EXPERIMENTAL DETERMINATION OF THE REACTIVITY OF ISOPRENE WITH RESPECT TO OZONE FORMATION

Final Report for
UCAR Contract no. 59166
Roger Atkinson and William P. L. Carter
Principal Investigators
by
William P. L. Carter
John A Pierce
Irina L. Malkina
Dongmin Luo
William D. Long
January 28, 1993
Statewide Air Pollution Research Center
University of California Riverside, California 92521-0312

A series of environmental chamber experiments were conducted to measure the effects of isoprene on ozone formation, NO oxidation, and OH radical levels in a simplified model photochemical smog system. The experiments consisted of repeated 6 -hour irradiations of a simplified mixture of smog precursors, alternating with runs with varying amounts of isoprene added. The experiments were conducted at relatively low $\mathrm{ROG} / \mathrm{NO}_{\mathrm{x}}$ ratios to simulate conditions where VOCs have the greatest effect on ozone formation, and were carried out in conjunction with a larger program where similar data was obtained for 35 other types of Vocs. The amount of ozone formed and NO oxidized per isoprene reacted increased with reaction time, being approximately two molecules of ozone formed and NO oxidized per molecule of isoprene reacted in the first hour, and approximately four molecules in six hours, under the conditions of these experiments. Approximately half of this is estimated to be due directly to the reactions of isoprene and its oxidation products, while the other half is estimated to be due to the fact that isoprene increases the radical levels present in the system, causing additional ozone formation from the other VoCs present. Current atmospheric chemical mechanisms for isoprene, including a preliminary detailed isoprene mechanism, could not correctly simulate the results of these experiments.

The report describes work carried out at the Statewide Air Pollution Research Center (SAPRC) at the University of California at Riverside as a part of the Southern Oxidant Study (SOS). This report is a draft which is being submitted for review. It has has not been approved for release as an sos project output.

The authors wish to acknowledge Dr. Roger Atkinson of SAPRC for assistance in administering this project and for helpful discussions. We also acknowledge Ms. Kathalema M. Smihula and Mr. Armando D. Avallone of the UCR College of Engineering, Center for Environmental Research and Technology (CE-CERT) for assistance in carrying out the experiments in this study. We thank Dr. Joseph Norbeck, director of CE-CERT, for supporting Ms. Smihula and Mr. Avallone during this period.

The opinions and conclusions in this report are entirely those of the authors. Mention of trade names and commercial products do not constitute endorsement or recommendation for use.

TABLE OF CONTENTS
Page
PREFACE ii
LIST OF TABLES iv
LIST OF FIGURES v
INTRODUCTION 1
EXPERIMENTAL AND DATA ANALYSIS METHODS 3
General Approach 3
Data Analysis Methods 4
MECHANISMS USED IN MODEL SIMULATIONS 8
SAPRC-91 Base Case Mechanism 8
SAPRC-90 Isoprene Mechanism 9
Preliminary Detailed Isoprene Mechanism 9
Carbon Bond Mechanism 20
Chamber Effects Model 20
RESULTS AND DISCUSSION 26
Experimental Results 26
Results of Model Calculations 31
CONCLUSIONS 37
REFERENCES 40
APPENDIX
A. REPORT ENTITLED "ENVIRONMENTAL CHAMBER STUDIES OF MAXIMUM INCREMEN- TAL REACTIVITIES OF VOLATILE ORGANIC COMPOUNDS" A-1
Number page

1. List of Model Species Used in the SAPRC-91 Mechanism to Simulate the Reactivity of Isoprene 10
2. Listing of SAPRC-91 Mechanism as used to Simulate Results ofIsoprene Reactivity Experiments. The SAPRC-90 Mechanism forIsoprene is also Shown12
3. Absorption Cross Sections and Quantum Yields for PhotolysisReactions in the SAPRC-90 Mechanism which are not in the mechanismof Carter (1990). .15
4. List of Model Species Added to the SAPRC-91 Mechanism used to Represent the Reactive Products of Isoprene in the Preliminary Detailed Isoprene Mechanism. 17
5. Listing of Reactions in the Preliminary Detailed Mechanism for Isoprene 18
6. Listing of The Carbon Bond IV Mechanism as used to Simulate Results of Isoprene Reactivity Experiments. 21
7. Absorption Cross Sections and Quantum Yields for Photolysis Reactions in the Carbon Bond IV Mechanism as Used to Simulate the Isoprene Reactivity Experiments. 22
8. Conditions and Selected Results of the Mini-Surrogate Runs used for Isoprene Reactivity Assessment 28
9. Derivation of Isoprene Reactivities with Respect to Hourly Ozone Formation and NO Oxidation. 30
10. Derivation of Reactivities with Respect to Hourly Integrated OH Radical Levels for All Test VOC Experiments. 30
11. Derivation of Conversion Factors for the Isoprene Experiments. 31
12. Summary of Reactivity Results For Isoprene and Other Selected VOCs 35
Number page
13. Concentration-time profiles of species measured during the representative Set 3 standard run ETC-292. Results of model calculations using the adjusted SAPRC-91 mechanism are also shown.27
14. Concentration-time profiles of selected species measured during a selected added isoprene run and during the standard run immediately preceding it. 28
15. Plots of representative mechanistic reactivity results for isoprene against amounts of isoprene added. 32
16. Plots of $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ and IntOH mechanistic reactivity results against time measured in the added isoprene runs ETC-277 and ETC-275. . . . 33
17. Plots of $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ and IntOH mechanistic reactivity results against time measured in the added isoprene runs ETC-271 and ETC-273. . . .

INTRODUCTION

The formation of ground-level ozone is a serious air pollution problem in many areas of the United States. Ozone is not emitted directly, but is formed from the photochemical interactions of emitted volatile organic compounds (VOCs) and oxides of nitrogen $\left(\mathrm{NO}_{\mathrm{x}}\right)$. In order to reduce ground level ozone levels and achieve existing air quality standards, it is necessary to reduce emissions of both of these types of ozone precursors. VOC controls generally reduce the rate at which ozone is formed and thus have the greatest effects on the concentrations of ozone nearer the source areas, while NO_{x} controls generally reduce the ultimate amount of ozone which can be formed, and thus have the greatest effects on ozone downwind of the source areas. Traditionally ozone control strategies have focused on VOC controls because there are a wide variety of sources of VOCs, and because significant reductions of NO_{x} emissions have proven to be difficult and expensive. However, VOCs are emitted from biogenic as well as anthropogenic sources, and thus there is a certain component of the VOC emissions inventory which probably can never be completely controlled. Because of this it appears likely that the ground-level ozone pollution problem will not be solved unless significant new NO_{x} controls are also implemented. However, models predict that continued VOC control will have the greatest effect in reducing ozone near most of the urban centers, so VOC control will continue to be an important part of any comprehensive ozone control strategy.

In developing cost-effective VOC control strategies for reduction of ozone formation, it is critical to be able to quantify the effects of the naturally emitted VOCs which will not be controlled. It is also important to recognize that not all VOCs are equal in the amount of ozone formation they cause. The rate of reaction is clearly important, and if this were the only factor, the biogenic VOCs would be judged to be highly reactive. However, VOCs can also differ significantly on their effect on ozone formation even after differences in their rates of reaction are factored out. For example, Carter and Atkinson (1989) calculated that some VOCs can form five or more additional molecules of ozone being formed per molecule of VOC being reacted, while others form less than one molecule, and still others actually cause the amount of ozone formation to be reduced. Although the rates of reaction of most of the biogenic Vocs in the atmosphere have been determined, there presently are no experimental data concerning how much ozone is formed once they do react.

The effect of a VOC on ozone formation can be quantified by its "incremental reactivity". This is defined as the amount of additional ozone formation resulting from the addition of a small amount of the compound to the emissions
in the episode, divided by the amount of compound added. The incremental reactivity of a VOC in an actual air pollution episode cannot be measured experimentally, except by making changes in emissions and observing changes in air quality under similar meteorological conditions. However, they can be calculated using computer airshed models if the VOC's atmospheric reaction mechanism is known or can be estimated. (e.g., see Dodge, 1984; Carter and Atkinson, 1989; Chang and Rudy, 1990; Carter, 1991). However, such calculations are no more reliable than the model for the VOCs' atmospheric chemical reactions. Therefore, experimental data are needed to test the ability of chemical mechanisms to reliably predict the incremental reactivities of VOCs of interest.

This report describes the results of a series of experiments to obtain the data needed to test the ability of models to predict the effects of isoprene on ozone formation under atmospheric conditions where VOC emissions have the greatest effect on ozone. Isoprene was chosen for initial study because it is believed to be the most important single emitted biogenic VOC, at least in the southern United States. Although the effects of VOCs on ozone depend significantly on environmental conditions, particularly NO_{x} levels, the initial experiments concerned the relatively high NO_{x} conditions because these are the conditions where VOCs have the greatest effect on ozone, and thus are the most relevant to the assessment of effects of VOC controls on ozone (Carter, 1991).

EXPERIMENTAL AND DATA ANALYSIS METHODS

This experimental study of isoprene reactivity was carried out as part of a much larger study of the reactivities of a variety of other VOCs, and the detailed methods of procedure and results are given in Appendix A to this report. This section gives a summary of the overall experimental approach and the methods used for data analysis.

General Approach

The reactivities of isoprene were measured by carrying out a series of repeated 6-hour irradiations of a standard mixture representing photochemical smog precursors in an indoor environmental chamber, alternating with irradiations of the same mixture with varying amounts of isoprene added. The ~3000 liter SAPRC indoor Teflon chamber \#2, called the "ETC", was employed. The chamber consists of a flexible FEP Teflon bag held in a framework surrounded by blacklights which were used as the light source. Dry purified air for the experiments was provided by an in-house air purification system. The chamber was flushed with purified air overnight, and then the reactants were injected, mixed, and monitored. The blacklights were then turned on, and the chamber contents were irradiated for six hours. Ozone and NO_{x} were monitored continuously by commercial continuous analyzers, whose readings, along with the temperature data, were recorded on the data acquisition computer every 15 minutes. Organic reactants were monitored approximately hourly by gas chromatography. After the run the reaction bag chamber was deflated and flushed with pure air to remove the contents and prepare for the next run. Various types of characterization and control runs were also carried out from time to time; these are discussed in Appendix A.

The photochemical smog precursors utilized in the experiments consisted of a ~4.5 ppmC of a "mini-surrogate" reactive organic gas (ROG) mixture containing 35% (as carbon) ethene, $50 \% \mathrm{n}$-hexane, and 15% m-xylene, along with $\sim 0.5 \mathrm{ppm}$ of oxides of nitrogen (NO_{x}) in air. This was designed to represent "maximum reactivity" conditions, i.e., relatively low $\mathrm{ROG} / \mathrm{NO}_{\mathrm{x}}$ ratios where voCs have the greatest effects on ozone formation (Carter, 1991). The 3-component minisurrogate was designed to be an experimentally simple representative of the reactive organic compounds emitted into the atmosphere. Although this minisurrogate is a significant oversimplification of the complex mixture of ROGs present in the atmosphere (see, for example, Jeffries et al. 1989), model
calculations show that use of this simpler mixture provides a more sensitive measure of mechanistic reactivities than use of more complex mixtures.

The amount of VOCs added in the test experiments were varied, but generally the amount added was determined so that it caused at least a 40\%, but less than a factor of 2 , change in the sum of amount of $N O$ consumed plus the amount of ozone formed in six hours. In the case of the isoprene experiments, the amount of isoprene ranged from 76 to 157 ppb , causing a $40-80 \%$ change in NO consumed and ozone formed.

A total of four experiments with added isoprene were carried out, each alternating with a standard $\mathrm{ROG}-\mathrm{NO}_{\mathrm{x}}-a i r$ experiment without the added isoprene. Since a large number of similar experiments were carried out with other Vocs added, this procedure resulted in a large number of replicates of the standard experiments being carried out. As discussed in Appendix A, this large number of standard runs is useful for determining the precision of the incremental reactivity measurements, and for controling for the effects of run to run variability in the analysis of the effects of the added isoprene. Therefore, the results of all the relevant standard runs, not just those preceding or following the isoprene runs, were used in the analysis.

Data Analysis Methods

The results of the experiments with added isoprene, together with the results of the repeated standard runs, were analyzed to yield three measures of reactivity. The first was the effect of the added isoprene on the amount of NO reacted plus the amount of ozone formed at hourly intervals in the experiment. The amount of NO reacted plus the amount of ozone formed is referred to as $d\left(O_{3}-\right.$ NO). As discussed elsewhere (e.g., Johnson, 1983; Carter and Atkinson, 1987; Carter and Lurmann, 1990, 1991) this gives a direct measure of the amount of conversion of NO to NO_{2} by peroxy radicals formed in the photooxidation reactions, which is the process that is directly responsible for ozone formation in the atmosphere. The incremental reactivity of the test VOC (e.g., isoprene) relative to $d\left(O_{3}-N O\right)$ at time t, designated $\operatorname{IR}\left[d\left(O_{3}-N O\right)\right]_{t}^{v o c}$, is given by

$$
\begin{equation*}
\operatorname{IR}\left[\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)\right]_{t}^{\mathrm{Voc}}=\frac{\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)_{t}^{\text {test }}-\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)_{t}^{\mathrm{base}}}{[\mathrm{VOC}]_{0}} \tag{I}
\end{equation*}
$$

where $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)_{t}^{\text {test }}$ is the $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ measured at time t from the experiment where the isoprene was added, $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)_{\mathrm{t}}^{\text {base }}$ is the corresponding value from the "base case" experiments where the isoprene was not present, and [VOC]o is the initial isoprene concentration in the experiment where it was added (i.e., the amount
added). The incremental reactivity with respect to $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ was calculated for each hour of the experiment.

