10^4 \text{ ppm}^{-1} \text{ min}^{-1}$.						
ARO1	Aromatics with $k_{OH} < 2x10^4 \text{ ppm}^{-1} \text{ min}^{-1}$.						
ARO2	Aromatics with $k_{OH} \ge 2x10^4 \text{ ppm}^{-1} \text{ min}^{-1}$.						
OLE2	Alkenes (other than ethene) with $k_{OH} < 7 \times 10^4 \text{ ppm}^{-1} \text{ min}^{-1}$.						
OLE3	Alkenes with $k_{OH} \ge 7x10^4 \text{ ppm}^{-1} \text{ min}^{-1}$.						
							

Table A-2. List of reactions in the chemical mechanism used in the model simulations for this study.

Rxn.	Kinet	ic Para	meters [a]	Reactions [b]	
Label	k(300)	A	Ea	В	Reactions [D]	

Inorganic Reactions

```
NO2 + HV = NO + O
            (Phot. Set = NO2
       6.00E-34 6.00E-34 0.00 -2.30
9.69E-12 6.50E-12 -0.24 0.00
                                                O + O2 + M = O3 + M
O + NO2 = NO + O2
2
3A
       1.55E-12
                    (Falloff Kinetics)
                                                O + NO2 = NO3 + M
3B
                    9.00E-32 0.00 -2.00
        kΟ
        kINF =
                    2.20E-11 0.00 0.00
                      F = 0.60 \quad n = 1.00
                   2.00E-12 2.78 0.00
1.40E-13 4.97 0.00
       1.88E-14
                                                O3 + NO = NO2 + O2
5
       3.36E-17
                                                03 + N02 = 02 + N03
                   1.70E-11 -0.30 0.00
3.30E-39 -1.05 0.00
6
       2.80E-11
                                                NO + NO3 = 2 NO2
                                                NO + NO + O2 = 2 NO2
       1.92E-38
8
                     (Falloff Kinetics)
       1.26E-12
                                                NO2 + NO3 = N205
                    2.20E-30 0.00 -4.30
        kΩ
                   1.50E-12 0.00 -0.50
F= 0.60 n= 1.00
        kINF =
                                                N2O5 + #RCON8 = NO2 + NO3
N2O5 + H2O = 2 HNO3
       5.53E+10 9.09E+26 22.26 0.00
10
       1.00E-21
                    (No T Dependence)
                   2.50E-14
                                                NO2 + NO3 = NO + NO2 + O2
11
       4.17E-16
                                2.44 0.00
12A
            (Phot. Set = NO3NO
                                                 NO3 + HV = NO + O2
12B
            (Phot. Set = NO3NO2
                                                NO3 + HV = NO2 + O
13A
            (Phot. Set = 0303P
                                                 O3 + HV = O + O2
13B
            (Phot. Set = 0301D
                                                O3 + HV = O*1D2 + O2
                                                O*1D2 + H2O = 2 HO.
O*1D2 + M = O + M
       2.20E-10
                    (No T Dependence)
14
                   1.92E-11 -0.25 0.00
15
       2.92E-11
                    (Falloff Kinetics)
                                                HO. + NO = HONO
       4.81E-12
16
                   7.00E-31 0.00 -2.60
1.50E-11 0.00 -0.50
        kINF =
                      F= 0.60 n= 1.00
            (Phot. Set = HONO
                                                HONO + HV = HO. + NO
18
       1.13E-11
                     (Falloff Kinetics)
                                                HO. + NO2 = HNO3
                   2.60E-30 0.00 -3.20
2.40E-11 0.00 -1.30
        k0 =
        kINF =
                   F= 0.60 n= 1.00
6.45E-15 -1.65 0.00
                                                HO. + HNO3 = H2O + NO3
       1.03E-13
19
       2.40E-13
6.95E-14
                   (No T Dependence)
1.60E-12 1.87 0.00
3.70E-12 -0.48 0.00
21
                                                HO. + CO = HO2. + CO2
                                                HO. + O3 = HO2. + O2
22
                                                HO2. + NO = HO. + NO2

HO2. + NO2 = HNO4
       8.28E-12
23
       1.37E-12
                     (Falloff Kinetics)
                    1.80E-31 0.00 -3.20
        kINF =
                    4.70E-12
                               0.00 -1.40
                      F= 0.60 n= 1.00
                   4.76E+26 21.66
25
       7.92E+10
                                       0.00
                                                HNO4 + \#RCON24 = HO2. + NO2
                                                HNO4 + HO. = H2O + NO2 + O2
HO2. + O3 = HO. + 2 O2
       4.61E-12
                   1.30E-12 -0.75
                                       0.00
28
       2.08E-15
                   1.10E-14 0.99
                                        0.00
29A
       1.73E-12
                    2.20E-13 -1.23
                                        0.00
                                                HO2. + HO2. = HO2H + O2
29B
       5.00E-32
                   1.90E-33 -1.95
                                                HO2. + HO2. + M = HO2H + O2
                                        0.00
                                                HO2. + HO2. + H2O = HO2H + O2 + H2O
HO2. + HO2. + H2O = HO2H + O2 + H2O
       3.72E-30
2.65E-30
                   3.10E-34 -5.60
6.60E-35 -6.32
                                       0.00
29C
29D
                                                NO3 + HO2. = HNO3 + O2
NO3 + HO2. + M = HNO3 + O2
                    2.20E-13 -1.23
                                        0.00
30A
       1.73E-12
                   1.90E-33 -1.95
                                        0.00
30B
       5.00E-32
       3.72E-30
                   3.10E-34 -5.60
                                       0.00
                                                NO3 + HO2. + H2O = HNO3 + O2 + H2O
30C
       2.65E-30 6.60E-35 -6.32
                                                NO3 + HO2. + H2O = HNO3 + O2 + H2O
30D
                                       0.00
       (Phot. Set = H2O2 )
1.70E-12 3.30E-12 0.40 0.00
9.90E-11 4.60E-11 -0.46 0.00
                                                 HO2H + HV = 2 HO.
31
                                                HO2H + HO. = HO2. + H2O
HO. + HO2. = H2O + O2
32
Peroxy Radical Operators
                                                RO2. + NO = NO
RCO3. + NO = NO
       7.68E-12 4.20E-12 -0.36 0.00
B1
B2
       2.25E-11
                     (Falloff Kinetics)
                    5.65E-28 0.00 -7.10
                    2.64E-11 0.00 -0.90
F= 0.27 n= 1.00
        kINF =
       1.04E-11
                     (Falloff Kinetics)
                                                RCO3. + NO2 = NO2
                   2.57E-28 0.00 -7.10
1.20E-11 0.00 -0.90
        kINF =
                   F= 0.30 n= 1.00
3.40E-13 -1.59 0.00
3.40E-13 -1.59 0.00
                                                RO2. + HO2. = HO2. + RO2-HO2-PROD
RCO3. + HO2. = HO2. + RO2-HO2-PROD
       4.90E-12
R5
       4.90E-12
B6
                                                RO2. + RO2. = RO2-RO2-PROD
       1.00E-15
                    (No T Dependence)
В8
```

Table A-2 (continued)

```
Kinetic Parameters [a]
Rxn.
                                                       Reactions [b]
Label k(300)
       1.09E-11 1.86E-12 -1.05 0.00
1.64E-11 2.80E-12 -1.05 0.00
                                                       RO2. + RCO3. = RO2-RO2-PROD
RCO3. + RCO3. = RO2-RO2-PROD
B9
B10
              (Same k as for RO2.
                                                       RO2-R. + NO = NO2 + HO2.
B12
              (Same k as for RO2.
                                                       RO2-R. + HO2. = -OOH
В13
              (Same k as for RO2.
                                                       RO2-R. + RO2. = RO2. + 0.5 HO2.
B14
              (Same k as for RO2.
                                                       RO2-R. + RCO3. = RCO3. + 0.5 HO2.
B19
              (Same k as for RO2.
                                                       RO2-N. + NO = RNO3
                                                       RO2-N. + HO2. = -OOH + MEK + 1.5 -C
B20
              (Same k as for RO2.
                                                       RO2-N. + RO2. = RO2. + 0.5 HO2. + MEK + 1.5 -C
B21
              (Same k as for RO2.
                                                       RO2-N. + RCO3. = RCO3. + 0.5 HO2. + MEK + 1.5 -C
              (Same k as for RO2.
B22
B15
                                                       R202. + NO = NO2
              (Same k as for RO2.
                                                       R2O2. + HO2. =
R2O2. + RO2. = RO2.
В16
              (Same k as for RO2.
              (Same k as for RO2.
              (Same k as for RO2.
B18
                                                       R202. + RC03. = RC03.
B23
              (Same k as for RO2.
                                                       RO2-XN. + NO = -N
B24
              (Same k as for RO2.
                                                       RO2-XN. + HO2. = -OOH
                                                       RO2-XN. + RO2. = RO2. + 0.5 HO2.
B25
              (Same k as for RO2.
                                                       RO2-XN. + RCO3. = RCO3. + HO2.
B26
              (Same k as for RO2.
G2
                                                       RO2-NP. + NO = NPHE
              (Same k as for RO2.
                                                       RO2-NP. + HO2. = -OOH + 6 -C
RO2-NP. + RO2. = RO2. + 0.5 HO2. + 6 -C
              (Same k as for RO2. (Same k as for RO2.
G3
G4
                                                       RO2-NP. + RCO3. = RCO3. + HO2. + 6 - C
G5
              (Same k as for RO2.
Operator Added to Represent Possible NO2 to NO Conversions
              (Same k as for BZ-O.
                                                       xNO2 + NO2 = NO
              (Same k as for BZ-O.
                                                       xNO2 + HO2. =
              (Same k as for BZ-O.
                                                       xNO2 =
Excited Criegee Biradicals
                                                       (HCHO2) = 0.7 HCOOH + 0.12 "HO. + HO2. + CO" + 0.18 "H2 +
                     (fast)
                                                          CO2 "
RZ2
                     (fast)
                                                        (CCHO2) = 0.25 CCOOH + 0.15 "CH4 + CO2" + 0.6 HO. +
                                                       (CCHO2) = 0.25 CCOOH + 0.15 "CH4 + CO2" + 0.6 HO. + 0.3 "CCO-O2. + RCO3." + 0.3 "RO2-R. + HCHO + CO + RO2." (RCHO2) = 0.25 CCOOH + 0.15 CO2 + 0.6 HO. + 0.3 "C2CO-O2. + RCO3." + 0.3 "RO2-R. + CCHO + CO + RO2." + 0.55 -C (C(C)CO2) = HO. + R2O2. + HCHO + CCO-O2. + RCO3. + RO2. (C(R)CO2) = HO. + CCO-O2. + CCHO + R2O2. + RCO3. + RO2. (CYCCO2) = 0.3 "HO. + C2CO-O2. + R2O2. + RCO3. + RO2." + 0.3 RCHO + 4.2 -C (BZCHO2) = 0.5 "BZ-O. + R2O2. + CO + HO."
RZ3
                     (fast)
R7.4
                     (fast.)
R7.5
                     (fast)
RZ6
                     (fast)
RZ8
                     (fast)
                                                        (C:CC(C)O2) = HO. + R2O2. + HCHO + C2CO-O2. + RO2. + RCO3.
ISZ1
                     (fast)
                                                        (C:C(C)CHO2) = 0.75 RCHO + 0.25 ISOPROD + 0.5 -C
ISZ2
                     (fast)
                                                       (C2(O2)CHO) = HO. + R2O2. + HCHO + HCCCO-O2. + RO2. + RCO3.

(HOCCHO2) = 0.6 HO. + 0.3 "CCO-O2. + RCO3." + 0.3 "RO2-R. + HCHO + CO + RO2." + 0.8 -C

(HCCCHO2) = 0.12 "HO2. + 2 CO + HO." + 0.74 -C +
MAZ1
                     (fast)
M1Z1
                     (fast)
M271
                     (fast)
                                                          0.51 "CO2 + HCHO"
M2.7.2
                     (fast.)
                                                       (C2(O2)COH) = HO. + MGLY + HO2. + R2O2. + RO2.
Organic Product Species
        \begin{array}{cccc} (\mbox{Phot. Set} = \mbox{CO2H} & ) \\ 1.81\mbox{E}-12 & 1.18\mbox{E}-12 & -0.25 & 0.00 \\ 3.71\mbox{E}-12 & 1.79\mbox{E}-12 & -0.44 & 0.00 \end{array}
                                                       -OOH + HV = HO2. + HO.
B7A
                                                       HO. + -OOH = HO.
                                                       HO. + -OOH = RO2-R. + RO2.
              (Phot. Set = HCHONEWR)
(Phot. Set = HCHONEWM)
                                                       HCHO + HV = 2 HO2.
                                                       HCHO + HV = H2 + CO
C2
                                                       HCHO + HO. = HO2. + CO + H2O
HCHO + HO2. = HOCOO.
        9.76E-12 1.13E-12 -1.29
7.79E-14 9.70E-15 -1.24
                                             2.00
C3
                                             0.00
C4
                                                       HOCOO. = HO2. + HCHO
HOCOO. + NO = -C + NO2 + HO2.
        1.77E+02 2.40E+12 13.91 0.00
C4A
C4B
        (Same k as for RO2. ) 6.38E-16 2.80E-12 5.00 0.00
                                                       HCHO + NO3 = HNO3 + HO2. + CO
C9
       1.57E-11 5.55E-12 -0.62 0.00
                                                       CCHO + HO. = CCO-O2. + H2O + RCO3.
            (Phot. Set = CCHOR
                                                       CCHO + HV = CO + HO2. + HCHO + RO2-R. + RO2.
C11A
```