The second reactivity measure determined in this study is the effect of the isoprene on the integrated hydroxyl (OH) radical concentration in the experiment. The integrated $O H$ radical concentration, referred to as IntOH, is derived from the fraction of the initially present m-xylene which reacts in the experiment, according to

$$
\begin{equation*}
\operatorname{IntOH}_{t}=\frac{\ln \left(\frac{[m-x y l]}{[m-x y l]}\right)}{\mathrm{kOH}^{\mathrm{m}-\mathrm{xyl}}}-\mathrm{Dt} \tag{II}
\end{equation*}
$$

where $[m-x y l]_{0}$ and $[m-x y l]_{t}$ are the initial and time=t concentrations of m-xylene, respectively, $\mathrm{kOH}^{m-x y l}$ is the rate constant for the reaction of m-xylene with $O H$ radicals, and D is the dilution rate in the experiments, which was estimated to be small but non-negligible (see Appendix A). The effect of the isoprene on IntOH was measured by its incremental reactivity relative to IntOH, or IR[IntOH]ty defined in a way exactly analogous to the incremental reactivity relative to $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$:

$$
\begin{equation*}
\operatorname{IR}[\text { IntOH }]_{t}^{\mathrm{VOC}}=\frac{\text { IntOH }_{t}^{\text {test }}-\text { IntOH }_{\mathrm{t}}^{\mathrm{base}}}{[\mathrm{VOC}]_{0}} \tag{III}
\end{equation*}
$$

Reactivities relative to IntoH are also calculated at hourly intervals.

The third measure of reactivity obtained from the results of these experiments is a quantity we designate as the "direct reactivity", which is defined as:

$$
\begin{equation*}
\text { Direct Reactivity }{ }^{\mathrm{VOC}}=\frac{\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {test }}-\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {base ROG (test) }}}{[\mathrm{VOC}]_{0}} \tag{IV}
\end{equation*}
$$

where $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {base ROG (test) }}$ is given by,

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right) \text { base ROG (test) }=\left(\frac{\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)}{\text { IntOH }}\right)^{\text {base }} \text { IntOH test } \tag{V}
\end{equation*}
$$

As discussed in Appendix $A, d\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {base RoG (test) }}$ is the estimated amount of NO oxidized and ozone formed from the reactions of the base ROG surrogate components in the added test VOC run, and thus $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {test }}-\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {base }}$ ROG (test) $i s$ the amount of ozone formed and NO oxidized estimated to be due to the direct reactions of the added VOC. Thus, the direct reactivity is sensitive to the amount of No oxidation and ozone formation resulting directly from the test VOC's reactions, as opposed to the effect of the added VOC on how much ozone is formed and NO is
oxidized from the reactions of the other ROGs present. If a compound has a strong effect on radical levels, i.e., has a high IntOH reactivity, it can have a significant effect on NO oxidation and ozone formation by affecting how rapidly the other VOCs present react and oxidize NO and form ozone. In such cases, the compound's $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ reactivity is not sensitive to the amount of NO oxidation and ozone formation formed directly from the test VOC's reactions, and thus does not provide a good test for this aspect of the VOC's mechanism. On the other hand, the direct reactivity is sensitive to this aspect of the mechanism, and thus provides a useful tool for mechanism evaluation.

The quantities $d\left(O_{3}-N O\right)^{\text {test }}$, IntOH ${ }^{\text {test }}$, and $[V O C]$ are obtained from the results of each of the individual experiments where a test VOC (e.g., isoprene) is added. However, because of run-to-run variability in temperature, light intensity, and initial reactant concentrations, the quantities $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {base }}$, Int $\mathrm{OH}^{\text {base }}$, and $\left[\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right) /\right.$ IntOH] ${ }^{\text {base }}$ are not measured in a single experiment, but are estimates, based on the results of many base case runs, of what the result of the base case experiment would be if it were carried out under the conditions of the added test VOC experiment. These are obtained by linear multiple regression analyses on the results of the base case experiments as a function of the variable run conditions which were found to affect the result in the base case runs (see Appendix A). Because of the large number of VoCs studied under the higher NO_{x}, lower $\mathrm{ROG} / \mathrm{NO}_{\mathrm{x}}$ series, results from a total of 92 base case runs could be used to determine the base case estimates for these runs. The uncertainties in the estimates of the base case conditions from the regressions are used to estimate the uncertainties in the reactivities due to run-to-run variabilities which could not be accounted for by the regressions.

As discussed in Appendix A, a useful alternative measurement of reactivity which can be obtained from these data is what we term "mechanistic reactivities". Incremental reactivity can be thought of as being a product of two factors, the "kinetic reactivity", which is defined as the fraction of the emitted VOC which undergoes chemical reaction in the pollution scenario being considered,

Kinetic
Reactivity
:---
Reacted

and the "mechanistic reactivity", which is the amount of ozone formed relative to the amount of VOC which reacts in that scenario,

Mechanistic
Reactivity

(Carter and Atkinson, 1987). The utility of this concept is that this provides a means to factor out (at least to a first approximation) the effect of a VoC's reaction rate from all the other mechanistic aspects which affect reactivity.

Since the only aspect of the VOCs mechanism which affects kinetic reactivities are the VOC's rate constants, which generally are known, the ability of a mechanism to predict kinetic reactivities are not considered to be particularly uncertain. On the other hand, the mechanistic reactivities are sensitive to all the other aspects of the $V O C^{\prime} s$ mechanism, many (or all) of which are uncertain. For this reason, the mechanistic reactivities are the quantities of greatest interest to determine in these experiments.

Because of this, the discussion of these experiments, as well as most of the experiments in Appendix A, focus primarily on analysis of the data to yield mechanistic reactivities, and the ability of the mechanisms to simulate them. Mechanistic reactivities, or $\operatorname{MR}\left[d\left(\mathrm{O}_{3}-\mathrm{NO}\right)\right]$, $\mathrm{MR}\left[\mathrm{IntOH}\right.$, and direct $\mathrm{MR}\left[\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)\right.$] (or ConvF - see below) are determined in an analogous way to incremental reactivities, except that (VOC reacted)t, the amount of VOC reacted up to time=t, appears in the denominator of Equations (I), (III), and (IV), respectively, instead of $[\mathrm{VOC}]_{0}$:

$$
\begin{align*}
& \operatorname{MR}\left[d\left(\mathrm{O}_{3}-\mathrm{NO}\right)\right]_{t}^{\mathrm{VOC}}=\frac{d\left(\mathrm{O}_{3}-\mathrm{NO}\right)_{t}^{\text {test }}-d\left(\mathrm{O}_{3}-\mathrm{NO}\right)_{t}^{\text {base }}}{[\mathrm{VOC} \text { reacted }]_{t}} \tag{VI}\\
& \operatorname{MR}[\text { IntOH }]_{t}^{\mathrm{VOC}}=\frac{\operatorname{IntOH}_{t}^{\text {test }}-\operatorname{IntOH}}{t} \text { bVase }_{\text {boC reacted }]_{t}}^{\text {[VO }} \tag{VII}\\
& \operatorname{ConvF}_{t}^{\mathrm{VOC}}=\frac{\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {test }}-\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {base ROG (test) }}}{[\mathrm{VOC} \text { reacted] } t} \tag{VIII}
\end{align*}
$$

The direct mechanistic reactivity is called the "conversion factor", or "ConvF", because under high NO_{x} conditions the direct mechanistic reactivity is approximately equal to the number of $N O$ conversions caused by the reactions of one molecule of the test VOC (see Appendix A).

The amounts of isoprene reacted at the various times in the experiment were determined by direct measurement. Most or all of the initially present isoprene reacted during the experiments, so by the end of the experiment the mechanistic reactivities were essentially the same as the incremental reactivities. However, this was not the case during the first several hours of the experiments.

MECHANISMS USED IN MODEL SIMULATIONS

The primary utility of these experiments is to provide data to test the ability of the chemical mechanisms used in airshed models to correctly predict the effects of emitted isoprene on $N O$ oxidation, ozone formation, and radical levels in the atmosphere. Although a discussion of the development and characteristics of isoprene mechanisms is beyond the scope of this report, a series of model calculations were carried out to determine the extent to which these data are consistent with current mechanisms for isoprene's atmospheric reactions. The chemical mechanisms used to simulate these experiments are listed and briefly discussed in this section.

Model simulation of reactivity experiments involves simulations of the base case experiment, then simulations of the same experiment with the test compound added, then analyzing the results using the same methodology as employed with the experimental data, as described above. These simulations thus require mechanisms for the compounds in the base case experiment (referred to as the "base case" mechanisms in the discussion below) as well as mechanisms for isoprene. They also require a model for the chamber effects and other run conditions in these experiments.

Two base case mechanisms were used in this study for the purpose of testing three different isoprene mechanisms. The "SAPRC-91" mechanism, discussed in Appendix A, was used to test the version of the isoprene mechanism which is included in the SAPRC-90 mechanism of Carter (1990), and was also used to test a preliminary detailed isoprene mechanism which we are developing. A slightly modified version of the Carbon Bond IV mechanism (Gery et al., 1988) was used to test the isoprene representation incorporated in that mechanism.

SAPRC-91 Base Case Mechanism

The SAPRC-91 base case mechanism used in this work is the same as the SAPRC-91 mechanism used in the model simulations discussed in Appendix A. This consists of a slightly updated and modified version of the "SAPRC-90" mechanism of Carter et al (1990). The aspects of the mechanism which were updated involved the kinetics of PAN formation and the photolysis of formaldehyde, and also several modifications were made to the mechanisms for m-xylene and the species representing its unknown photoreactive products. The unadjusted SAPRC mechanisms were found to somewhat underpredict the rate of ozone formation in the standard experiment in this study, and an adjustment had to be made to the m-xylene
mechanism to yield acceptable fits to the data and to minimize possible biases being introduced into the reactivity simulations which might result if the mechanism could not simulate the results of the base case experiment. The species and reactions for this mechanisms are given in Tables 1 and 2, and the absorption cross sections and quantum yields which are different from those given by Carter (1990) are listed in Table 3.

Note that this mechanism is still in the process of being updated, and is subject to further modification before its documentation is published. In addition, the modified m-xylene mechanism it incorporates is considered to be suitable only for modeling the conditions of these experiments (see Appendix A).

SAPRC-90 Isoprene Mechanism

The SAPRC-90 mechanism of Carter (1990) uses a generalized parameter approach to represent the reactions of a wide variety of alkenes and other species, with isoprene being among the species for which parameter assignments are given. This mechanism in effect represents isoprene by using a model species which reacts with the appropriate $\mathrm{OH}, \mathrm{O}_{3}, \mathrm{NO}_{3}$, and $\mathrm{O}^{3} \mathrm{P}$ rate constants, but which form the same types of products as do the other alkenes once it reacts. Thus, the only species added to the mechanism to predict the reactivity of isoprene is isoprene itself; no new species are added to represent the reactions of isoprene's products. This is similar to the approach used to represent isoprene in the RADM-2 chemical mechanism of Stockwell et al. (1990), and the performance of that mechanism is expected to be similar to the SAPRC-90 isoprene mechanism in simulating these data. The SAPRC-90 isoprene reactions are included with the listing of the SAPRC-91 mechanism on Table 2.

Preliminary Detailed Isoprene Mechanism

Under funding from a separate EPA program, we are in the process of developing a detailed mechanism for the reactions of isoprene and its major photooxidation products. This will then be used as the basis for developing improved condensed mechanisms for isoprene for use in airshed models. As part of this effort, a preliminary detailed mechanism for isoprene has been developed which has explicit representations for the reactions of its major primary and secondary reaction products. These known or expected products include methacrolein, methyl vinyl ketone, glycolaldehyde, hydroxyacetone, 3-methyl furan, and various C_{5} hydroxy-methyl and methyl substituted acrolein species which we estimate are also formed (Carter, unpublished results - see also Paulson and Seinfeld, 1992). (The various $C_{5} h y d r o x y-s u b s t i t u t e d ~ a c r o l e i n s ~ a r e ~$

Table 1. List of Model Species Used in the SAPRC-91 Mechanism to Simulate the Reactivity of Isoprene
Name Description

Constant Species.

O2	Oxygen
M	Air
H2O	Water

Active Inorganic Species.

O3	Ozone
NO	Nitric Oxide
NO2	Nitrogen Dioxide
NO3	Nitrate Radical
N2O5	Nitrogen Pentoxide
HONO	Nitrous Acid
HNO3	Nitric Acid
HNO4	Peroxynitric Acid
HO2H	Hydrogen Peroxide

Active Radical Species and Operators.

HO2.	Hydroperoxide Radicals
RO2.	Operator to Calculate Total Organic Peroxy Radicals
RCO3. Operator to Calculate Total Acetyl Peroxy Radicals	

Active Reactive Organic Product Species.

CO	Carbon Monoxide
HCHO	Formaldehyde
CCHO	Acetaldehyde
RCHO	Lumped C3+ Aldehydes
ACET	Acetone
MEK	Lumped Ketones
PHEN	Phenol
CRES	Cresols
BALD	Aromatic aldehydes (e.g., benzaldehyde)
GLY	Glyoxal
MGLY	Methyl Glyoxal
AFG1	Reactive Aromatic Fragmentation Products from benzene and naphthalene
AFG2	Other Reactive Aromatic Fragmentation Products.
RNO3	Organic Nitrates
NPHE	Nitrophenols
PAN	Peroxy Acetyl Nitrate
PPN	Peroxy Propionyl Nitrate
GPAN	PAN Analogue formed from Glyoxal
PBZN	PAN Analogues formed from Aromatic Aldehydes
-OOH	Operator Representing Hydroperoxy Groups.

Non-Reacting Species

```
CO2 Carbon Dioxide
-C "Lost Carbon"
-N "Lost Nitrogen"
H2 Hydrogen
```

Table 1, (continued)

Name	Description
O30L-SB	Operator used to account for total stabilized "Criegee biradical" formation. (When SO_{2} is present, it is a steady-state species used
to account for conversion of SO_{2} to SO_{3}. Otherwise, it can be	
ignored.)	
Counter species to account for NOX lost on walls, or (if negative) for NOx input coming off walls	

Steady State Species and Operators.

```
HO. Hydroxyl Radicals
O Ground State Oxygen Atoms
O*1D2 Excited Oxygen Atoms
RO2-R. Peroxy Radical Operator representing NO to NO2 conversion
    with HO2 formation.
RO2-N. Peroxy Radical Operator representing NO consumption with organic
    nitrate formation.
RO2-NP. Peroxy Radical Operator representing NO consumption with nitrophenol
    formation
R2O2. Peroxy Radical Operator representing NO to NO2 conversion.
CCO-O2. Peroxy Acetyl Radicals
C2CO-O2. Peroxy Propionyl Radicals
HCOCO-O2. Peroxyacyl Radical formed from Glyoxal
BZ-CO-O2. Peroxyacyl Radical formed from Aromatic Aldehydes
HOCOO. Intermediate formed in Formaldehyde + HO
BZ-O. Phenoxy Radicals
BZ(NO2)-O. Nitratophenoxy Radicals
HOCOO. Radical Intermediate formed in the HO
```


Mini-Surrogate Components and Related Species

ETHE	Ethene
NC6	n-Hexane
MXYL	m-Xylene formed from m-Xylene in mini-surrogate instead of AFG2, for
MXYP	Product forme mechanism which is adjusted to fit the ETC Set 3
	the m-xylene
	standard experiment.

Isoprene

ISOP Isoprene

Table 2. Listing of SAPRC-91 Mechanism as used to Simulate Results of	
	Isoprene Reactivity Experiments. The SAPRC-90 Mechanism for
Isoprene is also Shown.	

Rxn.				
Label	Kinetic Parameters [a]			Reactions [b]
	$\mathrm{k}(300)$	A	Ea	B

COMMON REACTIONS IN SAPRC-91 MECHANISM

Inorganic

1	(Phot	t $=$ NO2	NO2 + HV = NO + O
2	$2.16 \mathrm{E}-05$	$2.16 \mathrm{E}-050.00-4.30$	$\mathrm{O}+\mathrm{O} 2+\mathrm{M}=03+\mathrm{M}$
3A	1.42E+04	9.54E+03-0.24-1.00	$\mathrm{O}+\mathrm{NO} 2=\mathrm{NO}+\mathrm{O} 2$
3B	$2.28 \mathrm{E}+03$	(Falloff Kinetics)	$0+\mathrm{NO} 2=\mathrm{NO} 3+\mathrm{M}$
	k0	$3.23 \mathrm{E}-030.00-4.00$	
	$\mathrm{kINF}=$	$3.23 E+040.00-1.00$	
		$\mathrm{F}=0.60 \mathrm{n}=1.00$	
4	$2.76 \mathrm{E}+01$	$2.94 \mathrm{E}+032.78-1.00$	$\mathrm{O} 3+\mathrm{NO}=\mathrm{NO} 2+\mathrm{O} 2$
5	$4.94 \mathrm{E}-02$	$2.06 \mathrm{E}+024.97-1.00$	$\mathrm{O3}+\mathrm{NO2}=02+\mathrm{NO} 3$
6	$4.11 \mathrm{E}+04$	$2.49 \mathrm{E}+04-0.30-1.00$	$\mathrm{NO}+\mathrm{NO}=$ \#2 NO 2
7	$6.90 \mathrm{E}-10$	$1.19 \mathrm{E}-10-1.05-2.00$	$\mathrm{NO}+\mathrm{NO}+\mathrm{O} 2=\# 2 \mathrm{NO} 2$
8	$1.84 \mathrm{E}+03$	(Falloff Kinetics)	NO2 + NO3 = N205
	k0	$7.90 \mathrm{E}-020.00-6.30$	
	kINF =	$2.20 \mathrm{E}+030.00-1.50$	
		$\mathrm{F}=0.60 \mathrm{n}=1.00$	
9	$2.26 \mathrm{E}-03$	$3.72 \mathrm{E}+1322.261 .00$	N2O5 + \#RCON8 = NO2 + NO3
10	$1.47 \mathrm{E}-06$	$1.47 \mathrm{E}-060.00-1.00$	N2O5 + H2O = \#2 HNO3
11	$6.13 \mathrm{E}-01$	$3.67 \mathrm{E}+01 \quad 2.44-1.00$	$\mathrm{NO2}+\mathrm{NO3}=\mathrm{NO}+\mathrm{NO} 2+\mathrm{O} 2$
12A	(Phot	Set $=$ NO3NO)	$\mathrm{NO} 3+\mathrm{HV}=\mathrm{NO}+\mathrm{O} 2$
12B	(Phot	Set $=$ NO3NO2)	NO3 + HV = NO2 + O
13A	(Phot	Set $=0303 \mathrm{P}$)	$\mathrm{O} 3+\mathrm{HV}=\mathrm{O}+\mathrm{O} 2$
13B	(Phot	Set = 0301D	$\mathrm{O} 3+\mathrm{HV}=\mathrm{O}$ * $1 \mathrm{D} 2+\mathrm{O} 2$
14	$3.23 \mathrm{E}+05$	$3.23 \mathrm{E}+050.00-1.00$	O*1D2 + H2O = \#2 HO.
15	$4.29 \mathrm{E}+04$	$2.82 \mathrm{E}+04-0.25-1.00$	O*1D2 + M = O + M
16	$7.05 \mathrm{E}+03$	(Falloff Kinetics)	HO. + NO = HONO
	k0 =	$2.51 \mathrm{E}-020.00-4.60$	
	kINF $=$	$2.20 \mathrm{E}+040.00-1.50$	
		$\mathrm{F}=0.60 \mathrm{n}=1.00$	
17	(Phot	Set $=$ HONO	HONO + HV = HO. + NO
18	$1.66 \mathrm{E}+04$	(Falloff Kinetics)	HO. + NO2 $=$ HNO3
	k0 =	9.34E-02 $0.00-5.20$	
	kINF	$3.52 \mathrm{E}+040.00-2.30$	
		$\mathrm{F}=0.60 \mathrm{n}=1.00$	
19	$1.51 \mathrm{E}+02$	$9.47 \mathrm{E}+00-1.65-1.00$	HO. + HNO3 = H2O + NO3
21	$3.52 \mathrm{E}+02$	$3.52 \mathrm{E}+020.00-1.00$	$\mathrm{HO} .+\mathrm{CO}=\mathrm{HO} 2 .+\mathrm{CO} 2$
22	$1.02 \mathrm{E}+02$	$2.35 \mathrm{E}+031.87-1.00$	$\mathrm{HO} .+\mathrm{O} 3=\mathrm{HO} 2 .+\mathrm{O} 2$
23	$1.21 \mathrm{E}+04$	$5.43 \mathrm{E}+03-0.48-1.00$	HO2. + NO = HO. + NO2
24	$2.00 \mathrm{E}+03$	(Falloff Kinetics)	HO2. + NO2 = HNO4
	k0	$6.46 \mathrm{E}-030.00-5.20$	
	$\mathrm{kINF}=$	$6.90 \mathrm{E}+030.00-2.40$	
		$\mathrm{F}=0.60 \mathrm{n}=1.00$	
25	$3.24 \mathrm{E}-03$	$1.95 \mathrm{E}+1321.661 .00$	HNO4 + \#RCON24 = HO2. + NO2
27	$6.77 \mathrm{E}+03$	$1.91 \mathrm{E}+03-0.75-1.00$	HNO4 + HO. = H2O + NO2 + O2
28	$3.05 \mathrm{E}+00$	$1.61 \mathrm{E}+01 \quad 0.99-1.00$	HO2. + O3 = HO. + \#2 O2
29A	$2.54 \mathrm{E}+03$	$3.23 \mathrm{E}+02-1.23-1.00$	HO2. + HO2. $=$ HO2H + O2
29B	$1.80 \mathrm{E}-03$	$6.82 \mathrm{E}-05-1.95-2.00$	HO2. + HO2. + M $=$ HO2H + O2
29 C	$1.34 \mathrm{E}-01$	$1.11 \mathrm{E}-05-5.60-2.00$	HO2. + HO2. + $\mathrm{H} 2 \mathrm{O}=\mathrm{HO} 2 \mathrm{H}+\mathrm{O} 2+\mathrm{H} 2 \mathrm{O}$
29D	9.52E-02	$2.37 \mathrm{E}-06-6.32-2.00$	HO2. + HO2. + H2O $=$ HO2H $+\mathrm{O} 2+\mathrm{H} 2 \mathrm{O}$
30A	(Same	k as Reaction 29A)	NO3 + HO2 . $=$ HNO3 + O2
30B	(Same	k as Reaction 29B)	NO3 + HO2. + M = HNO3 + O2
30C	(Same	k as Reaction 29C)	NO3 + HO2. + H2O $=$ HNO3 + O2 + H2O
30D	(Same	k as Reaction 29D)	NO3 + HO2. + H2O $=$ HNO3 + O2 + H2O
31	(Phot	Set $=$ H2O2)	$\mathrm{HO} 2 \mathrm{H}+\mathrm{HV}=\# 2 \mathrm{HO}$.
32	$2.49 \mathrm{E}+03$	$4.84 \mathrm{E}+03 \quad 0.40-1.00$	HO2H + HO. = HO2. + H2O
33	$1.45 \mathrm{E}+05$	$6.75 \mathrm{E}+04-0.46-1.00$	HO. + HO2. = H2O +O 2
General Peroxy			
B1	$1.13 \mathrm{E}+04$	$6.16 \mathrm{E}+03-0.36-1.00$	RO2. + NO $=$ NO
B2	$3.31 \mathrm{E}+04$	(Falloff Kinetics)	RCO3. + NO $=$ NO
	k0	$2.03 \mathrm{E}+01 \quad 0.00-9.10$	
	kINF $=$	$3.87 \mathrm{E}+040.00-1.90$	
		$\mathrm{F}=0.27 \mathrm{n}=1.00$	
B4	$1.52 \mathrm{E}+04$	(Falloff Kinetics)	RCO3. + NO2 = NO2
	k0	$9.23 \mathrm{E}+000.00-9.10$	
	kINF $=$	$1.76 \mathrm{E}+040.00-1.90$	
		$\mathrm{F}=0.30 \mathrm{n}=1.00$	
B5	$7.19 \mathrm{E}+03$	$4.99 \mathrm{E}+02-1.59-1.00$	RO2. + HO2. = HO2.
B6	$7.19 \mathrm{E}+03$	$4.99 \mathrm{E}+02-1.59-1.00$	RCO3. + HO2. = HO2.
B8	$1.47 \mathrm{E}+00$	$1.47 \mathrm{E}+00 \quad 0.00-1.00$	RO2. + RO2.
B9	$1.60 \mathrm{E}+04$	$2.73 \mathrm{E}+03-1.05-1.00$	RO2. + RCO3. =
B10	2.	$4.11 \mathrm{E}+03-1.05-1.00$	RCO3. + RCO3. =

Table 2 (continued)

Rxn.	Kinetic Parameters [a]		
	$\mathrm{k}(300)$	A	Ea

Reactions [b]