Table A-2 (continued)

```
Rxn.
            Kinetic Parameters [a]
                                              Reactions [b]
Label k(300)
                                              CCHO + NO3 = HNO3 + CCO-O2 + RCO3
C12
      2.84E-15 1.40E-12 3.70 0.00
C25
      1.97E-11 8.50E-12 -0.50 0.00
                                              RCHO + HO. = C2CO-O2. + RCO3.
           (Phot. Set = RCHO
                                              RCHO + HV = CCHO + RO2-R. + RO2. + CO + HO2.
C26
C27
       2.84E-15 1.40E-12 3.70 0.00
                                              NO3 + RCHO = HNO3 + C2CO-O2. + RCO3.
C38
       2.23E-13 4.81E-13 0.46 2.00
                                              ACET + HO. = R2O2. + HCHO + CCO-O2. + RCO3. + RO2.
           (Phot. Set = ACET-93C)
C39
                                              ACET + HV = CCO-O2. + HCHO + RO2-R. + RCO3. + RO2.
C44
      1.16E-12 2.92E-13 -0.82 2.00
                                              MEK + HO. = H2O + 0.5 "CCHO + HCHO + CCO-O2. + C2CO-O2." +
                                                RCO3. + 1.5 "R2O2. + RO2."
                                              MEK + HV + #0.1 = CCO-O2. + CCHO + RO2-R. + RCO3. + RO2.
C57
           (Phot. Set = KETONE )
                                              RNO3 + HO. = NO2 + 0.155 MEK + 1.05 RCHO + 0.48 CCHO + 0.16 HCHO + 0.11 -C + 1.39 "R2O2. + RO2."
C95
      2.07E-12 2.19E-11 1.41 0.00
           (Phot. Set = GLYOXAL1)
                                              GLY + HV = 0.8 HO2. + 0.45 HCHO + 1.55 CO
                                              GLY + HV + #0.029 = 0.13 HCHO + 1.87 CO
GLY + HO. = 0.6 HO2. + 1.2 CO + 0.4 "HCOCO-O2. + RCO3."
            (Phot. Set = GLYOXAL2)
C58B
C59
      1.14E-11
                  (No T Dependence)
C60
           (Same k as for CCHO
                                              GLY + NO3 = HNO3 + 0.6 HO2. + 1.2 CO + 0.4 "HCOCO-O2. +
                                                RCO3."
                                              MGLY + HV = HO2. + CO + CCO-O2. + RCO3.
MGLY + HV + 0.107 = HO2. + CO + CCO-O2. + RCO3.
MGLY + HO. = CO + CCO-O2. + RCO3.
C68A
           (Phot. Set = MEGLYOX1)
           (Phot. Set = MEGLYOX2)
C68B
C69
      1.72E-11
                   (No T Dependence)
           (Same k as for CCHO
                                              MGLY + NO3 = HNO3 + CO + CCO-O2. + RCO3.
C70
G7
      1.14E-11
                   (No T Dependence)
                                              HO. + AFG1 = HCOCO-O2. + RCO3.
           (Phot. Set = ACROLEIN)
                                              AFG1 + HV + #0.029 = HO2. + HCOCO-O2. + RCO3.
G8
U2OH
     1.72E-11
                    (No T Dependence)
                                              HO. + AFG2 = C2CO-O2. + RCO3.
U2HV
          (Phot. Set = ACROLEIN)
                                              AFG2 + HV = HO2. + CO + CCO-O2. + RCO3.
G46
      2.63E-11
                   (No T Dependence)
                                              HO. + PHEN = 0.15 RO2-NP. + 0.85 RO2-R. + 0.2 GLY +
                                                4.7 -C + RO2.
                                              NO3 + PHEN = HNO3 + BZ-O.
G51
       3.60E-12
                   (No T Dependence)
                                              HO. + CRES = 0.15 \text{ RO2-NP}. + 0.85 \text{ RO2-R}. + 0.2 \text{ MGLY} +
G52
       4.20E-11
                   (No T Dependence)
                                                5.5 - C + RO2.
G57
       2.10E-11
                    (No T Dependence)
                                              NO3 + CRES = HNO3 + BZ-O. + -C
                                              BALD + HO. = BZ-CO-O2. + RCO3.
BALD + HV + #0.05 = 7 -C
G30
      1.29E-11
                   (No T Dependence)
      (Phot. Set = BZCHO )
2.61E-15 1.40E-12 3.75 0.00
G31
G32
                                              BALD + NO3 = HNO3 + BZ-CO-O2.
                                              NPHE + NO3 = HNO3 + BZ(NO2)-O.
G58
           E-12 (No T Dependence) (Same k as for BZ-0.
      3.60E-12
                                              BZ(NO2)-O. + NO2 = 2 -N + 6 -C
BZ(NO2)-O. + HO2. = NPHE
BZ(NO2)-O. = NPHE
G59
                                        )
G60
            (Same k as for RO2.
           (Same k as for BZ-O.
G61
C13
           (Same k as for RCO3.
                                              CCO-O2. + NO = CO2 + NO2 + HCHO + RO2-R. + RO2.
                                              CCO-O2. + NO2 = PAN
C14
            (Same k as for RCO3.
                                              CCO-O2. + HO2. = -OOH + CO2 + HCHO
C15
            (Same k as for RCO3.
                                              CCO-O2. + RO2. = RO2. + 0.5 HO2. + CO2 + HCHO CCO-O2. + RCO3. = RCO3. + HO2. + CO2 + HCHO PAN = CCO-O2. + NO2 + RCO3.
C16
            (Same k as for RCO3.
C17
            (Same k as for RCO3.
       6.50E-04
                   (Falloff Kinetics)
C18
        k0 =
                 4.90E-03 23.97 0.00
4.00E+16 27.08 0.00
        kINF =
                    F= 0.30 n= 1.00
       (Same k as for RCO3.
8.40E-12 (No T Dependence)
C28
                                              C2CO-O2. + NO = CCHO + RO2-R. + CO2 + NO2 + RO2.
C29
                                              C2CO-O2. + NO2 = PPN
C30
           (Same k as for RCO3.
                                              C2CO-O2. + HO2. = -OOH + CCHO + CO2
                                              C2CO-O2. + RO2. = RO2. + 0.5 HO2. + CCHO + CO2
C2CO-O2. + RCO3. = RCO3. + HO2. + CCHO + CO2
C31
            (Same k as for RCO3.
C32
      (Same k as for RCO3. ) 6.78E-04 1.60E+17 27.97 0.00
C33
                                              PPN = C2CO-O2. + NO2 + RCO3.
                                              HCOCO-O2. + NO = NO2 + CO2 + CO + HO2.
C62
           (Same k as for RCO3.
                                              HCOCO-O2. + NO2 = GPAN
            (Same k as for RCO3.
C63
                                              HCOCO-O2. + HO2. = -O0H + CO2 + CO

HCOCO-O2. + RO2. = RO2. + 0.5 HO2. + CO2 + CO

HCOCO-O2. + RCO3. = RCO3. + HO2. + CO2 + CO
            (Same k as for RCO3.
C65
            (Same k as for RCO3.
C66
           (Same k as for RCO3.
C67
                                              GPAN = HCOCO-O2. + NO2 + RCO3.
C64
           (Same k as for PAN
```

Table A-2 (continued)

```
Kinetic Parameters [a]
Rxn.
                                                 Reactions [b]
Label k(300)
                                                  BZ-CO-O2. + NO = BZ-O. + CO2 + NO2 + R2O2. + RO2.
G33
            (Same k as for RCO3.
                                                 BZ-O. + NO2 = NPHE
BZ-O. + HO2. = PHEN
       3.53E-11 1.30E-11 -0.60 0.00
G43
G44
            (Same k as for RO2.
       1.00E-03
G45
                    (No T Dependence)
                                                  BZ-O. = PHEN
G34
       8.40E-12
                     (No T Dependence)
                                                  BZ-CO-O2. + NO2 = PBZN
             (Same k as for RCO3.
                                                  BZ-CO-O2. + HO2. = -OOH + CO2 + PHEN
G36
G37
             (Same k as for RCO3.
                                                  BZ-CO-O2. + RO2. = RO2. + 0.5 HO2. + CO2 + PHEN
                                                  BZ-CO-O2. + RCO3. = RCO3. + HO2. + CO2 + PHEN
G38
             (Same k as for RCO3.
G35
       2.17E-04 1.60E+15 25.90 0.00
                                                 PBZN = BZ-CO-O2. + NO2 + RCO3.
                                                 ISOPROD + Ho. = 0.293 CO + 0.252 CCHO + 0.126 HCHO + 0.041 GLY + 0.021 RCHO + 0.168 MGLY + 0.314 MEK +
                    (No T Dependence)
IPOH 3.36E-11
                                                    0.503 RO2-R. + 0.21 CCO-O2. + 0.288 C2CO-O2. + 0.21 R2O2. + 0.713 RO2. + 0.498 RCO3. + -0.112 -C
                                                  ISOPROD + 03 = 0.02 CCHO + 0.04 HCHO + 0.01 GLY + 0.84 MGLY + 0.09 MEK + 0.66 (HCHO2) + 0.09 (HCOCHO2) +
IPO3 7.11E-18
                     (No T Dependence)
                                                    0.18 (HOCCHO2) + 0.06 (C2(O2)CHO) + 0.01 (C2(O2)COH) +
                                                     -0.39 -C
                                                  ISOPROD + HV + 0.0036 = 0.333 CO + 0.067 CCHO + 0.9 HCHO + 0.033 MEK + 0.333 HO2. + 0.7 RO2-R. + 0.267 CCO-O2. +
            (Phot. Set = ACROLEIN)
IPHV
                                                 0.7 C2CO-O2. + 0.7 RO2. + 0.967 RCO3. + -0.133 -C

ISOPROD + NO3 = 0.643 CO + 0.282 HCHO + 0.85 RNO3 +

0.357 RCHO + 0.925 HO2. + 0.075 C2CO-O2. + 0.075 R2O2. +

0.925 RO2. + 0.075 RCO3. + 0.075 HNO3 + -2.471 -C
IPN3 1.00E-15 (No T Dependence)
Hydrocarbon Species Represented Explicitly
                                                 METHANE + HO. = RO2-R. + HCHO + RO2.
       8.71E-15 6.25E-13 2.55
                                        2.00
       2.74E-13 1.28E-12 0.92
                                        2.00
                                                 ETHANE + HO. = RO2-R. + CCHO + RO2.
       2.56E-12 1.36E-12 -0.38 2.00
                                                 N-C4 + HO. = 0.076 RO2-N. + 0.924 RO2-R. + 0.397 R2O2. +
                                                    0.001 HCHO + 0.571 CCHO + 0.14 RCHO + 0.533 MEK + -0.076 -C + 1.397 RO2.
                                                 N-C6 + HO. = 0.185 RO2-N. + 0.815 RO2-R. + 0.738 R2O2. +
       5.63E-12 1.35E-11 0.52 0.00
                                                    0.02 CCHO + 0.105 RCHO + 1.134 MEK + 0.186 -C +
                                                    1.738 RO2.
       8.76E-12 3.15E-11 0.76 0.00
                                                 N-C8 + HO. = 0.333 RO2-N. + 0.667 RO2-R. + 0.706 R2O2. +
                                                    0.002 RCHO + 1.333 MEK + 0.998 -C + 1.706 RO2.
       5.91E-12 1.81E-12 -0.70 0.00
                                                 TOLUENE + HO. = 0.085 BALD + 0.26 CRES + 0.118 GLY +
                                                    0.964 MGLY + 0.259 AFG2 + 0.74 RO2-R. + 0.26 HO2. +
                                                    0.681 -C + 0.74 RO2.
                                                 M-XYLENE + HO. = 0.04 BALD + 0.18 CRES + 0.108 GLY + 1.599 MGLY + 0.461 AFG2 + 0.82 RO2-R. + 0.18 HO2. + 0.063 -C + 0.82 RO2.
       2.36E-11 (No T Dependence)
                                                    0.82 RO2.
       8.43E-12 1.96E-12 -0.87
                                        0.00
                                                  ETHENE + HO. = RO2-R. + RO2. + 1.56 HCHO + 0.22 CCHO
                                        0.00
                                                 ETHENE + 03 = HCHO + (HCHO2)
ETHENE + NO3 = R2O2. + RO2. + 2 HCHO + NO2
                    9.14E-15 5.13
       1.68E-18
                    4.39E-13 4.53
       2.18E-16
       7.42E-13 1.04E-11 1.57
                                         0.00
                                                  ETHENE + O = RO2-R. + HO2. + RO2. + HCHO + CO
       2.60E-11 4.85E-12 -1.00 0.00
1.05E-17 5.51E-15 3.73 0.00
                                                  PROPENE + HO. = RO2-R. + RO2. + HCHO + CCHO
                                                 PROPENE + 03 = 0.6 HCHO + 0.4 CCHO + 0.4 (HCHO2) +
                                                    0.6 (CCHO2)
                                                 PROPENE + NO3 = R2O2. + RO2. + HCHO + CCHO + NO2 PROPENE + O = 0.4\ \text{HO2}. + 0.5\ \text{RCHO} + 0.5\ \text{MEK} + -0.5\ \text{-C}
       9.74E-15 4.59E-13 2.30 0.00
       4.01E-12 1.18E-11 0.64
                                        0.00
       6.30E-11
                   1.01E-11 -1.09
                                                  T-2-BUTE + HO. = RO2-R. + RO2. + 2 CCHO
                                                 T-2-BUTE + NO3 = CCHO + (CCHO2)
T-2-BUTE + NO3 = R2O2. + RO2. + 2 CCHO + NO2
       1.95E-16
                    6.64E-15 2.10
                                        0.00
                    1.10E-13 -0.76
                                         2.00
       3.92E-13
       2.34E-11
                   2.26E-11 -0.02
                                        0.00
                                                 T-2-BUTE + O = 0.4 HO2. + 0.5 RCHO + 0.5 MEK + 0.5 -C
       9.88E-11 2.54E-11 -0.81 0.00
                                                  ISOP + HO. = 0.088 RO2-N. + 0.912 RO2-R. + 0.629 HCHO +
                                                    0.912 ISOPROD + 0.079 R202. + 1.079 R02. + 0.283 -C
                                                  ISOP + 03 = 0.4 HCHO + 0.6 ISOPROD + 0.55 (HCHO2) + 0.2 (C:CC(C)O2) + 0.2 (C:C(C)CHO2) + 0.05 -C
       1.34E-17 7.86E-15 3.80 0.00
                                                 U.2 (C:CC(C)O2) + U.2 (C:C(C)CHO2) + U.05 -C

ISOP + O = U.75 "ISOPROD + -C "+ U.25 "C2CO-O2. + RCO3. +

2 HCHO + RO2-R. + RO2."

ISOP + NO3 = U.8 "RCHO + RNO3 + RO2-R." + U.2 "ISOPROD +

R2O2. + NO2" + RO2. + -2.2 -C
       3.60E-11
                   (No T Dependence)
       6.81E-13 3.03E-12 0.89 0.00
```