B11
B12
B13 B13
B14

B19

B19
B20
B21
B21
B22
B15
B16
B17
B18

B23

B23
B24
B25
B25
B26
G2
G3
G4
G5


```
```

RO2-R. + NO = NO2 + HO2.

```
```

RO2-R. + NO = NO2 + HO2.
RO2-R. + HO2 . = -OOH
RO2-R. + HO2 . = -OOH
RO2-R. + RO2. = RO2. + \#.5 HO2.
RO2-R. + RO2. = RO2. + \#.5 HO2.
RO2-R. + RCO3. = RCO3. + \#.5 HO2.
RO2-R. + RCO3. = RCO3. + \#.5 HO2.
RO2-N. + NO = RNO3
RO2-N. + NO = RNO3
RO2-N. + HO2. = -OOH + MEK + \#1.5 -C
RO2-N. + HO2. = -OOH + MEK + \#1.5 -C
RO2-N. + RO2. = RO2. + \#.5 HO2. + MEK + \#1.5 -C
RO2-N. + RO2. = RO2. + \#.5 HO2. + MEK + \#1.5 -C
RO2-N. + RCO3. = RCO3. + \#.5 HO2. + MEK + \#1.5 -C
RO2-N. + RCO3. = RCO3. + \#.5 HO2. + MEK + \#1.5 -C
R2O2. + NO = NO2
R2O2. + NO = NO2
R2O2. + HO2. =
R2O2. + HO2. =
R2O2. + HO2. =
R2O2. + HO2. =
R2O2. + RCO3. = RCO3.
R2O2. + RCO3. = RCO3.
RO2-XN. + NO = -N
RO2-XN. + NO = -N
RO2-XN. + HO2 . = -OOH
RO2-XN. + HO2 . = -OOH
RO2-XN. + RO2. = RO2. + \#.5 HO2.
RO2-NP. + NO = NPHE
RO2-NP. + NO = NPHE
RO2-NP. + HO2. = -OOH + \#6 -C
RO2-NP. + HO2. = -OOH + \#6 -C
RO2-NP. + RO2. = RO2. + \#.5 HO2. + \#6 -C
RO2-NP. + RO2. = RO2. + \#.5 HO2. + \#6 -C
RO2-NP. + RCO3. = RCO3. + HO2. + \#6 -C

```
```

RO2-NP. + RCO3. = RCO3. + HO2. + \#6 -C

```
```


Common Organic Products

B7
B7A
B7B $\quad 5.45 \mathrm{E}+03 \quad 1.73 \mathrm{E}+03-0.25-1.00$
C1
C2
C3
C4
C4A
C4B
C9

C11A
C12
$\begin{array}{lllll}\mathrm{C} 25 & 2.89 \mathrm{E}+04 & 1.25 \mathrm{E}+04 & -0.50 & -1.00\end{array}$

C 26	(Phot. Set $=\mathrm{RCHO}$)	
C 27	$4.17 \mathrm{E}+00$	$2.05 \mathrm{E}+03$	3.70
-1.00			

C38 $3.39 \mathrm{E}+02 \quad 2.82 \mathrm{E}+02-0.11 \quad 1.00$
(Phot. Set $=$ ACETONE)
$1.70 \mathrm{E}+03 \quad 4.29 \mathrm{E}+02-0.82 \quad 1.00$
(Phot. Set $=$ KETONE)
$3.03 \mathrm{E}+03 \quad 3.22 \mathrm{E}+04 \quad 1.41-1.00$

Phot. Set $=$ MEGLYOX1)
C68B (Phot. Set $=$ MEGLYOX2)
$\begin{array}{lllll}\mathrm{C} 69 & 2.52 \mathrm{E}+04 & 2.52 \mathrm{E}+04 & 0.00 & -1.00\end{array}$

C13 (Same k as Reaction B2)
(Same k as Reaction B4)
(Same k as Reaction B6)
(Same k as Reaction B9)
(Same k as Reaction B10)
3.90E-02 (Falloff Kinetics)
$\begin{array}{lllr}\mathrm{kO}= & \begin{array}{lll}7.19 \mathrm{E}+12 & 23.97 & -1.00 \\ \mathrm{kINF}= & 2.40 \mathrm{E}+18 & 27.08 \\ \mathrm{~F}=0.30 & 0.00\end{array} \\ & \mathrm{n}=1.00\end{array}$
(Same k as Reaction B2)
$1.23 \mathrm{E}+04 \quad 1.23 \mathrm{E}+04 \quad 0.00-1.00$
(Same k as Reaction B6)
(Same k as Reaction B9)
$-\mathrm{OOH}+\mathrm{HV}=\mathrm{HO} 2 .+\mathrm{HO}$.
$\mathrm{HO} .+-\mathrm{OOH}=\mathrm{HO}$.
$\mathrm{HO} .+-\mathrm{OOH}=\mathrm{RO} 2-\mathrm{R} .+\mathrm{RO} 2$.
$\mathrm{HCHO}+\mathrm{HV}=\# 2 \mathrm{HO} 2 .+\mathrm{CO}$
$\mathrm{HCHO}+\mathrm{HV}=\mathrm{H} 2+\mathrm{CO}$
$\mathrm{HCHO}+\mathrm{HO} .=\mathrm{HO} 2 .+\mathrm{CO}+\mathrm{H} 2 \mathrm{O}$
$\mathrm{HCHO}+\mathrm{HO} 2 .=\mathrm{HOCOO}$.
$\mathrm{HCHO}+\mathrm{HO} 2 .=\mathrm{HOCOO}$
HOCOO.
$\mathrm{HOCOO}=\mathrm{HO2}++\mathrm{HCHO}$
$\mathrm{HOCOO} .+\mathrm{NO}=-\mathrm{C}+\mathrm{NO} 2+\mathrm{HO} 2$.
$\mathrm{HCHO}+\mathrm{NO} 3=\mathrm{HNO} 3+\mathrm{HO} 2 .+\mathrm{CO}$
$\mathrm{CCHO}+\mathrm{HO} .=\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{H} 2 \mathrm{O}+\mathrm{RCO} 3$.
$\mathrm{CCHO}+\mathrm{HV}=\mathrm{CO}+\mathrm{HO} 2 .+\mathrm{HCHO}+\mathrm{RO} 2-\mathrm{R} .+\mathrm{RO} 2$.
$\mathrm{CCHO}+\mathrm{NO} 3=\mathrm{HNO} 3+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
$\mathrm{RCHO}+\mathrm{HO} .=\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
$\mathrm{RCHO}+\mathrm{HV}=\mathrm{CCHO}+\mathrm{RO} 2-\mathrm{R} .+\mathrm{RO} 2 .+\mathrm{CO}+\mathrm{HO} 2$.
$\mathrm{NO} 3+\mathrm{RCHO}=\mathrm{HNO} 3+\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
$\mathrm{ACET}+\mathrm{HO} .=$ \#. 8 "MGLY + RO2-R." + \#. 2 "R2O2. + HCHO + CCO-O2. + RCO3." + RO2.
$\mathrm{ACET}+\mathrm{HV}=\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{HCHO}+\mathrm{RO} 2-\mathrm{R} .+\mathrm{RCO} 3 .+\mathrm{RO} 2$.
$\mathrm{MEK}+\mathrm{HO} .=\mathrm{H} 2 \mathrm{O}+\# .5 \mathrm{CCHO}+\mathrm{HCHO}+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 . "+\mathrm{RCO} .+$
\#1.5 "R2O2. + RO2."
$\mathrm{MEK}+\mathrm{HV}+\# .1=\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{CCHO}+\mathrm{RO} 2-\mathrm{R} .+\mathrm{RCO} 2 .+\mathrm{RO} 2$.
$\mathrm{RNO} 3+\mathrm{HO} .=\mathrm{NO} 2+\# .155 \mathrm{MEK}+\# 1.05 \mathrm{RCHO}+\# .48 \mathrm{CCHO}+\# .16 \mathrm{HCHO}+$
\#. $11-\mathrm{C}+\# 1.39$ "R2O2. + RO2."
$\mathrm{MGLY}+\mathrm{HV}=\mathrm{HO} 2 .+\mathrm{CO}+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
$\mathrm{MGLY}+\mathrm{HV}+\# .107=\mathrm{HO} 2 .+\mathrm{CO}+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
MGLY $+\mathrm{HO} .=\mathrm{CO}+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
MGLY $+\mathrm{NO} 3=\mathrm{HNO} 3+\mathrm{CO}+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
$\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{NO}=\mathrm{CO} 2+\mathrm{NO} 2+\mathrm{HCHO}+\mathrm{RO} 2-\mathrm{R} .+\mathrm{RO} 2$.
$\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{NO} 2=\mathrm{PAN}$
$\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{HO} 2 .=-\mathrm{OOH}+\mathrm{CO} 2+\mathrm{HCHO}$
$\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RO} 2 .=\mathrm{RO} 2 .+\# .5 \mathrm{HO} 2 .+\mathrm{CO} 2+\mathrm{HCHO}$
$\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RCO} 2=\mathrm{RCO} 3 .+\mathrm{HO} 2 .+\mathrm{CO} 2+\mathrm{HCHO}$
$\mathrm{PAN}=\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{NO} 2+\mathrm{RCO} 3$.
$\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{NO}=\mathrm{CCHO}+\mathrm{RO} 2-\mathrm{R} .+\mathrm{CO} 2+\mathrm{NO} 2+\mathrm{RO} 2$.
$\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{NO} 2=\mathrm{PPN}$
$\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{HO} 2 .=-\mathrm{OOH}+\mathrm{CCHO}+\mathrm{CO} 2$
$\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{RO} 2 .=\mathrm{RO} 2 .+\# .5 \mathrm{HO} 2 .+\mathrm{CCHO}+\mathrm{CO} 2$

Table 2 (continued)

Rxn.	Kinetic Parameters [a]		
Label	$k(300)$	A	Ea

Reactions [b]
C32
C33

C58A

$\begin{array}{lr}\text { C58B } & \text { (Phot. Set }=\text { GLYOXAL1) } \\ \text { (Phot. Set }=\text { GLYOXAL2) }\end{array}$
C59 $1.67 \mathrm{E}+04 \quad 1.67 \mathrm{E}+04 \quad 0.00-1.00$ C60 (Same k as Reaction C12)

C62
$C 62$

$C 63$ | $C 63$ |
| :--- |
| $C 64$ | C65 C 66

C 67
G46 $\quad 3.86 \mathrm{E}+04 \quad 3.86 \mathrm{E}+04 \quad 0.00-1.00$

G 51	$5.28 \mathrm{E}+03$	$5.28 \mathrm{E}+03$	0.00	-1.00

G 52	$6.16 \mathrm{E}+04$	$6.16 \mathrm{E}+04$	0.00	-1.00
G 57	$3.08 \mathrm{E}+04$	$3.08 \mathrm{E}+04$	0.00	-1.00

G57 $3.08 \mathrm{E}+04 \quad 3.08 \mathrm{E}+04 \quad 0.00-1.00$

G30 $\quad 1.89 \mathrm{E}+04 \quad 1.89 \mathrm{E}+04 \quad 0.00-1.00$
(Phot. Set $=$ BZCHO)
$3.83 \mathrm{E}+00 \quad 2.05 \mathrm{E}+03 \quad 3.75-1.00$
(Same k as Reaction B2)
$1.23 \mathrm{E}+04 \quad 1.23 \mathrm{E}+04 \quad 0.00-1.00$
(Same k as Reaction B6)
(Same k as Reaction B9)
(Same k as Reaction B10)
$1.30 \mathrm{E}-02 \quad 9.60 \mathrm{E}+16 \quad 25.90 \quad 0.00$
$5.19 \mathrm{E}+04 \quad 1.91 \mathrm{E}+04-0.60-1.00$
(Same k as Reaction B5)
6.00E-02 (No T Dependence)
$5.28 \mathrm{E}+03 \quad 5.28 \mathrm{E}+03 \quad 0.00-1.00$
(Same k as Reaction G43)
(Same k as Reaction B5)
(Same k as Reaction G 45)

$1.67 \mathrm{E}+04$	$1.67 \mathrm{E}+04$	$0.00-1.00$
(Phot.	Set $=$ ACROLEIN)	
$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00-1.00$
$2.52 \mathrm{E}+04$	$2.52 \mathrm{E}+04$	$0.00-1.00$

(Phot. Set $=$ ACROLEIN)
$\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{RCO} 3 .=\mathrm{RCO} 3 .+\mathrm{HO} 2 .+\mathrm{CCHO}+\mathrm{CO} 2$
$\mathrm{PPN}=\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{NO} 2+\mathrm{RCO} 3$.
$\mathrm{GLY}+\mathrm{HV}=$ \#. $8 \mathrm{HO} 2 .+\# .45 \mathrm{HCHO}+\# 1.55 \mathrm{CO}$
$\mathrm{GLY}+\mathrm{HV}+\# 0.029=\# .13 \mathrm{HCHO}+\# 1.87 \mathrm{CO}$
$\mathrm{GLY}+\mathrm{HO}=\# .6 \mathrm{HO} 2 .+\# 1.2 \mathrm{CO}+\# .4$ "HCOCO-O2. + RCO3."
$\mathrm{GLY}+\mathrm{NO} 3=\mathrm{HNO} 3+\# .6 \mathrm{HO} 2 .+\# 1.2 \mathrm{CO}+\# .4 \mathrm{HCOCO}^{2} \mathrm{H} 2 .+\mathrm{RCO} . \mathrm{H}$
$\mathrm{HCOCO}-\mathrm{O} 2 .+\mathrm{NO}=\mathrm{NO} 2+\mathrm{CO} 2+\mathrm{CO}+\mathrm{HO} 2$.
$\mathrm{HCOCO}-\mathrm{O} 2 .+\mathrm{NO} 2=\mathrm{GPAN}$
GPAN $=\mathrm{HCOCO}-\mathrm{O} 2 .+\mathrm{NO} 2+\mathrm{RCO} 3$.
$\mathrm{HCOCO}-\mathrm{O} 2 .+\mathrm{HO} 2 .=-\mathrm{OOH}+\mathrm{CO} 2+\mathrm{CO}$
$\mathrm{HCOCO}-\mathrm{O} 2 .+\mathrm{RO} 2 .=\mathrm{RO} 2 .+\# .5 \mathrm{HO} 2 .+\mathrm{CO} 2+\mathrm{CO}$
$\mathrm{HCOCO}-\mathrm{O} 2 .+\mathrm{RCO} 3 .=\mathrm{RCO} 3 .+\mathrm{HO} 2 .+\mathrm{CO} 2+\mathrm{CO}$
HO. + PHEN = \#. 15 RO2-NP. + \#. 85 RO2-R. + \#. $2 \mathrm{GLY}+\# 4.7$-C RO2.
$\mathrm{NO} 3+\mathrm{PHEN}=\mathrm{HNO} 3+\mathrm{BZ}-\mathrm{O}$.
$\mathrm{HO} .+\mathrm{CRES}=\# .15 \mathrm{RO} 2-\mathrm{NP} .+\# .85 \mathrm{RO} 2-\mathrm{R} .+\# .2 \mathrm{MGLY}+\# 5.5-\mathrm{C}+\mathrm{RO} 2$.
$\mathrm{NO} 3+\mathrm{CRES}=\mathrm{HNO} 3+\mathrm{BZ}-\mathrm{O} .+-\mathrm{C}$
$\mathrm{BALD}+\mathrm{HO} .=\mathrm{BZ}-\mathrm{CO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
BALD + HV + \#. $05=\# 7-\mathrm{C}$
$\mathrm{BALD}+\mathrm{NO} 3=\mathrm{HNO} 3+\mathrm{BZ}-\mathrm{CO}-\mathrm{O} 2$.
$\mathrm{BZ}-\mathrm{CO}-\mathrm{O} 2 .+\mathrm{NO}=\mathrm{BZ}-\mathrm{O} .+\mathrm{CO} 2+\mathrm{NO} 2+\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{RO} 2$.
$\mathrm{BZ}-\mathrm{CO}-\mathrm{O} 2 .+\mathrm{NO} 2=\mathrm{PBZN}$
$\mathrm{BZ}-\mathrm{CO}-\mathrm{O} 2 .+\mathrm{HO} 2 .=-\mathrm{OOH}+\mathrm{CO} 2+\mathrm{PHEN}$
$\mathrm{BZ}-\mathrm{CO}-\mathrm{O} 2 .+\mathrm{RO} 2 .=\mathrm{RO} 2 .+\# .5 \mathrm{HO} 2 .+\mathrm{CO} 2+\mathrm{PHEN}$
$\mathrm{BZ}-\mathrm{CO}-\mathrm{O} 2 .+\mathrm{RCO} 3 .=\mathrm{RCO} 3 .+\mathrm{HO} 2 .+\mathrm{CO} 2+\mathrm{PHEN}$
$\mathrm{PBZN}=\mathrm{BZ}-\mathrm{CO}-\mathrm{O} 2 .+\mathrm{NO} 2+\mathrm{RCO} 3$.
$\mathrm{BZ}-\mathrm{O} .+\mathrm{NO} 2=\mathrm{NPHE}$
$\mathrm{BZ}-\mathrm{O} .+\mathrm{HO} 2$. = PHEN
$\mathrm{BZ}-\mathrm{O} .=\mathrm{PHEN}$
NPHE + NO3 $=$ HNO3 $+\mathrm{BZ}(\mathrm{NO} 2)-\mathrm{O}$.
$\mathrm{BZ}(\mathrm{NO} 2)-\mathrm{O} .+\mathrm{NO} 2=\# 2-\mathrm{N}+\# 6-\mathrm{C}$
$\mathrm{BZ}(\mathrm{NO} 2)-\mathrm{O} .+\mathrm{HO} 2 .=\mathrm{NPHE}$
$\mathrm{BZ}(\mathrm{NO} 2)-\mathrm{O} .=\mathrm{NPHE}$
(See note [c])
$\mathrm{HO} .+\mathrm{AFG1}=\mathrm{HCOCO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
$\mathrm{AFG1}+\mathrm{HV}+\# .029=\mathrm{HO} 2 .+\mathrm{HCOCO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
$\mathrm{AFG1}+\mathrm{O} 3=\# .5$ " $\mathrm{HCHO}+\mathrm{GLY}+-\mathrm{C} "+\mathrm{HO} 2$.
$\mathrm{HO} .+\mathrm{AFG} 2=\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
$\mathrm{AFG} 2+\mathrm{HV}=\mathrm{HO} 2 .+\mathrm{CO}+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.

REACTIONS OF MINI-SURROGATE COMPONENTS
(m-Xylene mechanism applicable for these runs only)

D1	$1.24 \mathrm{E}+04$	$2.88 \mathrm{E}+03$	-0.87	-1.00
D6	$2.75 \mathrm{E}-03$	$1.76 \mathrm{E}+01$	5.23	-1.00
D8	$1.09 \mathrm{E}+03$	$1.53 \mathrm{E}+04$	1.57	-1.00
D9	$3.16 \mathrm{E}-01$	$7.97 \mathrm{E}+03$	6.04	-1.00
C6OH	$8.27 \mathrm{E}+03$	$1.98 \mathrm{E}+04$	0.52	-1.00
MXOH	$3.46 \mathrm{E}+04$	$3.46 \mathrm{E}+04$	0.00	-1.00
MXP1	$2.52 \mathrm{E}+04$	$2.52 \mathrm{E}+04$	$0.00-1.00$	
MXP2	(Phot. Set $=$ ACROLEIN)			

$\mathrm{ETHE}+\mathrm{HO}=\# .22 \mathrm{CCHO}+\# 1.56 \mathrm{HCHO}+\mathrm{RO} 2-\mathrm{R} .+\mathrm{RO} 2$.
$\mathrm{ETHE}+\mathrm{O} 3=\mathrm{HCHO}+\# .37 \mathrm{O} 3 \mathrm{~L}-\mathrm{SB}+\# .44 \mathrm{CO}+\# .56-\mathrm{C}+\# .12 \mathrm{HO}$.
$\mathrm{ETHE}+\mathrm{O}=\mathrm{HCHO}+\mathrm{CO}+\mathrm{HO} 2 .+\mathrm{RO} 2-\mathrm{R} .+\mathrm{RO} 2$
ETHE $+\mathrm{NO} 3=\mathrm{NO} 2+\# 2 \mathrm{HCHO}+\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{RO} 2$.
$\mathrm{NC} 6+\mathrm{HO} .=\# .815 \mathrm{RO} 2-\mathrm{R} .+\# .185 \mathrm{RO} 2-\mathrm{N} .+\# .74 \mathrm{R} 2 \mathrm{O} 2 .+\# 1.74 \mathrm{RO} 2 .+$
\#. $020 \mathrm{CCHO}+\# .105 \mathrm{RCHO}+\# 1.134 \mathrm{MEK}+\# .186$ - C
MXYL + HO. = \#. $82 \mathrm{RO} 2-\mathrm{R} .+\# .18 \mathrm{HO} 2 .+\# .82 \mathrm{RO} 2 .+$ \#. $18 \mathrm{CRES}+$
\#. $04 \mathrm{BALD}+\# .108 \mathrm{GLY}+\# .37 \mathrm{MGLY}+\# 2 \mathrm{MXYP}+\#-8.866$-C
HO. $+\mathrm{MXYP}=\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.
$\mathrm{MXYP}+\mathrm{HV}+\# .22=\mathrm{HO} 2 .+\mathrm{CO}+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RCO} 3$.

| | | |
| :--- | :---: | ---: | :--- |
| | | |
| O3W | $3.70 \mathrm{E}-04$ | (No T Dependence) |
| N25I | $2.50 \mathrm{E}-03$ | (No T Dependence) |
| N25S | $5.00 \mathrm{E}-08$ | $0.00 \mathrm{E}+00 \quad 0.00-1.00$ |
| NO2W | $1.40 \mathrm{E}-04$ | (No T Dependence) |
| RSI | (Phot. | Set $=$ NO2 $)$ |
| ONO2 | (Phot. | Set $=$ NO2 |
| XSHC | $2.50 \mathrm{E}+02$ | (No T Dependence) |

CHAMBER-DEPENDENT REACTIONS
(Applicable for these ETC runs only)
$03=$
$\mathrm{N} 2 \mathrm{O} 5=$ \#2 NOX-WALL
$\mathrm{N} 2 \mathrm{O} 5+\mathrm{H} 2 \mathrm{O}=\# 2$ NOX-WALL
NO2 = \#. 2 HONO + \#. 8 NOX-WALL
$\mathrm{HV}+\# 2 . \mathrm{E}-5=\mathrm{HO}$.
HV + \#1.E-4 $=$ NO2 $+\#-1$ NOX-WALL
$\mathrm{HO}=\mathrm{HO} 2$.

Table 2 (continued)

Rxn.	Kinetic Parameters [a]		
	$\mathrm{k}(300)$	A	Eactions [b]

[a] Except as noted, expression for rate constant is $k=A e^{E a / R T}(T / 300)^{B}$. Rate constants and A factor are in ppm, min units. Units of Ea is kcal mole ${ }^{-1}$. "Phot Set" means this is a photolysis reaction, with the absorption coefficients and quantum yields given in Carter (1990) or in Table ?.
[b] Format of reaction listing same as used in documentation of the detailed mechanism (Carter 1990).
[c] AFG1 and AFG2 are not formed in the mini-surrogate or mini-surrogate + isoprene experiments. Their reactions are included here because they are among the common products in the SAPRC-91 mechanism.

Table 3. Absorption Cross Sections and Quantum Yields for Photolysis Reactions in the SAPRC-90 Mechanism which are not in the mechanism of Carter (1990).

| $W L$ | $A b s$ | $Q Y$ | $W L$ | $A b s$ | $Q Y$ | $W L$ | $A b s$ | $Q Y$ | WL | Abs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (nm) | $\left(\mathrm{cm}^{2}\right)$ | | (nm) | $\left(\mathrm{cm}^{2}\right)$ | | (nm) | Qbs
 $\left(\mathrm{cm}^{2}\right)$ | | (nm) | $\left(\mathrm{cm}^{2}\right)$ |