Table A-2 (continued)

```
Kinetic Parameters [a]
Rxn.
                                               Reactions [b]
Label k(300)
                                               ISOP + NO2 = 0.8 "RCHO + RNO3 + RO2-R." + 0.2 "ISOPROD +
R2O2. + NO" + RO2. + -2.2 -C
       1.50E-19
                   (No T Dependence)
       5.31E-11 1.21E-11 -0.88 0.00
                                               APIN + HO. = RO2-R. + RCHO + RO2. + 7 -C
       1.00E-16 9.90E-16 1.37 0.00
                                                APIN + O3 = 0.05 HCHO + 0.2 CCHO + 0.5 RCHO + 0.61 MEK +
                                                  0.075 CO + 0.1 O3OL-SB + 0.05 CCO-O2. + 0.05 C2CO-O2. +
                                                  0.1 RCO3. + 0.105 HO2. + 0.16 HO. + 0.135 RO2-R. + 0.15 R2O2. + 0.285 RO2. + 5.285 -C
       6.10E-12 1.19E-12 -0.97 0.00
                                                APIN + NO3 = NO2 + R2O2. + RCHO + RO2. + 7 - C
                                               3.00E-11
                     (No T Dependence)
       6.57E-11
                     (No T Dependence)
       5.85E-17
                     (No T Dependence)
                                                  0.21 RO2. + 0.025 CCO-O2. + 0.025 C2CO-O2. + 0.05 RCO3. +
                                                  0.275 HCHO + 0.175 CCHO + 0.5 RCHO + 0.41 MEK + 0.185 CO +
                                                  5.925 -C + 0.11 HO. + 0.192 O3OL-SB
                                               4.30E-12
                     (No T Dependence)
       2.90E-11
                     (No T Dependence)
Models for PTI and MDI Reactions [c]
                                               PTI + HO. = HO. + CRES + 0.12 xNO2

PTI + HO. = 0.2 HO. + 0.7 HO2. + CRES + 0.3 MGLY

PTI + HO. = 0.6 HO2. + 0.2 (RO2-R. + RO2.) + 0.2 (RO2-NP. +
       5.90E-12
                     (No T Dependence)
       5.90E-12
                     (No T Dependence)
(No T Dependence)
       5.90E-12
                                                  RO2.) + MGLY
                                               MDI + HO. = HO. + CRES + 0.12 xNO2
MDI + HO. = 0.2 HO. + 0.7 HO2. + CRES + 0.3 MGLY
       1.18E-12
                     (No T Dependence)
       1.18E-12
  в
                     (No T Dependence)
       1.18E-12
                     (No T Dependence)
                                                MDI + HO. = 0.6 HO2. + 0.2 (RO2-R. + RO2.) + 0.2 (RO2-NP. +
                                                  RO2.) + MGLY
Lumped Species used in EKMA Simulations [d]
                                               ALK1 + HO. = 0.911 RO2-R. + 0.074 RO2-N. + 0.005 RO2-XN. + 0.011 HO2. + 0.575 R2O2. + 1.564 RO2. + 0.065 HCHO +
A1OH 3.46E-12 2.56E-12 -0.18 0.00
                                                  0.339 CCHO + 0.196 RCHO + 0.322 ACET + 0.448 MEK +
                                                  0.024 CO + 0.025 GLY + 0.051 -C
A2OH 9.14E-12 5.12E-12 -0.35 0.00
                                               ALK2 + HO. = 0.749 RO2-R. + 0.249 RO2-N. + 0.002 RO2-XN. +
                                                  0.891 R202. + 1.891 R02. + 0.029 HCHO + 0.048 CCHO + 0.288 RCHO + 0.028 ACET + 1.105 MEK + 0.043 CO +
                                                  0.018 CO2 + 1.268 -C
                                               ARO1 + HO. = 0.742 RO2-R. + 0.258 HO2. + 0.742 RO2. + 0.015 PHEN + 0.244 CRES + 0.08 BALD + 0.124 GLY +
B1OH 5.87E-12
                   (No T Dependence)
                                                  0.681 MGLY + 0.11 AFG1 + 0.244 AFG2 + 1.857 -C
                                               ARO2 + HO. = 0.82 RO2-R. + 0.18 HO2. + 0.82 RO2. + 0.18 CRES + 0.036 BALD + 0.068 GLY + 1.02 MGLY +
B2OH 3.22E-11 1.20E-11 -0.59 0.00
                                                  0.532 AFG2 + 2.588 -C
                                               OLE2 + HO. = 0.858 RO2-R. + 0.142 RO2-N. + RO2. + 0.858 HCHO + 0.252 CCHO + 0.606 RCHO + 1.267 -C
O2OH 3.17E-11 2.22E-12 -1.59 0.00
                                               OLE2 + O3 = 0.6 HCHO + 0.635 RCHO + 0.981 -C + 0.4 (HCHO2) + 0.529 (CCHO2) + 0.071 (RCHO2)
0203 1.08E-17 1.42E-15 2.91 0.00
O2N3 1.16E-14 1.99E-13 1.69
                                       0.00
                                                OLE2 + NO3 = R2O2. + RO2. + HCHO + 0.294 CCHO + 0.706 RCHO +
                                                  1.451 -C + NO2
                                                OLE2 + O = 0.4 HO2. + 0.5 RCHO + 0.5 MEK + 1.657 - C
O2OA 4.11E-12 4.51E-12 0.06
                                       0.00
O3OH 6.23E-11 4.54E-12 -1.56
                                       0.00
                                                OLE3 + HO. = 0.861 \text{ RO2-R.} + 0.139 \text{ RO2-N.} + \text{RO2.}
                                                  0.24 HCHO + 0.661 CCHO + 0.506 RCHO + 0.113 ACET + 0.086 MEK + 0.057 BALD + 0.848 -C
                                               OLE3 + O3 = 0.203 HCHO + 0.358 CCHO + 0.309 RCHO + 0.061 MEK + 0.027 BALD + 0.976 -C + 0.076 (HCHO2) +
O3O3 1.70E-16 1.77E-15 1.40 0.00
                                               0.409 (CCHO2) + 0.279 (RCHO2) + 0.158 (C(C)CO2 + 0.039 (C(R)CO2 + 0.04 (BZCHO2))

OLE3 + NO3 = R2O2. + RO2. + 0.278 HCHO + 0.767 CCHO + 0.588 RCHO + 0.131 ACET + 0.1 MEK + 0.066 BALD +
O3N3 1.07E-12 3.19E-13 -0.72 0.00
                                                  0.871 -C + NO2
                                                OLE3 + O = 0.4 HO2. + 0.5 RCHO + 0.5 MEK + 2.205 - C
O3OA 2.52E-11 8.66E-12 -0.64 0.00
```

Table A-2 (continued)

Rxn.	Kinet	tic Param	neters [a]	Reactions [b]
Label	k(300)	A	Ea	В	Reactions [D]

0.001 RCHO + 1.223 MEK + 5.004 -C + 1.644 RO2.

Reactions used to Represent Chamber-Dependent Processes [e]

O3W	(varied)	(No 7	'Dependence)	03 =
N25I	(varied)	(No T	Dependence)	N2O5 = 2 NOX-WALL
N25S	(varied)	(No T	Dependence)	N2O5 + H2O = 2 NOX-WALL
NO2W	(varied)	(No T	Dependence)	NO2 = (yHONO) HONO + (1-yHONO) NOX-WALL
XSHC	(varied)	(No T	Dependence)	HO. = HO2.
RSI	(Phot.	Set =	: NO2)	HV + #RS/K1 = HO.
ONO2	(Phot.	Set =	: NO2)	HV + #E-NO2/K1 = NO2 + #-1 NOX-WALL

[[]a] Except as noted, the expression for the rate constant is $k = A e^{Ea/RT} (T/300)^B$. Rate constants and A factor are in cm, molecule, sec. units. Units of Ea is kcal mole¹. "Phot Set" means this is a photolysis reaction, with the absorption coefficients and quantum yields given in Table A-3. In addition, if "#(number)" or "#(parameter)" is given as a reactant, then the value of that number or parameter is multiplied by the result in the "rate constant expression" columns to obtain the rate constant used. Furthermore, "#RCONnn" as a reactant means that the rate constant for the reaction is obtained by multiplying the rate constant given by that for reaction "nn". Thus, the rate constant given is actually an equilibrium constant.

rate constant given is actually an equilibrium constant.

[b] The format of the reaction listing is the same as that used in the documentation of the detailed mechanism (Carter 1990).

[[]c] First column gives model designation for alternative PTI or MDI mechanisms which were examined. See text.

[[]d] The rate constants and product yield parameters are based on the mixture of species in the base ROG mixture which are being represented.

[[]e] See Table A-4 for the values of the parameters used for the specific chambers modeled in this study.

Table A-3. Absorption cross sections and quantum yields for photolysis reactions.

									-									
WL	Abs	QY	WL	Abs	QY	WL		Abs	QY	WL		Abs		QY	WL		Abs	QY
(nm)	(cm^2)		(nm)	(cm^2)		(nm)	(cm^2)		(nm	1)	(cm^2)			(nm)		(cm^2)	
	ysis File																	
	2.83E-20 4.02E-20			1.45E-20 5.54E-20				.90E-20 5.99E-20				2.05E-2 3.18E-2					13E-20 67E-20	
	1.17E-19			1.66E-19				76E-19				2.25E-1					54E-19	
325.0	2.79E-19	0.992	330.0	2.99E-19	0.991	335.0	0 3	3.45E-19	0.990	340.	0 3	3.88E-1	9 0	.989	345.0	4.	07E-19	0.988
	4.10E-19			5.13E-19				1.51E-19				5.78E-1					42E-19	
	5.35E-19 5.95E-19			5.99E-19 5.94E-19				5.98E-19 5.95E-19				5.97E-1 5.96E-1					96E-19 98E-19	
	5.99E-19			6.00E-19		391.0	0 5	.98E-19	0.959	392.		5.96E-1					93E-19	
	5.91E-19			5.89E-19				.06E-19				5.24E-1					41E-19	
	6.59E-19 6.41E-19			6.76E-19 6.32E-19				5.67E-19 5.21E-19				5.58E-1 5.10E-1					50E-19 99E-19	
409.0	5.88E-19	0.153	410.0	5.77E-19	0.130	411.0	0 5	.88E-19	0.110	412.	0 5	5.98E-1	9 0	.094	413.0	6.	09E-19	0.083
	6.19E-19 6.24E-19			6.30E-19 6.23E-19				5.29E-19 5.18E-19				5.27E-1 5.14E-1					26E-19 09E-19	
	6.05E-19			6.00E-19		421.0	0).IOE-19	0.012	722.	0 0	J.14E-1	9 0	.008	423.0	0.	096-19	0.004
Dh-+-1		270 2370																
	ysis File 2.77E-18			5.14E-18	0.250	595.0	0 4	1.08E-18	0.400	600.	0 2	2.83E-1	в о	.250	605.0	3.	45E-18	0.200
610.0	1.48E-18	0.200	615.0	1.96E-18	0.100			3.58E-18				9.25E-1					66E-18	
635.0	1.45E-18	0.030	640.0	1.11E-18	0.000													
Photol	ysis File	e = NO3NO	2															
	0.00E+00			3.00E-20				1.00E-20				5.00E-2					00E-20	
	1.00E-19 2.80E-19			1.30E-19 3.30E-19				80E-19 3.70E-19				l.90E-1 4.30E-1					20E-19 10E-19	
475.0	6.00E-19	1.000	480.0	6.40E-19	1.000	485.0	0 6	.90E-19	1.000	490.	0 8	3.80E-1	9 1	.000	495.0	9.	50E-19	1.000
	1.01E-18 1.48E-18			1.10E-18 1.94E-18				.32E-18 2.04E-18				1.40E-1					45E-18 81E-18	
	2.36E-18			1.94E-18 2.68E-18				8.04E-18				l.81E-1 2.53E-1					54E-18	
575.0	2.74E-18	1.000	580.0	3.05E-18	1.000	585.0	0 2	2.77E-18	1.000	590.	0 5	5.14E-1	8 0	.750	595.0	4.	08E-18	0.600
	2.83E-18 9.25E-18			3.45E-18 5.66E-18				.45E-18		615.	0 1	1.96E-1	8 0	.250	620.0	3.	58E-18	0.200
025.0	9.23E-10	0.130	030.0	J.00E-10	0.030	033.0	0 1	.43E-10	0.000									
	ysis File			2 60= 10	0 100	000		0.45 10	0 100	000		015 1		100	004.0		725 10	0 100
	3.97E-18 2.44E-18			3.60E-18 2.21E-18				3.24E-18 2.01E-18				3.01E-1 1.76E-1					73E-18 58E-18	
290.0	1.41E-18	0.100	291.0	1.26E-18	0.100	292.0	0 1	.10E-18	0.100	293.	0 9	9.89E-1	9 0	.100	294.0	8.	59E-19	0.100
	7.70E-19			6.67E-19				.84E-19				5.07E-1					52E-19	
	3.92E-19 2.01E-19			3.42E-19 1.79E-19				3.06E-19 56E-19				2.60E-1 1.38E-1					37E-19 25E-19	
310.0	1.02E-19	0.437	311.0	9.17E-20	0.546	312.0	0 7	7.88E-20	0.652	313.	0 6	5.77E-2	0 0	.743	314.0	6.	35E-20	0.816
	5.10E-20 3.23E-20			4.61E-20				1.17E-20 70E-21				3.72E-2 4.00E-2					69E-20 00E+00	
	0.00E+00			6.70E-21 1.60E-22				70E-21				3.32E-2					06E-21	
	2.45E-21			8.70E-22				3.20E-22				1.60E-2					00E+00	
Photol	ysis File	e = 0301E)															
280.0	3.97E-18	0.900	281.0	3.60E-18				3.24E-18				3.01E-1					73E-18	
	2.44E-18 1.41E-18			2.21E-18 1.26E-18				2.01E-18 10E-18				l.76E-1 9.89E-1					58E-18 59E-19	
	7.70E-19			6.67E-19				5.84E-19				5.07E-1					52E-19	
	3.92E-19		301.0	3.42E-19	0.900			3.06E-19		303.	0 2	2.60E-1	9 0	.900			37E-19	
	2.01E-19 1.02E-19			1.79E-19 9.17E-20				.56E-19 7.88E-20				1.38E-1: 5.77E-2					25E-19 35E-20	
	5.10E-20			4.61E-20				1.17E-20				3.72E-2					69E-20	
320.0	3.23E-20	0.000																
Photol	ysis File	= HONO																
311.0	0.00E+00	1.000		2.00E-21				.20E-21				1.60E-2					20E-21	
	3.00E-21 4.27E-20			4.60E-21 4.01E-20				3.60E-20 3.93E-20				5.10E-2 4.01E-2					10E-20 04E-20	
	3.13E-20		327.0	4.12E-20	1.000			7.55E-20		329.	0 6	5.64E-2	0 1	.000			29E-20	
	8.70E-20			1.38E-19				5.91E-20 .91E-19				5.91E-2 1.63E-1					45E-20	
	5.91E-20 8.70E-20			4.58E-20 3.35E-19				91E-19 2.01E-19				1.03E-1					05E-19 54E-20	
346.0	8.32E-20	1.000	347.0	8.20E-20	1.000	348.0	0 7	7.49E-20	1.000	349.	0 7	7.13E-2	0 1	.000	350.0	6.	83E-20	1.000
	1.74E-19 1.19E-19			1.14E-19 9.35E-20				3.71E-19 7.78E-20				4.96E-1: 7.29E-2					46E-19 83E-20	
	6.90E-20			7.32E-20				0.76E-20				1.21E-1					33E-20	
366.0	2.13E-19	1.000	367.0	3.52E-19	1.000	368.0	0 4	1.50E-19	1.000	369.	0 2	2.93E-1	9 1	.000			19E-19	
	9.46E-20 1.90E-20			8.85E-20 1.50E-20				7.44E-20 90E-20				4.77E-2 5.80E-2					70E-20 78E-20	
	1.14E-19			1.40E-19				72E-19				1.99E-1					90E-19	
	1.19E-19			5.65E-20		388.0	0 3	3.20E-20	1.000	389.	0]	1.90E-2	0 1	.000	390.0	1.	20E-20	1.000
391.U	5.00E-21	1.000	392.0	0.00E+00	1.000													
	ysis File		0==								_							
	8.30E-20 2.50E-20			6.70E-20 2.00E-20				5.20E-20 50E-20				4.20E-2 1.13E-2					20E-20 70E-21	
	6.60E-21			4.90E-20				3.70E-20				2.80E-2					00E-21	
	1.50E-21			1.20E-21		335.0	0 9	0.00E-22	1.000	340.	0 7	7.00E-2	2 1	.000	345.0	5.	00E-22	1.000
350.0	3.00E-22	1.000	355.0	0.00E+00	1.000													