Photolysis File $=$ ACROLEIN

$250.0 \quad 1.80 \mathrm{E}-211.000$ $256.02 .56 \mathrm{E}-211.000$ $261.0 \quad 3.24 \mathrm{E}-211.000$ $266.05 .10 \mathrm{E}-211.000$ $271.0 \quad 7.20 \mathrm{E}-211.000$ $276.0 \quad 1.04 \mathrm{E}-20 \quad 1.000$ $281.01 .26 \mathrm{E}-20 \quad 1.000$ $286.0 \quad 1.44 \mathrm{E}-20 \quad 1.000$ $291.0 \quad 1.78 \mathrm{E}-20 \quad 1.000$ $296.0 \quad 2.26 \mathrm{E}-201.000$ $301.02 .85 \mathrm{E}-201.000$ $306.0 \quad 3.51 \mathrm{E}-201.000$ $311.04 .25 \mathrm{E}-201.000$ $316.04 .75 \mathrm{E}-201.000$ $321.05 .43 \mathrm{E}-201.000$ $326.05 .62 \mathrm{E}-201.000$ 331.0 5.95E-20 1.000 $336.06 .01 \mathrm{E}-201.000$ 331.0 5.01E-20 1.000 $346.05 \mathrm{E}-201.000$ $351.05 .03 \mathrm{E}-201.000$ $351.05 .03 \mathrm{E}-201.000$ $356.03 .45 \mathrm{E}-201.000$ $361.0 \quad 2.95 \mathrm{E}-201.000$ $366.0 \quad 3.30 \mathrm{E}-20 \quad 1.000$ $371.08 .99 \mathrm{E}-211.000$ $376.03 .57 \mathrm{E}-211.000$ 381.0 0.00E+00 1.000
$252.02 .05 \mathrm{E}-211.000$ $257.02 .65 \mathrm{E}-211.000$ $262.0 \quad 3.47 \mathrm{E}-211.000$ $267.05 .38 \mathrm{E}-211.000$ $272.0 \quad 7.77 \mathrm{E}-21 \quad 1.000$ $277.01 .12 \mathrm{E}-201.000$ $282.0 \quad 1.26 \mathrm{E}-201.000$ $287.01 .50 \mathrm{E}-201.000$ $292.01 .86 \mathrm{E}-201.000$ $297.02 .37 \mathrm{E}-20 \quad 1.000$ $302.02 .99 \mathrm{E}-201.000$ $307.0 \quad 3.63 \mathrm{E}-20 \quad 1.000$ 312.0 4.39E-20 1.000 $317.04 .90 \mathrm{E}-201.000$ $322.05 .52 \mathrm{E}-201.000$ $327.0 \quad 5.63 \mathrm{E}-20 \quad 1.000$ $332.06 .23 \mathrm{E}-20 \quad 1.000$ $332.06 .23 \mathrm{E}-201.000$ $337.0 \quad 5.79 \mathrm{E}-201.000$ $342.05 .53 \mathrm{E}-201.000$ $347.0 \quad 5.90 \mathrm{E}-20 \quad 1.000$ $352.0 \quad 4.50 \mathrm{E}-201.000$ $357.0 \quad 3.46 \mathrm{E}-20 \quad 1.000$ $362.0 \quad 2.81 \mathrm{E}-20 \quad 1.000$ $367.02 .78 \mathrm{E}-20 \quad 1.000$ $372.0 \quad 7.22 \mathrm{E}-211.000$ $377.03 .55 \mathrm{E}-211.000$
$253.02 .20 \mathrm{E}-211.000$ $258.02 .74 \mathrm{E}-211.000$ $263.03 .58 \mathrm{E}-211.000$ 268.0 5.73E-21 1.000 $273.08 .37 \mathrm{E}-211.000$ $273.08 .37 \mathrm{E}-211.000$ 283.0 .19E-20 1.000 $283.01 .28 \mathrm{E}-201.000$ $288.0 \quad 1.57 \mathrm{E}-20 \quad 1.000$ $293.0 \quad 1.95 \mathrm{E}-201.000$ $298.0 \quad 2.48 \mathrm{E}-201.000$ $303.0 \quad 3.13 \mathrm{E}-20 \quad 1.000$ $308.0 \quad 3.77 \mathrm{E}-20 \quad 1.000$ $313.04 .44 \mathrm{E}-201.000$ $318.05 .05 \mathrm{E}-201.000$ $323.05 .60 \mathrm{E}-201.000$ $328.05 .71 \mathrm{E}-201.000$ $333.0 \quad 6.39 \mathrm{E}-20 \quad 1.000$ $338.05 .63 \mathrm{E}-201.000$ 343.0 5. $57 \mathrm{E}-201.000$ $343.0 \quad 5.47 \mathrm{E}-20 \quad 1.000$ $348.06 .08 \mathrm{E}-20 \quad 1.000$ $353.0 \quad 4.03 \mathrm{E}-20 \quad 1.000$ $358.0 \quad 3.49 \mathrm{E}-20 \quad 1.000$ $363.0 \quad 2.91 \mathrm{E}-20 \quad 1.000$ $368.0 \quad 2.15 \mathrm{E}-20 \quad 1.000$ $373.05 .86 \mathrm{E}-211.000$ $378.02 .83 \mathrm{E}-211.000$
$254.02 .32 \mathrm{E}-211.000$ $259.02 .83 \mathrm{E}-211.000$ $264.03 .93 \mathrm{E}-211.000$ $69.0 \quad 6.13 \mathrm{E}-211.000$ 74.0 . $94 \mathrm{E}-211.000$ $274.08 .94 \mathrm{E}-211.000$ $284.01 .27 \mathrm{E}-201.000$ 84.0 1.33E-20 1.000 $289.0 \quad 1.63 \mathrm{E}-201.000$ $294.0 \quad 2.05 \mathrm{E}-20 \quad 1.000$ $299.0 \quad 2.60 \mathrm{E}-20 \quad 1.000$ $304.0 \quad 3.27 \mathrm{E}-20 \quad 1.000$ $309.0 \quad 3.91 \mathrm{E}-20 \quad 1.000$ $314.0 \quad 4.50 \mathrm{E}-20 \quad 1.000$ $319.05 .19 \mathrm{E}-201.000$ $324.0 \quad 5.67 \mathrm{E}-20 \quad 1.000$ $329.0 \quad 5.76 \mathrm{E}-20 \quad 1.000$ $334.06 .38 \mathrm{E}-201.000$ $334.06 .38 \mathrm{E}-201.000$ $339.0 \quad 5.56 \mathrm{E}-201.000$ $344.05 .41 \mathrm{E}-201.000$ $349.0 \quad 6.00 \mathrm{E}-201.000$ $354.0 \quad 3.75 \mathrm{E}-201.000$ $359.0 \quad 3.41 \mathrm{E}-20 \quad 1.000$ $364.0 \quad 3.25 \mathrm{E}-201.000$ $369.01 .59 \mathrm{E}-201.000$ $374.0 \quad 4.69 \mathrm{E}-211.000$ $379.01 .69 \mathrm{E}-211.000$
$255.02 .45 \mathrm{E}-211.000$ $260.02 .98 \mathrm{E}-211.000$ $265.04 .67 \mathrm{E}-211.000$ $270.0 \quad 6.64 \mathrm{E}-211.000$ 275.0 9.55E-21 1.000 275.0 9.55E-21 1.000 $280.01 .27 \mathrm{E}-201.000$ 285.0 1.38E-20 1.000 $290.0 \quad 1.71 \mathrm{E}-20 \quad 1.000$ $295.0 \quad 2.15 \mathrm{E}-20 \quad 1.000$ $300.0 \quad 2.73 \mathrm{E}-20 \quad 1.000$ $305.0 \quad 3.39 \mathrm{E}-20 \quad 1.000$ $310.0 \quad 4.07 \mathrm{E}-20 \quad 1.000$ $315.04 .59 \mathrm{E}-201.000$ $320.05 .31 \mathrm{E}-201.000$ $325.05 .67 \mathrm{E}-201.000$ $330.05 .80 \mathrm{E}-20 \quad 1.000$ $335.0 \quad 6.24 \mathrm{E}-20 \quad 1.000$ $340.0 \quad 5.52 \mathrm{E}-20 \quad 1.000$ $345.05 .52 \mathrm{E}-201.000$ $345.05 .40 \mathrm{E}-201.000$ $350.05 .53 \mathrm{E}-201.000$ $355.0 \quad 3.55 \mathrm{E}-20 \quad 1.000$ $360.0 \quad 3.23 \mathrm{E}-20 \quad 1.000$ $365.0 \quad 3.54 \mathrm{E}-20 \quad 1.000$ $370.01 .19 \mathrm{E}-201.000$ $375.0 \quad 3.72 \mathrm{E}-21 \quad 1.000$ 380.0 8.29E-24 1.000

Photolysis File = HCHONEWR

$280.02 .49 \mathrm{E}-20 \quad 0.590$ $282.5 \quad 6.76 \mathrm{E}-21 \quad 0.620$ $285.0 \quad 3.95 \mathrm{E}-20 \quad 0.650$ $287.5 \quad 1.10 \mathrm{E}-20 \quad 0.680$ $290.0 \quad 1.07 \mathrm{E}-20 \quad 0.710$ $292.5 \quad 5.90 \mathrm{E}-21 \quad 0.727$ $295.04 .17 \mathrm{E}-20 \quad 0.745$ $297.51 .51 \mathrm{E}-20 \quad 0.763$ $300.01 .06 \mathrm{E}-200.780$ 301.2 2.17E-20 0.779 302.2 8.53E-21 0.778 $303.2 \quad 3.81 \mathrm{E}-20 \quad 0.777$ $304.2 \quad 5.79 \mathrm{E}-20 \quad 0.776$ $304.25 .79 \mathrm{E}-200.776$ 305.2 5.12E-20 0.775 306.2 3.28E-20 0.774 307.2 1.37E-20 0.773 308.2 2.08E-20 0.772 $309.2 \quad 3.06 \mathrm{E}-20 \quad 0.771$
$310.21 .26 \mathrm{E}-20 \quad 0.767$
$311.24 .82 \mathrm{E}-21 \quad 0.752$
$280.51 .42 \mathrm{E}-200.596$ $283.05 .82 \mathrm{E}-210.626$ $283.0 \quad 5.82 \mathrm{E}-21 \quad 0.626$ $285.5 \quad 2.87 \mathrm{E}-20 \quad 0.656$ $288.0 \quad 2.62 \mathrm{E}-20 \quad 0.686$ $290.5 \quad 1.35 \mathrm{E}-20 \quad 0.713$ $293.0 \quad 1.11 \mathrm{E}-20 \quad 0.731$ $295.5 \quad 3.51 \mathrm{E}-20 \quad 0.749$ $298.0 \quad 3.69 \mathrm{E}-20 \quad 0.766$ 300.4 7.01E-21 0.780 301.4 1.96E-20 0.779 302.4 7.13E-21 0.778 $303.4 \quad 5.57 \mathrm{E}-20 \quad 0.777$ 304.4 5.24E-20 0.776 $305.44 .77 \mathrm{E}-200.775$ $305.4 \quad 4.77 \mathrm{E}-20 \quad 0.775$ $306.4 \quad 2.66 \mathrm{E}-200.774$ $307.4 \quad 1.19 \mathrm{E}-20 \quad 0.773$ $\begin{array}{lll}308.4 & 2.39 \mathrm{E}-20 & 0.772 \\ 309.4 & 2.84 \mathrm{E}-20 & 0.771\end{array}$ $309.4 \quad 2.84 \mathrm{E}-20 \quad 0.771$ $310.4 \quad 9.26 \mathrm{E}-21 \quad 0.764$ $311.4 \quad 4.54 \mathrm{E}-21 \quad 0.749$
$281.01 .51 \mathrm{E}-20 \quad 0.602$ 283.5 9.10E-21 0.632 283.5 9.10E-21 0.632 286.0 2.24E-20 0.66 $288.54 .00 \mathrm{E}-20 \quad 0.692$
$291.0 \quad 1.99 \mathrm{E}-20 \quad 0.717$ $293.5 \quad 6.26 \mathrm{E}-20 \quad 0.735$ $296.02 .70 \mathrm{E}-20 \quad 0.752$ $298.54 .40 \mathrm{E}-20 \quad 0.769$ 300.6 8.63E-21 0.779 $301.61 .54 \mathrm{E}-200.778$ 302.6 6.61E-21 0.777 303.6 6.91E-20 0.776 $304.64 .30 \mathrm{E}-20 \quad 0.775$ $305.643 \mathrm{E}-200.774$ $305.64 .43 \mathrm{E}-20 \quad 0.774$ 307.6 308.6 3.018 20 -771 $308.6 \quad 3.08 \mathrm{E}-20 \quad 0.771$ $309.6 \quad 2.46 \mathrm{E}-20 \quad 0.770$
$310.6 \quad 7.71 \mathrm{E}-21 \quad 0.761$
$311.66 .81 \mathrm{E}-21 \quad 0.746$

282.0 9.73E-21 0.614 $284.5 \quad 4.81 \mathrm{E}-20 \quad 0.644$ $\begin{array}{lll}284.5 & 4.81 \mathrm{E}-20 & 0.644 \\ 287.0 & 1.13 \mathrm{E}-20 & 0.674\end{array}$ 289.5 2.12E-20 0.704 $292.0 \quad 8.65 \mathrm{E}-21 \quad 0.724$ $294.5 \quad 5.36 \mathrm{E}-20 \quad 0.741$ $297.0 \quad 1.16 \mathrm{E}-20 \quad 0.759$ $299.52 .02 \mathrm{E}-20 \quad 0.776$ $301.02 .01 \mathrm{E}-20 \quad 0.779$ 302.0 1.03E-20 0.778 $303.0 \quad 3.18 \mathrm{E}-20 \quad 0.77$ $304.0 \quad 6.96 \mathrm{E}-20 \quad 0.776$ $305.0 \quad 3.60 \mathrm{E}-20 \quad 0.775$ $306.04 .01 \mathrm{E}-20 \quad 0.774$ $307.01 .58 \mathrm{E}-200.773$ $308.0 \quad 8.84 \mathrm{E}-21 \quad 0.772$ $309.0 \quad 3.18 \mathrm{E}-20 \quad 0.771$ $310.0 \quad 1.57 \mathrm{E}-20 \quad 0.770$
$311.0 \quad 5.13 \mathrm{E}-21 \quad 0.755$ $312.0 \quad 1.43 \mathrm{E}-20 \quad 0.740$

Table 3. (continued)

$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{gathered} \text { WL } \\ (\mathrm{nm}) \end{gathered}$	$\begin{aligned} & \mathrm{Abs} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	QY	$\begin{gathered} \text { WL } \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY

Photolysis File $=$ HCHONEWR (continued)