Table A-3. (continued)

Charles 1.1	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY
1210. 5, 778-19 1,000	<u> </u>														
866.0 3.860-20 1.000 270.0 2.500-20 1.000 280.0 1.500-20 1.000 280.0 9.000-21 1.000 300.0 5.800-21 1.000 190.0 0.000-21 1.000 300.0 1.000-20 1.000 300.0 1.000 300.0 1.000 300.0 1.000 300.0 1.000 300.0 1.000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.0000 300.0 1.000	Photo	lysis File	= CO2H												
130.0 3, 488-21 1,000 320.0 1,908-21 1,000 330.0 1,108-21 1,000 340.0 6,008-22 1,000 350.0 4,008-22 1,000 360.0 4,008-20 1,009 320.0 1,008-20 1,008-20 1,008-20 1,009 320.0 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,008-20 1,089-20 1,															
Section Company Comp	310.0	3.40E-21	1.000												
880. 0 2.498-20 0 .590															
288.6 0 3.985-20 0 .650 289.5 2 .897-20 0.656 286.0 2.2485-20 0.662 286.5 1.748-20 0.658 289.5 2.128-20 0.774 797.5 1.108-20 0.752 293.0 1.118-20 0.755 294.0 7.458-20 0.755 294.0 7.759 294.0 7.458-20 0.755 294.0 7.759 294.0 7.458-20 0.755 294.0 7.759 294.0 7.7	280.0	2.49E-20	0.590	280.5											
989.0 1.078-20 0.710				285.5	2.87E-20	0.656									
939.5 5, 938-21 0.772															
1975. 5. 1.5. 18-2. 0 . 763	292.5	5.90E-21	0.727	293.0	1.11E-20	0.731	293.5	6.26E-20	0.735	294.0	7.40E-20	0.738	294.5	5.36E-20	0.741
301.2 2.178-20 0.779 301.4 1.965-20 0.779 301.6 1.548-20 0.777 302.8 1.268-20 0.779 302.0 1.038-20 0.779 302.8 5.382-20 1.779 302.4 7.138-20 0.779 303.0 3.182-20 0.779 303.0 3.1	297.5	1.51E-20	0.763	298.0	3.69E-20	0.766	298.5	4.40E-20	0.769	299.0	3.44E-20	0.773	299.5	2.02E-20	0.776
303.2 8.18E-20 0.777 301.4 5.28F-20 0.776 304.6 4.38E-20 0.775 304.8 6.58E-20 0.776 304.0 6.96E-20 0.777 308.0 2.5.78E-20 0.776 304.6 4.5.28E-20 0.775 305.6 4.48E-20 0.775 305.2 5.128E-20 0.775 305.	301.2	2.17E-20	0.779	301.4	1.96E-20	0.779	301.6	1.54E-20	0.778	301.8	1.26E-20	0.778	302.0	1.03E-20	0.778
305. 2 5, 128-20 0, 7775 305. 4 4, 778-20 0, 7795 305. 6 4, 438-20 0, 774 305. 8 4, 605-20 0, 774 305. 0 4, 21.68-20 0, 774 307. 1, 138-20 0, 774 307. 1,															
306.6 2, 28E-20 0, 774 306.4 2, 66E-20 0, 774 306.6 2, 42E-20 0, 773 306.6 2, 42E-20 0, 773 306.8 2, 98E-20 0, 773 307.0 1, 58E-20 0, 773 307.0 1, 58E-20 0, 773 307.0 1, 58E-20 0, 773 308.0 2, 20E-20 0, 772 308.4 2, 38E-20 0, 773 308.6 3, 08E-20 0, 773 308.6 3, 08E-20 0, 772 308.0 2, 20E-20 0, 772 308.4 2, 38E-20 0, 773 308.6 3, 08E-20 0, 773 308.8 3, 38E-20 0, 773 308.0 3, 18E-20 0, 773 308.0 3, 18E-20 0, 774 308.8 3, 38E-20 0, 774															
309.9. 2., 208E-20 0.7772 308.4 2., 398E-20 0.7771 308.6 3., 308E-20 0.7771 308.8 3., 398E-20 0.7771 309.9. 3., 18E-20 0.7771 310.2 1., 26E-21 0.766 310.4 9., 26E-21 0.764 310.6 7., 718E-21 0.761 310.8 6., 08E-21 0.758 311.0 5., 18E-21 0.758 311.0 5.,	306.2	3.28E-20	0.774	306.4	2.66E-20	0.774	306.6	2.42E-20	0.773	306.8	1.95E-20	0.773	307.0	1.58E-20	0.773
1310. 2 1,26E-20 0,767 310. 4 9,26E-21 0,764 310. 6 7,71E-21 0,761 310. 8 1,04E-20 0,783 311. 0 5,13E-21 0,774 311. 2 1,47E-20 0,784 311. 4 1,45E-20 0,744 312. 6 1,13E-20 0,741 311. 8 1,04E-20 0,743 312. 0 1,43E-20 0,741 311. 8 1,04E-20 0,748 313. 0 7,43E-21 0,722 311. 4 1,45E-20 0,741 312. 8 1,44E-20 0,647 313. 8 1,44E-20 0,647 313. 8 1,44E-20 0,647 315. 2 4,37E-20 0,649 315. 6 2,63E-20 0,666 315. 8 2,82E-20 0,668 315. 8 2,82E-20 0,669 315. 6 2,83E-20 0,669 315. 6 2,83E-20 0,666 317. 8 3,44E-20 0,647 3,44E-20 0,648 3,44E-20 0,647 3,44E-20 0,647 3,44E-20 0,647 3,44E-20 0,647 3,44E-20 0,647 3,44E-20 0,648 3,44E-20 0,648 3,44E-20 0,649	308.2	2.08E-20	0.772	308.4	2.39E-20	0.772	308.6	3.08E-20	0.771	308.8	3.39E-20	0.771	309.0	3.18E-20	0.771
131.2 1.47B-20 0.737 312.4 1.35B-20 0.734 313.6 2.3B-20 0.713 313.8 3.8B-21 0.728 313.0 7.8B-21 0.725 313.13 2.4 0.755 0.755 0.715 314.4 0.745 0.715 0.715 314.6 0.755 0.715 314.6 0.755 0.715 314.6 0.755 0.715 314.8 0.755 0.715 314.8 0.755 0.715 314.8 0.755 0.715 314.8 0.755 0.715 314.8 0.755 0.755 0.715 314.8 0.755 0.7	310.2	1.26E-20	0.767												
131.2 c. 6.48F-21 0.722 313.4 1.07F-20 0.719 313.6 2.39F-20 0.716 313.8 8.36F-20 0.713 314.0 5.76F-20 0.719 313.6 2.39F-20 0.706 313.8 8.59F-20 0.689 315.0 4.91F-20 0.689 315.6 3.18 8.59F-20 0.689 315.0 4.91F-20 0.689 315.6 315.8 3.92F-20 0.686 315.8 3.92F-20 0.689 315.6 315.8 315.8 3.92F-20 0.689 315.6 315.8 315.															
1315. 2 4.37E-20 0.692	313.2	6.48E-21	0.722	313.4	1.07E-20	0.719	313.6	2.39E-20	0.716	313.8	3.80E-20	0.713	314.0	5.76E-20	0.710
1317. 2 5.07E-20 0.662	315.2	4.37E-20	0.692	315.4	3.92E-20	0.689	315.6	2.89E-20	0.686	315.8	2.82E-20	0.683	316.0	2.10E-20	0.680
319.9 (2 6.36E-21 0.622 319.4 5.36E-21 0.629 319.6 4.79E-21 0.626 319.8 6.48E-21 0.623 320.0 1.48E-20 0.621 320.2 1.47E-20 0.614 320.4 1.36E-20 0.650 320.6 1.69E-20 0.601 320.8 1.32E-20 0.595 321.0 1.48E-20 0.595 321.48E-20 0.595 321.0 1.48E-20 0.595 321.0 1.48E-20 0.595 321.0 1.48	317.2	5.07E-20	0.662	317.4	4.33E-20	0.659	317.6	4.17E-20	0.656	317.8	3.11E-20	0.653	318.0	2.64E-20	0.650
321.2 1.17E-20 0.583 321.4 1.15E-20 0.577 321.6 9.64E-21 0.570 321.8 7.26E-21 0.564 322.6 2.38E-21 0.550 323.2 32.8 32.8 32.4 4.65E-21 0.515 322.4 4.65E-21 0.515 323.6 7.00E-21 0.559 323.8 7.80E-21 0.502 324.0 7.87E-21 0.592 323.2 2.82E-21 0.502 324.0 5.60E-21 0.516 322.6 2.38E-21 0.508 323.8 7.80E-21 0.502 324.0 7.87E-21 0.450 324.2 6.59E-21 0.450 324.6 5.60E-21 0.484 324.6 4.66E-21 0.477 324.8 7.80E-21 0.502 324.0 7.87E-21 0.451 325.2 2.15E-20 0.489 325.4 3.75E-20 0.483 324.6 4.50E-20 0.484 324.6 4.10E-20 0.446 325.8 6.47E-20 0.440 326.0 7.59E-20 0.432 325.6 4.10E-20 0.446 325.8 6.47E-20 0.440 326.0 7.59E-20 0.432 325.6 4.10E-20 0.446 325.8 6.47E-20 0.440 326.0 7.59E-20 0.432 327.2 3.28E-20 0.397 327.4 2.13E-20 0.391 327.6 1.91E-20 0.384 327.8 1.42E-20 0.378 328.0 9.15E-21 0.376 328.2 4.79E-21 0.366 328.6 4.70E-20 0.385 329.8 20.3 328.4 4.99E-21 0.360 328.6 4.70E-20 0.385 329.8 20.3 328.6 4.00E-20 0.328 329.8 20.3 328.0 3.3 328.0 3.3 328.6 3.0 3.8 328.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 3.0 3.0 3.8 328.2 32.8 3.0 3.0 3.8 32.8 3.0 3.0 3.8 32.8 3.0 3.0 3.8 32.8 3.0 3.0 3.8 32.8 3.0 3.0 3.8 3.0 3.0 3.8 3.0 3.0 3.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0															
1322. 2 4. 138-21 0. 552	320.2	1.47E-20	0.614												
324. 2 6.59E-21 0.490	322.2	4.13E-21	0.552	322.4	3.36E-21	0.546	322.6	2.39E-21	0.539	322.8	2.01E-21	0.533	323.0	1.76E-21	0.527
326. 6. 51E-20 0. 428 326. 4 5.53E-20 0. 422 326. 6 5.76E-20 0. 415 326. 8 4.43E-20 0. 409 327. 0 3. 44E-20 0. 402 327. 2 3.25E-20 0. 397 327. 4 2.13E-20 0. 391 327. 6 1.91E-20 0. 384 328. 8 1.5E-20 0. 374 328. 0 3.25E-20 0. 316 328. 4 4.99E-21 0. 360 328. 6 4.70E-21 0. 323 328. 8 1.75E-20 0. 347 328. 0 3.27E-20 0. 341 329. 2 3.99E-20 0. 335 329. 4 5.13E-20 0. 329 329. 6 4.00E-20 0. 322 328. 8 3.61E-20 0. 316 330. 0 3.38B-20 0. 315 331. 4 6.16E-21 0. 267 316. 4.06E-21 0. 260 318. 8 3.61E-20 0. 326 331. 0 9.95E-21 0. 279 331. 4 6.16E-21 0. 267 316. 4.06E-21 0. 260 318. 8 3.08 5.21E-21 0. 254 331. 0 9.95E-21 0. 279 331. 4 1.33E-21 0. 267 316. 6 4.06E-21 0. 260 318. 8 5.21E-22 0. 254 331. 0 9.95E-21 0. 279 331. 4 1.33E-21 0. 267 316. 6 4.06E-21 0. 260 318. 8 5.21E-22 0. 254 331. 0 9.95E-21 0. 279 331. 4 1.33E-21 0. 267 316. 6 4.06E-21 0. 260 318. 8 5.21E-22 0. 123 334. 0 1.46E-21 0. 267 335. 2 5.25E-20 0. 326 334. 0 1.46E-21 0. 267 335. 2 5.25E-20 0. 326 334. 0 1.46E-21 0. 267 335. 2 5.25E-20 0. 326 334. 0 1.46E-21 0. 267 335. 2 5.25E-20 0. 326 334. 0 1.46E-21 0. 267 335. 2 5.25E-20 0. 326 335E-20	324.2	6.59E-21	0.490	324.4	5.60E-21	0.484	324.6	4.66E-21	0.477	324.8	4.21E-21	0.471	325.0	7.77E-21	0.465
328. 2 6.79E-21 0.366 328. 4 4.99E-21 0.360 328. 6 4.70E-21 0.353 328. 8 1.75E-20 0.347 329. 3.27E-20 0.342 329. 2 3.99E-20 0.325 329. 4 5.13E-20 0.329 329. 6 4.00E-20 0.321 330. 8 1.41E-20 0.325 331.0 3.08E-20 0.316 330.0 3.38E-20 0.326 331.2 7.76E-21 0.727 331.4 6.16E-21 0.267 331.6 4.06E-21 0.260 331.8 3.08E-21 0.254 332.0 2.41E-21 0.247 332.4 1.33E-21 0.256 332.6 2.70E-21 0.259 332.8 1.65E-21 0.223 333.0 1.17E-21 0.217 333.4 8.52E-22 0.2055 33.6 6.33E-22 0.198 333.8 5.21E-22 0.192 333.4 0 1.46E-21 0.180 333.4 9.4 1.43E-21 0.174 334.6 1.03E-21 0.167 334.8 7.19E-22 0.161 335.0 4.84E-22 0.157 335.2 2.73E-22 0.118 335.4 1.34E-22 0.113 336.6 3.30E-21 0.158 335.2 2.73E-22 0.119 335.4 1.34E-22 0.113 336.6 3.00E-21 0.105 336.8 2.40E-21 0.099 337.0 3.07E-21 0.093 337.2 2.29E-21 0.087 337.4 2.46E-21 0.081 337.6 2.92E-21 0.074 338.8 5.2E-22 0.1009 337.0 3.07E-21 0.093 339.2 4.33E-20 0.056 338.4 3.24E-20 0.051 338.6 4.79E-20 0.043 338.8 5.2E-20 0.037 339.0 5.85E-20 0.033 339.2 4.33E-20 0.056 338.4 3.24E-20 0.050 338.6 4.79E-20 0.043 338.8 5.2E-20 0.007 339.2 4.20E-20 0.056 338.4 3.24E-20 0.346 281.0 1.51E-20 0.341 281.5 1.32E-20 0.006 340.0 2.72E-20 0.006 249E-20 0.350 285.5 2.87E-20 0.346 281.0 1.51E-20 0.341 281.5 1.32E-20 0.356 282.5 7.8EE-20 0.355 285.5 2.87E-20 0.351 286.0 2.24E-20 0.296 286.5 1.74E-20 0.291 287.0 1.13E-20 0.287 2825.5 7.8EE-20 0.355 285.5 2.87E-20 0.351 286.0 2.24E-20 0.256 291.5 1.56E-20 0.254 292.0 8.65E-21 0.257 289.5 5.51E-20 0.248 295.0 2.70E-20 0.248 295.0 2.70E-20 0.248 295.0 2.70E-20 0.244 292.0 3.244 297.0 1.16E-20 0.234 295.5 3.51E-20 0.248 295.0 2.70E-20 0.248 295.0 2.70E-20 0.244 290.3 35E-20 0.254 295.0 3.16E-20 0.254 390.4 4.96E-20	326.2	6.51E-20	0.428	326.4	5.53E-20	0.422	326.6	5.76E-20	0.415	326.8	4.43E-20	0.409	327.0	3.44E-20	0.403
330.6 2.08E-20 0.304 330.4 2.16E-20 0.298 330.6 2.09E-20 0.291 330.8 1.41E-20 0.285 331.0 9.95E-21 0.274 331.2 7.76E-21 0.242 332.4 1.33E-21 0.267 331.6 4.06E-21 0.260 331.8 3.03E-21 0.254 332.0 2.41E-21 0.274 332.2 1.74E-21 0.242 332.4 1.33E-21 0.256 332.6 2.70E-21 0.229 332.8 1.65E-21 0.223 333.0 1.17E-21 0.214 332.2 8.8 E-22 0.211 333.4 8.52E-22 0.205 333.6 6.32E-22 0.198 333.8 5.21E-20 0.192 334.0 1.45E-21 0.184 334.6 1.03E-21 0.167 334.8 7.19E-22 0.161 335.0 4.84E-22 0.124 335.5 2.73E-22 0.199 334.4 1.43E-21 0.174 334.6 1.03E-21 0.167 334.8 7.19E-22 0.161 335.0 4.84E-22 0.125 335.2 2.73E-22 0.199 335.8 1.25E-20 0.335 335.8 1.25E-20 0.306 335.2 2.29E-21 0.118 336.4 2.02E-21 0.112 336.6 3.00E-21 0.105 336.8 2.40E-21 0.099 337.0 3.07E-21 0.093 337.2 2.29E-21 0.087 337.4 2.46E-21 0.051 338.6 4.79E-22 0.105 336.8 2.40E-21 0.068 338.0 1.82E-20 0.056 338.4 3.24E-20 0.055 339.6 3.99E-20 0.012 339.8 3.11E-20 0.006 340.0 2.72E-20 0.006 339.2 4.33E-20 0.025 339.4 4.20E-20 0.019 339.6 3.99E-20 0.012 339.8 3.11E-20 0.006 340.0 2.72E-20 0.006 340.0 2.72E-20 0.007 340.0 2.72E-20 0.207 340.0 340.0 2.72E-20 0.207 340.0 340.0 2.72E-20 0.207 340.0 340.0 2.72E-20 0.208 340.0 2.72E-															
331.2 7.76E-21 0.273 331.4 6.16E-21 0.267 331.6 4.06E-21 0.260 331.8 3.03E-21 0.254 332.0 2.41E-21 0.247 332.2 1.74E-21 0.242 332.4 1.33E-21 0.256 332.6 2.70E-21 0.229 333.0 1.17E-21 0.217 333.2 9.84E-22 0.211 333.4 8.52E-22 0.205 333.6 6.32E-22 0.198 333.8 5.21E-22 0.192 334.0 1.46E-21 0.184 334.2 1.80E-21 0.184 335.4 1.34E-21 0.174 334.6 1.03E-21 0.167 334.8 7.19E-22 0.161 335.0 4.84E-22 0.155 335.2 2.73E-22 0.149 335.4 1.34E-22 0.143 335.6 1.05E-21 0.105 335.8 1.25E-22 0.149 336.0 4.47E-22 0.152 335.2 2.73E-22 0.149 335.4 1.34E-22 0.141 335.6 1.06E-21 0.105 335.8 1.25E-22 0.130 336.0 4.47E-22 0.153 337.4 2.46E-21 0.081 337.6 2.92E-21 0.136 335.8 1.25E-22 0.130 336.0 4.47E-22 0.123 337.2 2.99E-21 0.087 337.4 2.46E-21 0.081 337.6 2.92E-21 0.074 337.8 8.10E-21 0.068 338.0 1.82E-20 0.033 339.2 4.33E-20 0.055 339.4 4.20E-20 0.050 339.6 3.99E-20 0.012 339.8 3.11E-20 0.006 340.0 2.72E-20 0.007 2.50E-20 0.025 339.4 4.20E-20 0.019 339.6 3.99E-20 0.012 339.8 3.11E-20 0.066 340.0 2.72E-20 0.007 2.50E-20 0.035 2.50E-20 0.255 2.50E-20 0.035 2.50E-20 0.255 2.50E-20															
333.4 9.84E-22 0.211 333.4 8.52E-22 0.205 333.6 6.32E-22 0.198 333.8 5.21E-22 0.192 334.0 1.46E-21 0.186 334.2 1.80E-21 0.180 334.4 1.43E-21 0.174 334.6 1.03E-21 0.167 334.8 7.19E-22 0.161 335.0 4.84E-22 0.152 335.2 2.73E-22 0.149 335.4 1.34E-22 0.143 335.6 -1.62E-22 0.136 335.8 1.25E-22 0.130 336.0 4.47E-22 0.125 336.2 1.25E-21 0.181 336.4 2.02E-21 0.181 336.6 3.00E-21 0.105 336.8 2.40E-21 0.099 337.0 3.07E-21 0.092 337.2 2.29E-21 0.087 337.4 2.46E-21 0.081 337.6 2.92E-21 0.074 337.8 8.10E-21 0.068 338.0 1.82E-20 0.066 338.2 3.10E-20 0.056 338.4 3.24E-20 0.059 339.6 4.79E-20 0.013 339.8 8.10E-20 0.006 338.0 1.82E-20 0.056 339.2 4.33E-20 0.025 339.4 4.20E-20 0.019 339.6 3.99E-20 0.012 339.8 3.11E-20 0.006 340.0 2.72E-20 0.001 339.6 3.99E-20 0.012 339.8 3.11E-20 0.006 340.0 2.72E-20 0.001 339.6 3.99E-20 0.012 339.8 3.11E-20 0.006 340.0 2.72E-20 0.001 339.6 3.99E-20 0.350 340.0 2.72E-20 0.001 340.0 2.49E-20 0.350 340.0 2.72E-20 0.001 340.0 2.49E-20 0.350 340.0 2.72E-20 0.001 340.0 2.49E-20 0.350 340.0 2.49E-20 0.350 340.0 2.69E-20 0.350 340.0 2.69E-20 0.350 340.0 2.69E-20 0.268 340.0 2.49E-20 0.350 340.0 2.69E-20 0.268 340.0 2.49E-20 0.350 340.0 2.69E-20 0.268 340.0 2.69E-20 0.268 340.0 2.69E-20 0.269 340.0 3.69E-20 0.269 340.0 3.	331.2	7.76E-21	0.273	331.4	6.16E-21	0.267	331.6	4.06E-21	0.260	331.8	3.03E-21	0.254	332.0	2.41E-21	0.248
335.2 2.73E-22 0.149 335.4 1.34E-22 0.143 335.6-1.62E-22 0.136 335.8 1.25E-22 0.130 336.0 4.47E-22 0.126 336.2 1.25E-21 0.099 337.0 337.0 2.29E-21 0.087 337.4 2.46E-21 0.1081 336.6 3.00E-21 0.105 336.8 2.40E-21 0.099 337.0 337.0 37E-21 0.093 337.2 2.29E-21 0.087 337.4 2.46E-21 0.081 337.6 2.92E-21 0.074 337.8 8.10E-21 0.068 338.0 1.82E-20 0.063 338.2 3.10E-20 0.055 338.4 3.24E-20 0.050 338.6 4.79E-20 0.043 338.8 5.25E-20 0.037 339.0 5.85E-20 0.063 339.2 4.33E-20 0.025 339.4 4.20E-20 0.019 339.6 3.99E-20 0.012 339.8 3.11E-20 0.006 340.0 2.72E-20 0.226 340.0 2.72E-20 0.22	333.2	9.84E-22	0.211	333.4	8.52E-22	0.205	333.6	6.32E-22	0.198	333.8	5.21E-22	0.192	334.0	1.46E-21	0.186
337.4 2.49E-21 0.087 337.4 2.46E-21 0.081 337.6 2.92E-21 0.074 337.8 8.10E-21 0.068 338.0 1.82E-20 0.037 339.3 338.2 3.10E-20 0.055 338.4 3.24E-20 0.050 338.6 4.79E-20 0.012 339.8 3.11E-20 0.006 340.0 2.72E-20 0.031 339.2 4.33E-20 0.025 339.4 4.20E-20 0.019 339.6 3.99E-20 0.012 339.8 3.11E-20 0.006 340.0 2.72E-20 0.000 339.2 4.33E-20 0.025 339.4 4.20E-20 0.346 28.0 1.51E-20 0.341 281.5 1.32E-20 0.336 282.5 9.73E-21 0.323 283.5 9.10E-21 0.319 284.0 3.71E-20 0.314 284.5 4.81E-20 0.305 285.5 2.87E-20 0.301 286.0 2.24E-20 0.296 286.5 1.74E-20 0.291 287.0 1.13E-20 0.286 290.0 1.07E-20 0.282 288.0 2.62E-20 0.278 288.5 4.00E-20 0.273 289.0 3.55E-20 0.289 289.5 2.12E-20 0.266 290.0 1.07E-20 0.260 290.5 1.35E-20 0.288 290.0 1.99E-20 0.266 291.5 1.56E-20 0.244 294.5 5.36E-20 0.249 295.5 4.17E-20 0.240 295.5 3.51E-20 0.238 296.5 2.70E-20 0.236 296.5 1.75E-20 0.234 297.5 1.51E-20 0.230 298.0 3.69E-20 0.228 298.5 4.40E-20 0.236 296.5 1.75E-20 0.234 297.5 1.51E-20 0.230 298.0 3.69E-20 0.228 298.5 4.40E-20 0.222 300.8 1.4E-20 0.221 301.4 1.96E-20 0.221 301.6 1.54E-20 0.222 302.8 1.4E-20 0.223 303.4 5.57E-20 0.223 303.6 6.61E-21 0.223 303.8 6.69E-20 0.224 304.6 5.91E-20 0.225 305.4 4.77E-20 0.221 301.4 1.96E-20 0.223 303.6 6.61E-21 0.223 303.8 6.58E-20 0.224 304.0 6.96E-20 0.226 306.4 2.66E-20 0.226 306.6 6.91E-20 0.222 302.8 1.48E-20 0.225 305.0 3.60E-20 0.226 306.6 4.26E-20 0.226 306.6 5.16E-20 0.227 307.0 1.58E-20 0.226 306.6 5.16E-20 0.226 306.8 1.95E-20 0.227 307.0 1.58E-20 0.226 306.6 5.16E-20 0.227 307.0 1.58E-20 0.226 306.6 5.16E-20 0.227 307.0 1.58E-20 0.226 306.6 5.16E-20 0.227 307.0 1.58E-20 0.226 306.6				335.4	1.34E-22	0.143	335.6-	-1.62E-22	0.136				336.0	4.47E-22	0.124
338.2 3.10E-20 0.056 338.4 3.24E-20 0.050 339.6 3.99E-20 0.012 339.8 5.25E-20 0.037 339.0 5.85E-20 0.033 339.2 4.33E-20 0.025 339.4 4.20E-20 0.019 339.6 3.99E-20 0.012 339.8 3.11E-20 0.006 340.0 2.72E-20 0.000 339.2 4.33E-20 0.055 339.4 4.20E-20 0.346 281.0 1.51E-20 0.341 281.5 1.32E-20 0.336 282.0 9.73E-21 0.332 283.5 9.10E-21 0.339 284.0 3.71E-20 0.314 284.5 4.81E-20 0.305 285.0 3.95E-20 0.305 285.5 2.87E-20 0.301 286.0 2.24E-20 0.296 286.5 1.74E-20 0.291 287.0 1.13E-20 0.287 287.5 1.10E-20 0.282 288.0 2.62E-20 0.278 288.5 4.00E-20 0.273 289.0 3.55E-20 0.269 289.5 2.12E-20 0.250 299.5 1.35E-20 0.258 291.0 1.99E-20 0.256 291.5 1.56E-20 0.254 292.0 8.65E-21 0.252 292.5 5.90E-21 0.250 293.0 1.11E-20 0.248 293.5 6.26E-20 0.246 294.0 7.40E-20 0.244 294.5 5.36E-20 0.234 297.5 1.51E-20 0.230 298.0 3.69E-20 0.228 298.5 4.40E-20 0.226 299.0 3.44E-20 0.224 299.5 2.02E-20 0.233 297.5 1.51E-20 0.220 300.4 7.01E-21 0.220 300.6 8.63E-21 0.221 301.8 1.47E-20 0.224 299.5 2.02E-20 0.232 298.0 3.69E-20 0.228 298.5 4.40E-20 0.222 301.8 1.26E-20 0.224 399.5 2.02E-20 0.233 298.0 3.69E-20 0.228 298.5 4.40E-20 0.222 301.8 1.26E-20 0.224 301.0 2.22 303.2 8.58E-20 0.224 304.5 5.5FE-20 0.252 305.6 6.61E-21 0.223 301.8 1.26E-20 0.224 304.0 6.96E-20 0.225 305.2 5.79E-20 0.225 305.4 4.77E-20 0.221 301.4 1.96E-20 0.221 301.6 1.54E-20 0.222 301.8 1.26E-20 0.222 302.0 1.03E-20 0.223 303.2 8.58E-20 0.224 304.5 5.5FE-20 0.224 304.6 6.61E-21 0.223 303.8 8.5E-20 0.224 304.0 6.96E-20 0.224 304.5 5.5FE-20 0.224 304.6 6.3EE-20 0.225 305.8 4.60E-20 0.225 305.0 3.60E-20 0.225 305.4 4.77E-20 0.225 305.6 4.43E-20 0.226 305.8 4.60E-20 0.225 305.0 3.60E-20 0.225 305.4 4.77E-20 0.226 306.6 2.42E-20 0.227 306.8 1.95E-20 0.226 306.0 4.01E-20 0.227 307.0 1.58E-20 0.227 307.0 1.58E-20 0.227 307.6 1.01E-20 0.228 308.6 3.08E-20 0.229 308.8 3.38E-20 0.225 305.0 3.60E-20 0.227 305.6 1.03E-20 0.227															
Photolysis File = HCHONEWM 280.0 2.49E-20 0.350	338.2	3.10E-20	0.056	338.4	3.24E-20	0.050	338.6	4.79E-20	0.043	338.8	5.25E-20	0.037	339.0	5.85E-20	0.031
280.0 2.49E-20 0.350					4.20E-20	0.019	339.0	3.996-20	0.012	339.0	J.11E-20	0.000	340.0	2.726-20	0.000
285.0 3.95E-20 0.305	280.0	2.49E-20	0.350	280.5											
290.0 1.07E-20 0.260				285.5	2.87E-20	0.301	286.0	2.24E-20	0.296	286.5	1.74E-20	0.291	287.0	1.13E-20	0.287
292.5 5.90E-21 0.250															
298.5 1.51E-20 0.230	292.5	5.90E-21	0.250	293.0	1.11E-20	0.248	293.5	6.26E-20	0.246	294.0	7.40E-20	0.244	294.5	5.36E-20	0.242