312.2	$1.47 \mathrm{E}-20$	0.737
313.2	$6.48 \mathrm{E}-21$	0.722
314.2	$6.14 \mathrm{E}-20$	0.707
315.2	$4.37 \mathrm{E}-20$	0.692
316.2	$1.66 \mathrm{E}-20$	0.677
317.2	$5.07 \mathrm{E}-20$	0.662
318.2	$2.24 \mathrm{E}-20$	0.647
319.2	$6.36 \mathrm{E}-21$	0.632
320.2	$1.47 \mathrm{E}-20$	0.614
321.2	$1.17 \mathrm{E}-20$	0.583
322.2	$4.13 \mathrm{E}-21$	0.552
323.2	$2.82 \mathrm{E}-21$	0.521
324.2	$6.59 \mathrm{E}-21$	0.490
325.2	$2.15 \mathrm{E}-20$	0.459
326.2	$6.51 \mathrm{E}-20$	0.428
327.2	$3.22 \mathrm{E}-20$	0.397
328.2	$6.79 \mathrm{E}-21$	0.366
329.2	$3.99 \mathrm{E}-20$	0.335
330.2	$3.08 \mathrm{E}-20$	0.304
331.2	$7.76 \mathrm{E}-21$	0.273
332.2	$1.74 \mathrm{E}-21$	0.242
333.2	$9.84 \mathrm{E}-22$	0.211
334.2	$1.80 \mathrm{E}-21$	0.180
335.2	$2.73 \mathrm{E}-22$	0.149
336.2	$1.23 \mathrm{E}-21$	0.118
337.2	$2.29 \mathrm{E}-21$	0.087
338.2	$3.10 \mathrm{E}-20$	0.056
339.2	$4.33 \mathrm{E}-20$	0.025

$312.61 .13 \mathrm{E}-200.731$ $313.62 .39 \mathrm{E}-200.716$ $314.65 .78 \mathrm{E}-20 \quad 0.701$ $315.6 \quad 2.89 \mathrm{E}-20 \quad 0.686$ $316.64 .38 \mathrm{E}-20 \quad 0.671$ $317.6 \quad 4.17 \mathrm{E}-20 \quad 0.656$ $318.6 \quad 1.24 \mathrm{E}-20 \quad 0.641$ $319.64 .79 \mathrm{E}-21 \quad 0.626$ $320.6 \quad 1.69 \mathrm{E}-20 \quad 0.601$ $321.6 \quad 9.64 \mathrm{E}-21 \quad 0.570$ $322.62 .39 \mathrm{E}-210.539$ $323.6 \quad 7.00 \mathrm{E}-21 \quad 0.508$ $324.6 \quad 4.66 \mathrm{E}-21 \quad 0.477$ $325.6 \quad 4.10 \mathrm{E}-20 \quad 0.446$ $326.6 \quad 5.76 \mathrm{E}-20 \quad 0.415$ $327.61 .91 \mathrm{E}-20 \quad 0.384$ $328.6 \quad 4.77 \mathrm{E}-21 \quad 0.353$ $\begin{array}{lll}328.6 & 4.00 \mathrm{E}-20 & 0.322\end{array}$ $\begin{array}{lll}330.6 & 2.09 \mathrm{E}-20 & 0.291\end{array}$ $331.6 \quad 4.06 \mathrm{E}-21 \quad 0.260$ $332.62 .70 \mathrm{E}-21 \quad 0.229$ $333.6 \quad 6.32 \mathrm{E}-22 \quad 0.198$ $334.61 .03 \mathrm{E}-210.167$ 335.6-1.62E-22 0.136 $336.6 \quad 3.00 \mathrm{E}-21 \quad 0.105$ $337.6 \quad 2.92 \mathrm{E}-21 \quad 0.074$ $338.64 .79 \mathrm{E}-200.043$ $339.63 .99 \mathrm{E}-20 \quad 0.012$

312.8	$9.86 \mathrm{E}-21$	0.728
313.8	$3.80 \mathrm{E}-20$	0.713
314.8	$5.59 \mathrm{E}-20$	0.698
315.8	$2.82 \mathrm{E}-20$	0.683
316.8	$5.86 \mathrm{E}-20$	0.668
317.8	$3.11 \mathrm{E}-20$	0.653
318.8	$1.11 \mathrm{E}-20$	0.638
319.8	$6.48 \mathrm{E}-21$	0.623
320.8	$1.32 \mathrm{E}-20$	0.595
321.8	$7.26 \mathrm{E}-21$	0.564
322.8	$2.01 \mathrm{E}-21$	0.533
323.8	$7.80 \mathrm{E}-21$	0.502
324.8	$4.21 \mathrm{E}-21$	0.471
325.8	$6.47 \mathrm{E}-20$	0.440
326.8	$4.43 \mathrm{E}-20$	0.409
327.8	$1.42 \mathrm{E}-20$	0.378
328.8	$1.75 \mathrm{E}-20$	0.347
329.8	$3.61 \mathrm{E}-20$	0.316
330.8	$1.41 \mathrm{E}-20$	0.285
331.8	$3.03 \mathrm{E}-21$	0.254
332.8	$1.65 \mathrm{E}-21$	0.223
333.8	$5.21 \mathrm{E}-22$	0.192
334.8	$7.19 \mathrm{E}-22$	0.161
335.8	$1.25 \mathrm{E}-22$	0.130
336.8	$2.40 \mathrm{E}-21$	0.099
337.8	$8.10 \mathrm{E}-21$	0.068
338.8	$5.25 \mathrm{E}-20$	0.037
339.8	$3.11 \mathrm{E}-20$	0.006

$313.0 \quad 7.82 \mathrm{E}-21 \quad 0.725$ $314.0 \quad 5.76 \mathrm{E}-20 \quad 0.710$ $315.04 .91 \mathrm{E}-20 \quad 0.695$ $316.02 .10 \mathrm{E}-20 \quad 0.680$ $\begin{array}{lll}316.0 & 2.10 \mathrm{E}-20 & 0.680 \\ 317.0 & 6.28 \mathrm{E}-20 & 0.665\end{array}$ $\begin{array}{lll}317.0 & 6.28 \mathrm{E}-20 & 0.665 \\ 318.0 & 2.64 \mathrm{E}-20 & 0.650\end{array}$ $\begin{array}{lll}318.0 & 2.64 \mathrm{E}-20 & 0.650 \\ 319.0 & 7.70 \mathrm{E}-21 & 0.635\end{array}$ $\begin{array}{lll}319.0 & 7.70 \mathrm{E}-21 & 0.635 \\ 320.0 & 1.48 \mathrm{E}-20 & 0.620\end{array}$ $321.0 \quad 1.49 \mathrm{E}-20 \quad 0.589$ $322.05 .94 \mathrm{E}-21 \quad 0.558$ $323.0 \quad 1.76 \mathrm{E}-21 \quad 0.527$ $324.07 .87 \mathrm{E}-210.496$ $325.0 \quad 7.77 \mathrm{E}-21 \quad 0.465$ $326.0 \quad 7.59 \mathrm{E}-20 \quad 0.434$ $327.0 \quad 3.44 \mathrm{E}-20 \quad 0.403$ $328.0 \quad 9.15 \mathrm{E}-21 \quad 0.372$ $329.0 \quad 3.27 \mathrm{E}-20 \quad 0.341$ $330.0 \quad 3.38 \mathrm{E}-20 \quad 0.310$ $331.0 \quad 9.95 \mathrm{E}-21 \quad 0.279$ $332.02 .41 \mathrm{E}-21 \quad 0.248$ $333.0 \quad 1.17 \mathrm{E}-21 \quad 0.217$ $334.01 .46 \mathrm{E}-21 \quad 0.186$ $335.04 .84 \mathrm{E}-22 \quad 0.155$ $336.0 \quad 4.47 \mathrm{E}-22 \quad 0.124$ $337.03 .07 \mathrm{E}-210.093$ $338.0 \quad 1.82 \mathrm{E}-20 \quad 0.062$ $339.0 \quad 5.85 \mathrm{E}-20 \quad 0.03$
$281.0 \quad 1.51 \mathrm{E}-20 \quad 0.341$ $283.5 \quad 9.10 \mathrm{E}-21 \quad 0.319$ $286.0 \quad 2.24 \mathrm{E}-20 \quad 0.296$ $288.54 .00 \mathrm{E}-20 \quad 0.273$ $291.01 .99 \mathrm{E}-200.256$ $293.56 .26 \mathrm{E}-200.246$ $296.02 .70 \mathrm{E}-200.236$ $298.54 .40 \mathrm{E}-20 \quad 0.226$ $300.6 \quad 8.63 \mathrm{E}-21 \quad 0.221$ $301.61 .54 \mathrm{E}-200.222$ $31.61 .54 \mathrm{E}-20.222$ $302.6 \quad 6.61 \mathrm{E}-21 \quad 0.223$ 30.6 6.91E-20 0.224 $304.64 .30 \mathrm{E}-20 \quad 0.225$ 305.6 4.43E-20 0.226 $306.6 \quad 2.42 \mathrm{E}-20 \quad 0.227$ $307.6 \quad 1.01 \mathrm{E}-20 \quad 0.228$ $308.6 \quad 3.08 \mathrm{E}-20 \quad 0.229$ $309.62 .46 \mathrm{E}-20 \quad 0.230$ $310.67 .71 \mathrm{E}-21 \quad 0.239$ 311.6 6.81E-21 0.254 $312.61 .13 \mathrm{E}-20 \quad 0.269$ $313.62 .39 \mathrm{E}-20 \quad 0.284$ $314.65 .78 \mathrm{E}-20 \quad 0.299$ $315.6 \quad 2.89 \mathrm{E}-20 \quad 0.314$ $\begin{array}{lll}315.6 & 2.89 \mathrm{E}-20 & 0.314 \\ 316.6 & 4.38 \mathrm{E}-20 & 0.329\end{array}$ $\begin{array}{lll}316.6 & 4.38 \mathrm{E}-20 & 0.329 \\ 317.6 & 4.17 \mathrm{E}-20 & 0.344\end{array}$ $\begin{array}{lll}317.6 & 4.17 \mathrm{E}-20 & 0.344 \\ 318.6 & 1.24 \mathrm{E}-20 & 0.359\end{array}$ $\begin{array}{lll}318.6 & 1.24 \mathrm{E}-20 & 0.359 \\ 319.6 & 4.79 \mathrm{E}-21 & 0.374\end{array}$ $\begin{array}{lll}319.6 & 4.79 \mathrm{E}-21 & 0.374 \\ 320.6 & 1.69 \mathrm{E}-20 & 0.399\end{array}$ $321.6 \quad 9.64 \mathrm{E}-21 \quad 0.430$ $322.62 .39 \mathrm{E}-21 \quad 0.461$ $323.67 .00 \mathrm{E}-210.492$ $324.6 \quad 4.66 \mathrm{E}-21 \quad 0.523$ $325.6 \quad 4.10 \mathrm{E}-20 \quad 0.554$ $326.6 \quad 5.76 \mathrm{E}-20 \quad 0.585$ $327.61 .91 \mathrm{E}-20 \quad 0.616$ $328.6 \quad 4.77 \mathrm{E}-21 \quad 0.647$ $329.64 .00 \mathrm{E}-20 \quad 0.678$ $\begin{array}{lll}329.6 & 4.00 \mathrm{E}-20 & 0.678 \\ 330.6 & 2.09 \mathrm{E}-20 & 0.703\end{array}$ $\begin{array}{lll}330.6 & 2.09 \mathrm{E}-20 & 0.703 \\ 331.6 & 4.06 \mathrm{E}-21 & 0.726\end{array}$ $\begin{array}{lll}331.6 & 4.06 \mathrm{E}-21 & 0.726 \\ 332.6 & 2.70 \mathrm{E}-21 & 0.748\end{array}$ $\begin{array}{lll}332.6 & 2.70 \mathrm{E}-21 & 0.748 \\ 333.6 & 6.32 \mathrm{E}-22 & 0.771\end{array}$ $\begin{array}{lll}333.6 & 6.32 \mathrm{E}-22 & 0.771 \\ 334.6 & 1.03 \mathrm{E}-21 & 0.793\end{array}$ $335.6 \quad 0.00 \mathrm{E}+00 \quad 0.790$ $336.63 .00 \mathrm{E}-210.769$ $337.6 \quad 2.92 \mathrm{E}-21 \quad 0.745$ $338.6 \quad 4.79 \mathrm{E}-20 \quad 0.719$ $339.6 \quad 3.99 \mathrm{E}-20 \quad 0.693$ $340.61 .39 \mathrm{E}-20 \quad 0.666$ $341.62 .23 \mathrm{E}-210.638$ $342.61 .14 \mathrm{E}-20 \quad 0.610$