301.2 2.17E-20 0.221 301.4 1,96E-20 0.221 301.6 1.54E-20 0.222 302.8 1.44E-20 0.222 302.0 1.03E-20 0.222 302.2 8.53E-21 0.222 302.4 7.13E-21 0.222 302.6 6.61E-21 0.223 302.8 1.44E-20 0.223 303.0 3.18E-20 0.223 303.2 3.81E-20 0.224 304.5 5.57E-20 0.224 303.6 6.91E-20 0.224 303.8 6.58E-20 0.225 305.0 3.60E-20 0.225 305.5 4.477E-20 0.225 305.6 4.30E-20 0.225 305.8 4.60E-20 0.225 305.0 3.60E-20 0.225 305.2 3.28E-20 0.225 305.4 4.77E-20 0.225 305.6 4.43E-20 0.226 305.8 4.60E-20 0.225 306.0 4.01E-20 0.225 306.2 3.28E-20 0.226 306.4 2.66E-20 0.226 306.6 2.42E-20 0.227 307.8 1.95E-20 0.227 307.0 1.58E-20 0.227 307.2 1.37E-20 0.227 307.4 1.19E-20 0.227 307.6 1.01E-20 0.228 307.8 9.01E-21 0.228 308.0 8.84E-21 0.228 308.2 2.08E-20 0.229 309.4 2.84E-20 0.229 309.6 2.46E-20 0.230 309.8 1.95E-20 0.230 310.0 1.57E-20 0.230 311.2 4.82E-21 0.248 311.4 4.54E-21 0.251 311.6 6.81E-21 0.254 311.8 1.04E-20 0.257 312.0 1.43E-20 0.266 312.6 1.13E-20 0.254 313.8 9.86E-21 0.272 313.0 7.82E-21 0.275 313.2 6.48E-21 0.278 313.4 1.07E-20 0.266 312.6 1.13E-20 0.269 312.8 9.86E-21 0.272 313.0 7.82E-21 0.275 315.2 4.37E-20 0.323 316.4 2.05E-20 0.326 316.6 4.38E-20 0.299 314.8 5.59E-20 0.330 315.4 9.5E-20 0.326 316.6 4.38E-20 0.299 314.8 5.59E-20 0.337 315.0 4.91E-20 0.291 314.2 6.48E-21 0.278 313.4 1.07E-20 0.281 313.6 2.39E-20 0.299 314.8 5.59E-20 0.302 315.0 4.91E-20 0.303 316.2 2.37E-20 0.303 316.4 2.05E-20 0.326 314.4 2.05E-20 0.336 315.4 2.05E-20 0.336 315.6 2.89E-20 0.314 315.8 2.82E-20 0.317 316.0 2.10E-20 0.336 316.2 2.05E-20 0.338 316.4 2.05E-20 0.336 316.6 4.38E-20 0.344 315.8 2.82E-20 0.317 316.0 2.10E-20 0.336 316.2 2.05E-20 0.338 316.4 2.05E-20 0.336 316.6 4.38E-20 0.344 315.8 2.82E-20 0.317 316.0 2.10E-20 0.336 316.2 2.05E-20 0.338 317.4 4.33E-20 0.346 317.4 4.17E-20 0.344 317.8 315E-20 0.344 317.8 315E-20 0.347 318.0 2.64E-20 0.356	297.5	1.51E-20	0.230	298.0	3.69E-20	0.228	298.5	4.40E-20	0.226	299.0	3.44E-20	0.224	299.5	2.02E-20	0.222
303.2 3.81E-20 0.223 303.4 5.57E-20 0.224 304.6 4.30E-20 0.225 304.8 3.28E-20 0.224 305.0 3.60E-20 0.225 305.2 5.12E-20 0.225 305.4 4.77E-20 0.225 305.4 4.30E-20 0.225 305.8 4.60E-20 0.225 305.0 3.60E-20 0.225 305.2 5.12E-20 0.225 305.4 4.77E-20 0.226 305.6 4.43E-20 0.226 305.8 4.60E-20 0.226 306.0 4.01E-20 0.226 306.6 2.42E-20 0.227 307.8 9.01E-21 0.228 308.0 8.84E-21 0.226 308.2 2.08E-20 0.227 307.4 1.19E-20 0.227 307.6 1.01E-20 0.228 307.8 9.01E-21 0.228 308.0 8.84E-21 0.226 308.2 2.08E-20 0.229 309.4 2.84E-20 0.229 309.6 2.46E-20 0.229 309.8 3.39E-20 0.229 309.0 3.18E-20 0.229 309.6 2.46E-20 0.230 309.8 1.95E-20 0.230 310.0 1.57E-20 0.231 310.2 1.26E-20 0.233 310.4 9.26E-21 0.236 310.6 7.71E-21 0.239 310.8 6.05E-21 0.242 311.0 5.13E-21 0.248 311.2 4.82E-21 0.248 311.4 4.54E-21 0.251 311.6 6.81E-21 0.254 311.8 1.04E-20 0.257 312.0 1.43E-20 0.266 312.2 1.47E-20 0.266 312.4 1.35E-20 0.281 313.6 2.39E-20 0.284 313.8 3.80E-20 0.227 313.0 7.82E-21 0.276 313.2 6.48E-21 0.278 313.4 1.07E-20 0.281 313.6 2.39E-20 0.284 313.8 3.80E-20 0.287 314.0 5.76E-20 0.296 314.6 6.14E-20 0.293 316.4 7.45E-20 0.296 314.6 5.78E-20 0.299 314.8 5.59E-20 0.302 315.0 4.91E-20 0.303 316.2 1.66E-20 0.323 316.4 7.45E-20 0.296 314.6 5.78E-20 0.299 314.8 5.59E-20 0.302 315.0 4.91E-20 0.303 316.2 1.66E-20 0.323 316.4 2.05E-20 0.326 316.6 4.38E-20 0.329 316.8 5.86E-20 0.337 317.0 6.28E-20 0.338 317.2 5.07E-20 0.338 317.4 4.33E-20 0.346 317.6 4.17E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.338 317.2 5.07E-20 0.338 317.4 4.33E-20 0.341 317.6 4.17E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.356	301.2	2.17E-20	0.221	301.4	1.96E-20	0.221	301.6	1.54E-20	0.222	301.8	1.26E-20	0.222	302.0	1.03E-20	0.222
305.2 5.12E-20 0.225 305.4 4.77E-20 0.225 305.6 4.43E-20 0.226 306.8 4.60E-20 0.226 306.0 4.01E-20 0.227 307.2 1.37E-20 0.227 307.4 1.19E-20 0.227 307.6 1.01E-20 0.227 307.8 1.99E-20 0.227 307.0 1.58E-20 0.227 307.2 1.37E-20 0.227 307.4 1.19E-20 0.228 308.6 3.08E-20 0.229 308.8 3.39E-20 0.229 309.0 3.18E-20 0.228 308.2 2.08E-20 0.229 309.4 2.84E-20 0.229 309.6 2.46E-20 0.230 309.8 1.95E-20 0.230 310.0 1.57E-20 0.231 310.2 1.26E-20 0.233 310.4 9.26E-21 0.251 311.6 6.81E-21 0.254 311.8 1.04E-20 0.257 312.0 1.43E-20 0.266 313.2 1.47E-20 0.263 312.4 1.35E-20 0.266 312.6 1.13E-20 0.269 312.8 9.86E-21 0.272 313.0 7.82E-21 0.278 313.2 2.47E-20 0.293 314.4 7.45E-20 0.286 313.6 2.39E-20 0.284 313.8 8.80E-20 0.287 314.0 5.76E-20 0.298 314.2 6.48E-21 0.278 314.4 7.45E-20 0.296 314.6 5.78E-20 0.299 314.8 5.59E-20 0.302 315.0 4.91E-20 0.305 316.2 1.66E-20 0.333 316.4 2.05E-20 0.311 315.6 2.89E-20 0.314 315.8 2.82E-20 0.317 316.0 2.10E-20 0.331 316.2 1.66E-20 0.333 316.4 2.05E-20 0.341 317.6 4.17E-20 0.344 317.8 5.18E-20 0.347 318.0 2.64E-20 0.335 317.4 4.33E-20 0.344 317.8 5.07E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.335 317.4 4.33E-20 0.341 317.6 4.17E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.356							303.6	6.91E-20	0.224	303.8	6.58E-20	0.224	304.0	6.96E-20	0.224
306.6 2 3.28E-20 0.226 306.4 2.66E-20 0.226 306.6 2.42E-20 0.227 307.8 1.95E-20 0.227 307.0 1.58E-20 0.227 307.2 1.37E-20 0.227 307.4 1.19E-20 0.227 307.6 1.01E-20 0.228 307.8 9.01E-21 0.228 308.0 8.84E-21 0.228 308.2 2.08E-20 0.229 308.4 2.39E-20 0.229 308.6 3.08E-20 0.229 308.8 3.39E-20 0.229 309.0 3.18E-20 0.229 309.2 3.06E-20 0.229 309.4 2.84E-20 0.229 309.6 2.46E-20 0.230 309.8 1.95E-20 0.230 310.0 1.57E-20 0.231 310.2 1.26E-20 0.233 310.4 9.26E-21 0.236 310.6 7.71E-21 0.239 310.8 6.05E-21 0.242 311.0 5.13E-21 0.248 311.2 4.82E-21 0.248 311.4 4.54E-21 0.251 311.6 6.81E-21 0.254 311.8 1.04E-20 0.257 312.0 1.43E-20 0.266 312.2 1.47E-20 0.263 312.4 1.35E-20 0.281 313.6 2.39E-20 0.284 313.8 9.86E-21 0.272 313.0 7.82E-21 0.274 313.2 6.48E-21 0.278 313.4 1.07E-20 0.281 313.6 2.39E-20 0.284 313.8 3.80E-20 0.287 314.0 5.76E-20 0.296 314.2 6.48E-20 0.293 314.4 7.45E-20 0.296 314.6 5.78E-20 0.299 314.8 5.59E-20 0.302 315.0 4.91E-20 0.303 316.2 4.37E-20 0.303 316.4 2.05E-20 0.311 315.6 2.89E-20 0.314 315.8 2.82E-20 0.317 316.0 2.10E-20 0.338 316.2 1.66E-20 0.323 316.4 4.33E-20 0.346 317.4 4.33E-20 0.344 317.6 4.17E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.338 317.4 4.33E-20 0.341 317.6 4.17E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.356															
308.4 2.39E-20 0.228 308.4 2.39E-20 0.228 308.6 3.08E-20 0.229 309.6 2.46E-20 0.230 309.8 1.95E-20 0.229 310.0 1.57E-20 0.230 310.2 1.26E-20 0.233 310.4 9.26E-21 0.236 310.6 7.71E-21 0.239 310.8 6.05E-21 0.242 311.0 5.13E-21 0.244 311.2 4.82E-21 0.248 311.4 4.54E-21 0.251 311.6 6.81E-21 0.254 311.8 1.04E-20 0.257 312.0 1.43E-20 0.266 312.2 1.47E-20 0.263 312.4 1.35E-20 0.266 312.6 1.13E-20 0.269 312.8 9.86E-21 0.272 313.0 7.82E-21 0.274 313.2 6.48E-21 0.278 313.4 1.07E-20 0.281 313.6 2.39E-20 0.284 313.8 3.80E-20 0.287 314.0 5.76E-20 0.298 314.2 6.14E-20 0.293 314.4 7.45E-20 0.296 314.6 5.78E-20 0.299 314.8 5.59E-20 0.302 315.0 4.91E-20 0.305 316.2 4.37E-20 0.308 315.4 3.92E-20 0.311 315.6 2.89E-20 0.314 315.8 2.82E-20 0.317 316.0 2.10E-20 0.326 316.6 4.38E-20 0.329 316.8 5.86E-20 0.332 317.0 6.28E-20 0.335 317.2 5.07E-20 0.338 317.4 4.33E-20 0.341 317.6 4.17E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.356	306.2	3.28E-20	0.226				306.6	2.42E-20	0.227						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	308.2	2.08E-20	0.228	308.4	2.39E-20	0.228	308.6	3.08E-20	0.229	308.8	3.39E-20	0.229	309.0	3.18E-20	0.229
312.2 1.47E-20 0.263 312.4 1.35E-20 0.266 312.6 1.13E-20 0.269 312.8 9.86E-21 0.272 313.0 7.82E-21 0.273 313.2 6.48E-21 0.278 313.4 1.07E-20 0.281 313.6 2.39E-20 0.284 313.8 3.80E-20 0.287 314.0 5.76E-20 0.299 314.2 6.14E-20 0.299 314.4 7.45E-20 0.296 314.6 5.78E-20 0.299 314.8 5.59E-20 0.302 315.0 4.91E-20 0.303 315.2 4.37E-20 0.308 315.4 3.92E-20 0.311 315.6 2.89E-20 0.314 315.8 2.82E-20 0.317 316.0 2.10E-20 0.326 316.6 4.38E-20 0.329 316.8 5.86E-20 0.332 317.0 6.28E-20 0.333 317.2 5.07E-20 0.338 317.4 4.33E-20 0.341 317.6 4.17E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.355	310.2	1.26E-20	0.233	310.4	9.26E-21	0.236	310.6	7.71E-21	0.239	310.8	6.05E-21	0.242	311.0	5.13E-21	0.245
313.2 6.48E-21 0.278 313.4 1.07E-20 0.281 313.6 2.39E-20 0.284 313.8 3.80E-20 0.287 314.0 5.76E-20 0.290 314.2 6.14E-20 0.293 314.4 7.45E-20 0.296 314.6 5.78E-20 0.299 314.8 5.59E-20 0.302 315.0 4.91E-20 0.301 315.2 4.37E-20 0.308 315.4 3.92E-20 0.311 315.6 2.89E-20 0.314 315.8 2.82E-20 0.317 316.0 2.10E-20 0.320 316.2 1.66E-20 0.323 316.4 2.05E-20 0.326 316.6 4.38E-20 0.329 316.8 5.86E-20 0.332 317.0 6.28E-20 0.331 317.2 5.07E-20 0.338 317.4 4.33E-20 0.341 317.6 4.17E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.350															
315.2 4.37E-20 0.308 315.4 3.92E-20 0.311 315.6 2.89E-20 0.314 315.8 2.82E-20 0.317 316.0 2.10E-20 0.323 316.4 2.05E-20 0.326 316.6 4.38E-20 0.329 316.8 5.86E-20 0.332 317.0 6.28E-20 0.333 317.2 5.07E-20 0.338 317.4 4.33E-20 0.341 317.6 4.17E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.355	313.2	6.48E-21	0.278	313.4	1.07E-20	0.281	313.6	2.39E-20	0.284	313.8	3.80E-20	0.287	314.0	5.76E-20	0.290
317.2 5.07E-20 0.338 317.4 4.33E-20 0.341 317.6 4.17E-20 0.344 317.8 3.11E-20 0.347 318.0 2.64E-20 0.350	315.2	4.37E-20	0.308	315.4	3.92E-20	0.311	315.6	2.89E-20	0.314	315.8	2.82E-20	0.317	316.0	2.10E-20	0.320
318.2 2.24E-20 0.353 318.4 1.70E-20 0.356 318.6 1.24E-20 0.359 318.8 1.11E-20 0.362 319.0 7.70E-21 0.369	317.2	5.07E-20	0.338	317.4	4.33E-20	0.341	317.6	4.17E-20	0.344	317.8	3.11E-20	0.347	318.0	2.64E-20	0.350
	318.2	∠.24E-20	0.353	318.4	1.70E-20	U.356	318.6	1.24E-20	U.359	318.8	1.11E-20	0.362	319.0	/.70E-21	U.365

Table A-3. (continued)

WL	Abs (cm ²)	QY	WL	Abs (cm ²)	QY	WL	Abs (cm ²)	QY	WL	Abs	QY	WL	Abs (cm ²)	QY
(nm)	(Cm)		(nm)	(Cm)		(nm)	(Cm)		(nm)	(Cm)		(nm)	(Cm)	
319.2 320.2 321.2 322.2 324.2 325.2 326.2 327.2 328.2 330.2 331.2 333.2 333.2 335.2 336.2 339.2 341.2 342.2 341.2 345.2 347.2 347.2 348.2	6.36E-21 1.47E-20 4.13E-21 2.82E-21 6.59E-21 2.15E-20 3.22E-20 6.79E-21 3.99E-20 3.08E-20 7.76E-21 1.74E-21 9.84E-22 2.73E-22 1.23E-21 2.29E-21 3.10E-20 4.33E-21 4.64E-21 1.72E-20 8.26E-21 1.72E-20 4.33E-21 2.99E-21 3.10E-20 4.33E-21 2.99E-21 3.10E-20 4.33E-21 4.64E-21 1.72E-20 8.26E-21 1.72E-20 8.26E-21 1.64E-22 0.00E+00 3.45E-23 3.45E-22	0.386 0.417 0.448 0.479 0.5510 0.5512 0.663 0.663 0.665 0.694 0.717 0.739 0.762 0.784 0.798 0.778 0.778 0.778 0.779 0.762 0.665 0.665 0.694 0.778 0.778 0.778 0.762 0.6621 0.593 0.565 0.508 0.423 0.423 0.423 0.394 0.337	319.4 320.4 321.4 322.4 323.4 325.4 327.4 327.4 328.4 330.4 331.4 333.4 335.4 337.4 337.4 337.4 338.4 339.4 337.4 347.4	5.36E-21 1.36E-20 3.36E-21 4.65E-21 5.60E-21 5.53E-20 2.13E-20 2.13E-20 2.13E-20 2.16E-21 1.33E-21 8.52E-22 2.02E-21 1.34E-21 2.46E-21 1.34E-22 2.02E-21 2.46E-21 1.55E-20 3.47E-21 1.55E-20 2.88E-22 2.88E-22 6.32E-21 1.15E-21 1.15E-21 2.88E-22 2.88E-22 1.49E-22 2.88E-22 2.88E-22 2.88E-22 3.45E-22 2.88E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22 3.45E-22	0.392 0.423 0.454 0.485 0.516 0.5547 0.578 0.6699 0.641 0.744 0.789 0.794 0.773 0.749 0.721 0.698 0.7749 0.724 0.698 0.698 0.651 0.5588 0.6588 0.6588 0.559 0.531 0.531 0.474 0.446 0.447 0.389 0.331	319.6 320.6 321.6 322.6 325.6 327.6 327.6 327.6 337.6 337.6 337.6 338.6 337.6 338.6 337.6 338.6 337.6 338.6 337.6 337.6 338.6 337.6 377.6 377.6 377.6 377.6 377.6 377.6 377.6 377.6 377.6 377.6 377.6	4.79E-21 1.69E-20 9.64E-21 2.39E-21 4.66E-21 4.10E-20 1.91E-20 4.77E-21 2.09E-20 2.09E-20 3.00E-21 2.70E-21 6.32E-22 1.03E-21 0.00E+00 3.00E-21 2.92E-21 4.79E-20 2.23E-21 1.14E-20 2.23E-21 1.46E-20 4.28E-21 8.90E-22 2.28E-21 8.90E-22 8.92E-21 8.90E-22 8.92E-21 1.46E-20 4.28E-21 8.90E-22 8.84E-22 8.84E-22 8.80E-23 8.80E-23 8.80E-23 8.80E-23	0.399 0.430 0.461 0.492 0.553 0.554 0.585 0.616 0.726 0.748 0.773 0.790 0.745 0.719 0.666 0.638 0.638 0.638 0.554 0.554 0.554 0.554 0.582 0.554 0.497 0.448 0.411 0.383 0.326	319.8 320.8 321.8 322.8 324.8 325.8 326.8 327.8 320.8 331.8 331.8 332.8 331.8 332.8 332.8 332.8 334.8 335.8 341.8 341.8 341.8 341.8 341.8 341.8 341.8 341.8	6.48E-21 1.32E-20 7.26E-21 2.01E-21 7.80E-21 4.21E-21 6.47E-20 1.42E-20 1.42E-20 1.41E-20 3.61E-20 1.41E-20 3.65E-21 5.21E-22 2.40E-21 8.10E-21 8.10E-20 3.11E-20 1.79E-20 3.22E-21 1.79E-20 3.22E-21 2.40E-21 3.56E-22 2.40E-21 3.79E-20 3.11E-20 3.11E-20 3.11E-20 3.13E-21 3.79E-20 3.22E-21 3.56E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22 3.35E-22	0.405 0.436 0.467 0.498 0.5260 0.591 0.623 0.684 0.708 0.773 0.775 0.798 0.740 0.714 0.667 0.548 0.548 0.506 0.548 0.548 0.506 0.548 0	320.0 321.0 322.0 323.0 324.0 325.0 326.0 327.0 330.0 331.0 335.0 335.0 337.0 339.0 337.0 339.0 340.0 341.0 342.0 342.0 342.0 342.0 345.0 345.0 345.0	1.48E-20 1.49E-20 5.94E-21 1.76E-21 7.77E-21 7.59E-20 9.15E-21 3.27E-20 9.15E-21 1.46E-21 1.46E-21 1.46E-21 1.47E-22 3.07E-21 1.17E-21 1.17E-21 1.17E-21 1.17E-21 1.17E-21 1.17E-21 1.17E-21 1.17E-21 1.17E-21 1.17E-21 2.31E-20 2.72E-20 2.74E-20 2.54E-21 3.70E-21 3.70E-21 3.70E-22 3.70E-22 3.34E-20 2.54E-21 5.09E-22 9.70E-22 9.70E-23 3.24E-21 7.07E-23 7.07E-23 7.07E-23 2.78E-20 2.78E-20	0 0 411 0 442 0 473 0 504 0 556 0 0 557 0 668 0 669 0 712 0 735 0 735 0 735 0 736 0 0 690 0 712 0 736 0 0 757 0 0 780 0 0 780 0 0 780 0 0 780 0 0 780 0 0 757 0 0 597 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
353.2	1.96E-20 1.07E-20	0.309	353.4	1.67E-20 9.82E-21	0.303	353.6	1.75E-20 8.66E-21	0.297	353.8	1.63E-20 6.44E-21	0.291	354.0	1.36E-20 4.84E-21	0.286
355.2	3.49E-21 4.17E-22	0.251	355.4	2.41E-21 1.95E-22	0.246	355.6	1.74E-21 1.50E-22	0.240	355.8	1.11E-21 8.14E-23	0.234	356.0	7.37E-22 0.00E+00	0.229
Photol 260.0 300.0	ysis File 2.00E-20 4.30E-20 6.90E-21	e = CCHON 0.310 0.430	R 270.0	3.40E-20 3.40E-20	0.390	280.0	4.50E-20 2.10E-20	0.580	290.0	4.90E-20 1.80E-20	0.530	295.0	4.50E-20 1.10E-20	0.480
280.0	ysis File 5.26E-20 6.49E-21	0.960		5.77E-20 1.44E-21			5.05E-20 0.00E+00		310.0	3.68E-20	0.600	320.0	1.66E-20	0.360
250.0 300.0	2.37E-20 2.78E-20 3.00E-23	0.760 0.150	260.0 310.0	3.66E-20 1.44E-20 0.00E+00	0.050		4.63E-20 4.80E-21			5.05E-20 8.00E-22			4.21E-20 1.00E-22	
210.0 260.0	ysis File 1.10E-21 4.21E-20 1.53E-20	1.000	220.0 270.0	1.20E-21 5.54E-20 4.60E-21	1.000	280.0	4.60E-21 5.92E-20 1.10E-21	1.000	290.0	1.30E-20 5.16E-20 0.00E+00	1.000		2.68E-20 3.44E-20	
230.0 255.0 280.0 305.0 325.0	2.87E-21 1.15E-20 2.87E-20 2.87E-20 2.72E-20 1.15E-20	1.000 1.000 1.000 1.000 1.000	235.0 260.0 285.0 310.0 327.5	2.87E-21 1.43E-20 3.30E-20 2.72E-20 1.43E-20	1.000 1.000 1.000	265.0 290.0 312.5	4.30E-21 1.86E-20 3.15E-20 2.87E-20 1.15E-20	1.000 1.000 1.000	270.0 295.0 315.0	5.73E-21 2.29E-20 3.30E-20 2.29E-20 2.87E-21	1.000 1.000 1.000	275.0 300.0 320.0	8.60E-21 2.58E-20 3.58E-20 1.43E-20 0.00E+00	1.000 1.000 1.000
355.0 380.0 390.0 395.0 400.0 410.0 4110.0 421.0 424.0 424.0 428.0 436.5 440.0 445.0	ysis Fil 0.00E+00 1.72E-20 3.15E-20 3.04E-20 2.84E-20 3.04E-20 6.08E-20 6.48E-20 6.48E-20 6.6E-20 1.66E-19 3.65E-20 1.13E-19 2.47E-19 1.13E-19 6.08E-20	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	360.0 382.0 391.0 396.0 401.0 414.0 417.0 421.5 425.0 429.0 437.0 441.0 446.0	2.29E-21 1.58E-20 3.24E-20 2.63E-20 3.04E-20 5.07E-20 7.50E-20 4.86E-20 4.46E-20 4.05E-20 4.05E-20 5.27E-20 8.11E-20 5.27E-20 1.09E-19	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	384.0 392.0 407.0 407.0 411.5 414.5 418.0 422.0 430.0 434.5 438.0 442.0 447.0	2.87E-21 1.49E-20 3.04E-20 2.43E-20 4.46E-20 2.84E-20 6.08E-20 5.87E-20 5.27E-20 1.18E-19 5.07E-20 6.08E-20 2.43E-20 2.43E-20	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	386.0 393.0 398.0 403.0 412.0 415.0 419.0 422.5 426.5 431.0 435.0 438.5 448.0	8.03E-21 1.49E-20 2.23E-20 3.24E-20 5.27E-20 2.43E-20 4.86E-20 6.69E-20 1.05E-19 4.86E-20 5.07E-20 7.50E-20 2.84E-20	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	388.0 394.0 399.0 409.0 413.0 423.0 427.0 432.0 436.0 439.0 444.0	1.00E-20 2.87E-20 2.63E-20 3.04E-20 4.26E-20 2.84E-20 8.31E-20 3.85E-20 8.51E-20 1.07E-20 4.05E-20 8.11E-20 9.32E-20 3.85E-20	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table A-3. (continued)

WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY
	1.22E-20 2.03E-21			1.42E-20 0.00E+00		459.0	4.05E-21	1.000	460.0	4.05E-21	1.000	460.5	6.08E-21	1.000
220.0 245.0	lysis File 2.10E-21 8.41E-21	1.000	225.0 250.0	2.10E-21 9.25E-21	1.000	255.0	4.21E-21 9.25E-21	1.000	260.0	7.57E-21 9.67E-21	1.000	265.0	9.25E-21 1.05E-20	1.000
295.0	1.26E-20 1.18E-20 3.36E-21	1.000	300.0	1.43E-20 1.14E-20 1.68E-21	1.000	305.0	1.51E-20 9.25E-21 8.41E-22	1.000	310.0	1.43E-20 6.31E-21 0.00E+00	1.000		1.47E-20 5.47E-21	
350.0 364.0	lysis File 0.00E+00 2.94E-21	1.000	354.0 366.0	4.21E-22 3.36E-21	1.000	368.0	1.26E-21 4.21E-21	1.000	370.0	2.10E-21 5.47E-21	1.000	372.0	2.10E-21 5.89E-21	1.000
384.0 394.0	7.57E-21 1.35E-20 2.31E-20	1.000	386.0 396.0	7.99E-21 1.51E-20 2.48E-20	1.000	388.0 398.0	8.83E-21 1.72E-20 2.61E-20	1.000	390.0 400.0	1.01E-20 2.06E-20 2.78E-20	1.000	392.0 402.0	1.09E-20 2.10E-20 2.99E-20	1.000
414.0 424.0	3.20E-20 4.79E-20 5.17E-20 5.68E-20	1.000	416.0 426.0	3.79E-20 4.88E-20 5.30E-20 6.22E-20	1.000	418.0 428.0	3.95E-20 5.05E-20 5.21E-20 6.06E-20	1.000	420.0 430.0	4.33E-20 5.21E-20 5.55E-20 5.47E-20	1.000	422.0 432.0	4.71E-20 5.30E-20 5.13E-20 6.14E-20	1.000
442.0 446.0 451.0	5.47E-20 4.88E-20 3.03E-20 8.41E-21	1.000 1.000 1.000	443.0 447.0 452.0	5.55E-20 5.72E-20 4.29E-20 4.21E-21	1.000 1.000 1.000	443.5 448.0 453.0	6.81E-20 5.47E-20 2.78E-20 1.68E-21	1.000 1.000 1.000	444.0 449.0 454.0	5.97E-20 6.56E-20 2.27E-20 0.00E+00	1.000 1.000 1.000	445.0 450.0	5.13E-20 5.05E-20 1.77E-20	1.000
299.0	lysis File	1.000	304.0	7.40E-20			6.91E-20			6.41E-20			6.91E-20	
342.0 364.0 374.0	6.91E-20 8.88E-20 5.67E-20 3.21E-20 0.00E+00	1.000 1.000 1.000	346.0 368.0	6.41E-20 7.89E-20 6.66E-20 2.47E-20	1.000	349.0 369.0	8.39E-20 7.89E-20 8.39E-20 2.47E-20	1.000	354.0 370.0	7.65E-20 9.13E-20 8.39E-20 3.58E-20	1.000	355.0 372.0	8.88E-20 8.14E-20 3.45E-20 9.90E-21	1.000
250.0	lysis File	1.000	252.0	2.05E-21			2.20E-21			2.32E-21 2.83E-21			2.45E-21	
261.0 266.0 271.0	2.56E-21 3.24E-21 5.10E-21 7.20E-21	1.000 1.000 1.000	262.0 267.0 272.0	2.65E-21 3.47E-21 5.38E-21 7.77E-21	1.000 1.000 1.000	263.0 268.0 273.0	2.74E-21 3.58E-21 5.73E-21 8.37E-21	1.000 1.000 1.000	264.0 269.0 274.0	3.93E-21 6.13E-21 8.94E-21	1.000 1.000 1.000	265.0 270.0 275.0	2.98E-21 4.67E-21 6.64E-21 9.55E-21	1.000 1.000 1.000
281.0 286.0	1.04E-20 1.26E-20 1.44E-20 1.78E-20	1.000	282.0 287.0	1.12E-20 1.26E-20 1.50E-20 1.86E-20	1.000	283.0 288.0	1.19E-20 1.28E-20 1.57E-20 1.95E-20	1.000	284.0 289.0	1.27E-20 1.33E-20 1.63E-20 2.05E-20	1.000	285.0 290.0	1.27E-20 1.38E-20 1.71E-20 2.15E-20	1.000
296.0 301.0 306.0	2.26E-20 2.85E-20 3.51E-20	1.000 1.000 1.000	297.0 302.0 307.0	2.37E-20 2.99E-20 3.63E-20	1.000 1.000 1.000	298.0 303.0 308.0	2.48E-20 3.13E-20 3.77E-20	1.000 1.000 1.000	299.0 304.0 309.0	2.60E-20 3.27E-20 3.91E-20	1.000 1.000 1.000	300.0 305.0 310.0	2.73E-20 3.39E-20 4.07E-20	1.000 1.000 1.000
316.0 321.0	4.25E-20 4.75E-20 5.43E-20 5.62E-20	1.000	317.0 322.0	4.39E-20 4.90E-20 5.52E-20 5.63E-20	1.000	318.0 323.0	4.44E-20 5.05E-20 5.60E-20 5.71E-20	1.000	319.0 324.0	4.50E-20 5.19E-20 5.67E-20 5.76E-20	1.000	320.0 325.0	4.59E-20 5.31E-20 5.67E-20 5.80E-20	1.000
331.0 336.0 341.0	5.95E-20 6.01E-20 5.54E-20	1.000 1.000 1.000	332.0 337.0 342.0	6.23E-20 5.79E-20 5.53E-20	1.000 1.000 1.000	333.0 338.0 343.0	6.39E-20 5.63E-20 5.47E-20	1.000 1.000 1.000	334.0 339.0 344.0	6.38E-20 5.56E-20 5.41E-20	1.000 1.000 1.000	335.0 340.0 345.0	6.24E-20 5.52E-20 5.40E-20	1.000 1.000 1.000
351.0 356.0	5.48E-20 5.03E-20 3.45E-20 2.95E-20	1.000	352.0 357.0	5.90E-20 4.50E-20 3.46E-20 2.81E-20	1.000	353.0 358.0	6.08E-20 4.03E-20 3.49E-20 2.91E-20	1.000	354.0 359.0	6.00E-20 3.75E-20 3.41E-20 3.25E-20	1.000	355.0 360.0	5.53E-20 3.55E-20 3.23E-20 3.54E-20	1.000
366.0 371.0 376.0	2.95E-20 3.30E-20 8.99E-21 3.57E-21 0.00E+00	1.000 1.000 1.000	367.0 372.0	2.81E-20 2.78E-20 7.22E-21 3.55E-21	1.000	368.0 373.0	2.91E-20 2.15E-20 5.86E-21 2.83E-21	1.000	369.0 374.0	1.59E-20 4.69E-21 1.69E-21	1.000	370.0 375.0	3.54E-20 1.19E-20 3.72E-21 8.29E-24	1.000

Table A-4. Values of chamber-dependent parameters used in the model simulations of the environmental chamber experiments for this study. [a]

Parm.	Value(s)	Discussion
Default Cha	mber Model	The following are the parameters for the default chamber effects model which was assumed to be the same in both sides of the chamber and to be unaffected by PDI exposure. They were used when simulating all experiments in this study.
k(1)	0.173 min ⁻¹ (run DTC587) - through - 0.156 min ⁻¹ (run DTC616)	Derived from linear fit to results of quartz tube NO_2 actinometry measurements carried out around the time of the experiments as a function of run number.
k(O3W)	1.5x10 ⁻⁴ min ⁻¹	The results of the O_3 dark decay experiments in this chamber are reasonably consistent with the recommended default of Carter et al (1995c) for Teflon bag chambers in general.
k(N25I) k(N25S)	2.8 x10 ⁻³ min ⁻¹ , 1.5x10 ⁻⁶ - k _g ppm ⁻¹ min ⁻¹	Based on the N_2O_5 decay rate measurements in a similar chamber reported by Tuazon et al. (1983). Although we previously estimated there rate constants were lower in the larger Teflon bag chambers (Carter and Lurmann, 1990, 1991), we now consider it more reasonable to use the same rate constants for all such chambers (Carter et al., 1995c).
k(NO2W) yHONO	1.6x10 ⁻⁴ min ⁻¹ 0.2	Based on dark NO ₂ decay and HONO formation measured in a similar chamber by Pitts et al. (1984). Assumed to be the same in all Teflon bag chambers (Carter et al, 1995c).
k(XSHC)	250 min ⁻¹	Estimated by modeling pure air irradiations. Not important om affecting model predictions except for pure air or NO_x -air runs.
Side A Prior	to PTI Exposure	Used for experiments carried out in Side A prior to PTI exposure. Applicable to runs DTC587A through DTC600A. This side of the chamber had been exposed to dilute auto exhaust prior to this program, and appeared to have somewhat higher than normal radical source.
RS/K1	0.091 ppb	Based on model simulations of n-butane - NO_x experiments as discussed by Carter et al (1995c,d). This value is the average of RS/K1 values which fit run DTC587A and other butane runs carried out in side A during this period.
E-NO2/K1	0.091 ppb	Results of pure air and acetaldehyde - air runs, which are sensitive to this parameter, indicate that RS/K1 and E-NO2/K1 tend to be within experimental variability of being the same. This would be expected if the radical source and NO_x offgasing are due to the same process, such as HONO offgasing. Therefore, it is assumed that E-NO2/K1 = RS/K1 unless there is evidence to the contrary.

Table A-4 (continued)

Parm.	Value(s)	Discussion
Side B Prior	to PTI Exposure	Used for experiments carried out in Side B prior to PTI exposure. Applicable to runs DTC587B through DTC603B. Characterization results indicate that until the time of PTI exposure Side B was not exposed to reactants significantly affecting chamber effects.
RS/K1	0.068 ppb	Average of radical source rate which fit data for n-butane - NO_x runs carried out during this period. The RS/K1 value which fit run DTC587B was 0.042 ppb, which is ~40% lower than this. However, this is within the variability observed for these experiments, especially when the apparent radical source is low.
E-NO2/K1	0.068 ppb	Assumed to be the same as RS/K1, as discussed above.
Side A After	r PTI Exposure	Used in runs in Side A after the reactor was exposed to PTI in run DTC600A. Applies to runs DTC600A through DTC618A.
RS/K1	0.207 ppb	Based on the results of run DTC607A.
E-NO2/K1	0.207 ppb	Assumed to be the same as RS/K1, as discussed above.
Side B After	PTI Exposure	Used in runs in Side B after the reactor was exposed to PTI in run DTC604B. Applies to runs DTC604B through DTC618B.
RS/K1	0.073 ppb	Based on the results of run DTC607B.
E-NO2/K1	0.073 ppb	Assumed to be the same as RS/K1, as discussed above.

[[]a] See Table A-2 for definitions of the parameters.