81	1.32E-20	0.336	282.0	$9.73 \mathrm{E}-21$	
284.0	$3.71 \mathrm{E}-20$	0.314	284.5	$4.81 \mathrm{E}-20$	0
286	$1.74 \mathrm{E}-20$	0.291	287.0	$1.13 \mathrm{E}-20$	0.28
289.0	$3.55 \mathrm{E}-20$	0.269	289.5	$2.12 \mathrm{E}-20$	0.
291.5	$1.56 \mathrm{E}-20$	0.254	292.0	$8.65 \mathrm{E}-21$	0
294.0	$7.40 \mathrm{E}-20$	0.244	294.5	$5.36 \mathrm{E}-20$	0.
296.5	$1.75 \mathrm{E}-20$	0.234	297.0	$1.16 \mathrm{E}-20$	0
299.0	$3.44 \mathrm{E}-20$	0.224	299.5	2.02E-20	0.
300.8	$1.47 \mathrm{E}-20$	0.221	301.0	$2.01 \mathrm{E}-20$	0
301.8	$1.26 \mathrm{E}-20$	0.222	302.0	$1.03 \mathrm{E}-20$	0.
302.8	$1.44 \mathrm{E}-20$	0.223	303.0	$3.18 \mathrm{E}-20$	0.
303.8	$6.58 \mathrm{E}-20$	0.224	304.0	$6.96 \mathrm{E}-20$	0
304.8	$3.28 \mathrm{E}-20$	0.225	305.0	$3.60 \mathrm{E}-20$	
305.8	$4.60 \mathrm{E}-20$	0.226	306.0	$4.01 \mathrm{E}-20$	
06.8	$1.95 \mathrm{E}-20$	0.227	307.0	$1.58 \mathrm{E}-20$	0.
307.8	$9.01 \mathrm{E}-21$	0.228	308.0	$8.84 \mathrm{E}-21$	0.228
08.8	$3.39 \mathrm{E}-20$	0.229	309.0	$3.18 \mathrm{E}-20$	
309.8	$1.95 \mathrm{E}-20$	0.230	310.0	$1.57 \mathrm{E}-20$	0.
310.8	$6.05 \mathrm{E}-21$	0.242	311.0	$5.13 \mathrm{E}-21$	
311.8	$1.04 \mathrm{E}-20$	0.257	312.0	$1.43 \mathrm{E}-20$	0.260
12.8	$9.86 \mathrm{E}-21$	0.272	313.0	$7.82 \mathrm{E}-21$	0
313.8	$3.80 \mathrm{E}-20$	0.287	314.0	$5.76 \mathrm{E}-20$	0.
314.8	$5.59 \mathrm{E}-20$	0.302	315.0	$4.91 \mathrm{E}-20$	
315.8	$2.82 \mathrm{E}-20$	0.317	316.0	$2.10 \mathrm{E}-20$	0.
16.8	$5.86 \mathrm{E}-20$	0.332	317.0	$6.28 \mathrm{E}-20$	
317.8	$3.11 \mathrm{E}-20$	0.347	318.0	$2.64 \mathrm{E}-20$	
318.8	$1.11 \mathrm{E}-20$	0.362	319.0	$7.70 \mathrm{E}-21$	0
319.8	$6.48 \mathrm{E}-21$	0.377	320.0	$1.48 \mathrm{E}-20$	
320.8	$1.32 \mathrm{E}-20$	0.405	321.0	$1.49 \mathrm{E}-20$	0.
321.8	$7.26 \mathrm{E}-21$	0.436	322.0	$5.94 \mathrm{E}-21$	0.
322.8	$2.01 \mathrm{E}-21$	0.467	323.0	$1.76 \mathrm{E}-21$	0
323.8	$7.80 \mathrm{E}-21$	0.498	324.0	$7.87 \mathrm{E}-21$	
324.8	$4.21 \mathrm{E}-21$	0.529	325.0	$7.77 \mathrm{E}-21$	
225.8	$6.47 \mathrm{E}-20$	0.560	326.0	$7.59 \mathrm{E}-20$	
326.8	$4.43 \mathrm{E}-20$	0.591	327.0	$3.44 \mathrm{E}-20$	
27.8	$1.42 \mathrm{E}-20$	0.622	328.0	$9.15 \mathrm{E}-21$	0.
328.8	$1.75 \mathrm{E}-20$	0.653	329.0	$3.27 \mathrm{E}-20$	
329.8	$3.61 \mathrm{E}-20$	0.684	330.0	$3.38 \mathrm{E}-20$	0.69
330.8	$1.41 \mathrm{E}-20$	0.708	331.0	$9.95 \mathrm{E}-21$	
331.8	$3.03 \mathrm{E}-21$	0.730	332.0	$2.41 \mathrm{E}-21$	
332.8	$1.65 \mathrm{E}-21$	0.753	333.0	$1.17 \mathrm{E}-21$	
333.8	$5.21 \mathrm{E}-22$	0.775	334.0	$1.46 \mathrm{E}-21$	
334.8	$7.19 \mathrm{E}-22$	0.798	335.0	$4.84 \mathrm{E}-22$	
335.8	$1.25 \mathrm{E}-22$	0.786	336.0	4.47E-22	
336.8	$2.40 \mathrm{E}-21$	0.764	337.0	$3.07 \mathrm{E}-21$	
337.8	$8.10 \mathrm{E}-21$	0.740	338.0	$1.82 \mathrm{E}-20$	
338.8	$5.25 \mathrm{E}-20$	0.714	339.0	$5.85 \mathrm{E}-20$	0.
339.8	$3.11 \mathrm{E}-20$	0.687	340.0	$2.72 \mathrm{E}-20$	
340.8	$1.01 \mathrm{E}-20$	0.660	341.0	$6.57 \mathrm{E}-21$	
41.8	$1.55 \mathrm{E}-21$	0.632	342.0	$3.70 \mathrm{E}-21$	0.6

Table 3. (continued)

$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \mathrm{Abs} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY

Photolysis File $=$ HCHONEWM (continued)

343.2	$1.72 \mathrm{E}-20$	0.593	343.4	$1.55 \mathrm{E}-20$	0.588	343.6	$1.46 \mathrm{E}-20$	0.582	343.8	$1.38 \mathrm{E}-20$	0.576	344.0	$1.00 \mathrm{E}-20$	0.571
344.2	8.26E-21	0.565	344.4	6.32E-21	0.559	344.6	$4.28 \mathrm{E}-21$	0.554	344.8	3.22E-21	0.548	345.0	$2.54 \mathrm{E}-21$	0.542
345.2	$1.60 \mathrm{E}-21$	0.537	345.4	$1.15 \mathrm{E}-21$	0.531	345.6	8.90E-22	0.525	345.8	$6.50 \mathrm{E}-22$	0.520	346.0	$5.09 \mathrm{E}-22$	0.514
346.2	$5.15 \mathrm{E}-22$	0.508	346.4	$3.45 \mathrm{E}-22$	0.503	346.6	$3.18 \mathrm{E}-22$	0.497	346.8	$3.56 \mathrm{E}-22$	0.491	347.0	$3.24 \mathrm{E}-22$	0.485
347.2	3.34E-22	0.480	347.4	$2.88 \mathrm{E}-22$	0.474	347.6	$2.84 \mathrm{E}-22$	0.468	347.8	9.37E-22	0.463	348.0	9.70E-22	0.457
348.2	7.60E-22	0.451	348.4	$6.24 \mathrm{E}-22$	0.446	348.6	$4.99 \mathrm{E}-22$	0.440	348.8	$4.08 \mathrm{E}-22$	0.434	349.0	$3.39 \mathrm{E}-22$	0.428
349.2	1.64E-22	0.423	349.4	$1.49 \mathrm{E}-22$	0.417	349.6	8.30E-23	0.411	349.8	$2.52 \mathrm{E}-23$	0.406	350.0	$2.57 \mathrm{E}-23$	0.400
350.2	$0.00 \mathrm{E}+00$	0.394	350.4	$5.16 \mathrm{E}-23$	0.389	350.6	$0.00 \mathrm{E}+00$	0.383	350.8	$2.16 \mathrm{E}-23$	0.377	351.0	$7.07 \mathrm{E}-23$	0.371
351.2	$3.45 \mathrm{E}-23$	0.366	351.4	$1.97 \mathrm{E}-22$	0.360	351.6	$4.80 \mathrm{E}-22$	0.354	351.8	$3.13 \mathrm{E}-21$	0.349	352.0	$6.41 \mathrm{E}-21$	0.343
352.2	8.38E-21	0.337	352.4	$1.55 \mathrm{E}-20$	0.331	352.6	$1.86 \mathrm{E}-20$	0.326	352.8	$1.94 \mathrm{E}-20$	0.320	353.0	$2.78 \mathrm{E}-20$	0.314
353.2	$1.96 \mathrm{E}-20$	0.309	353.4	$1.67 \mathrm{E}-20$	0.303	353.6	$1.75 \mathrm{E}-20$	0.297	353.8	$1.63 \mathrm{E}-20$	0.291	354.0	$1.36 \mathrm{E}-20$	0.286
354.2	$1.07 \mathrm{E}-20$	0.280	354.4	9.82E-21	0.274	354.6	8.66E-21	0.269	354.8	$6.44 \mathrm{E}-21$	0.263	355.0	$4.84 \mathrm{E}-21$	0.257
355.2	$3.49 \mathrm{E}-21$	0.251	355.4	$2.41 \mathrm{E}-21$	0.246	355.6	$1.74 \mathrm{E}-21$	0.240	355.8	$1.11 \mathrm{E}-21$	0.234	356.0	$7.37 \mathrm{E}-22$	0.229
356.2	$4.17 \mathrm{E}-22$	0.223	356.4	$1.95 \mathrm{E}-22$	0.217	356.6	$1.50 \mathrm{E}-22$	0.211	356.8	$8.14 \mathrm{E}-23$	0.206	357.0	$0.00 \mathrm{E}+00$	0.200

Table 4. List of Model Species Added to the SAPRC-91 Mechanism used to Represent the Reactive Products of Isoprene in the Preliminary Detailed Isoprene Mechanism.
Name Description

Isoprene Product Species

MVK Methylvinyl ketone
METHACRO Methacrolein
MEFURAN 3-Methyl furan
ISOPROD $\quad C_{5}$ Methyl- and hydroxymethyl substituted acroleins assumed to be formed in the $O H$ reaction following O_{2} addition to the other allylic resonance form of the OH - isoprene adduct, and 1,5-H shift isomerization of the alkoxy radical(s) subsequently formed. Also used to represent uncharacterized products in the $O^{3} P$ reaction.

Secondary Product Species

```
HOACET Hydroxyacetone
HOCCHO Glycolaldehyde
MA-PAN PAN analogue formed from methacrolein
AC-PAN PAN analogue formed from acrolein and MVK
HO-PAN PAN analogue formed from glycolaldehyde
IP-PAN PAN analogue formed from reactions of ISOPROD
HET-UNKN Photoreactive product(s) formed from furans (see Carter et al., 19??)
```

Acyl Peroxy Radicals (Listed in order of their corresponding PAN analogue, above.)

MA-RCO3. $\mathrm{AC}-\mathrm{RCO}$. $\mathrm{HOCCO}-\mathrm{O}$. IP-RCO3.
Various Excited "Criegee" biradicals formed in the reaction of O_{3} with Isoprene and its Products. (The names give an indication of the structure.)

(HCHO)	$(\mathrm{C}: \mathrm{CC}(\mathrm{C}) \mathrm{O} 2)$	$(\mathrm{C}: \mathrm{C}(\mathrm{C}) \mathrm{CHO})$	$(\mathrm{C} 2().(\mathrm{O} 2) \mathrm{CHO})$.
$(\mathrm{C}-\mathrm{CO}-\mathrm{CHO})$	$(\mathrm{HOCCHO} 2)$	(HCOCHO)	$(\mathrm{HOC} 2 . \mathrm{O} 2 . \mathrm{CH} 3)$

Table 5. Listing of Reactions in the Preliminary Detailed Mechanism for Isoprene.

Rxn. Label	Kinetic Parameters [a]				Reactions [b]
	k (300)	A	Ea	B	

Isoprene

ISOH	$1.46 \mathrm{E}+05$	$3.73 \mathrm{E}+04$	-0.81	-1.00
ISO3	$2.20 \mathrm{E}-02$	$1.81 \mathrm{E}+01$	4.00	-1.00
ZIS1	$6.00 \mathrm{E}+01$	(No T Dependence)		
ZIS2	$6.00 \mathrm{E}+01$	(No T Dependence)		
ISOA	$8.81 \mathrm{E}+04$	$8.81 \mathrm{E}+04$	0.00	-1.00
ISN3	$1.62 \mathrm{E}+03$	$3.74 \mathrm{E}+04$	1.87	-1.00

Methacrolein [c]

MA1	$4.89 \mathrm{E}+04$	$2.73 \mathrm{E}+04-0.35-1.00$
MA2	$1.84 \mathrm{E}-03$	$8.09 \mathrm{E}+00 \quad 5.00-1.00$
Z1	$6.00 \mathrm{E}+01$	(No T Dependence)
MAZ1	$6.00 \mathrm{E}+01$	(No T Dependence)
MA3	(Phot	Set = ACROLEIN)
MA5	$4.26 \mathrm{E}+00$	$2.11 \mathrm{E}+03 \quad 3.70-1.00$
MAP 1	(Same	k as Reaction B2)
MAP 2	$8.73 \mathrm{E}+03$	8.73E+03 $0.00-4.60$
MAP 3	(Same	k as Reaction B6)
MAP 4	(Same	k as Reaction B9)
MAP 5	(Same	k as Reaction B10)
MAP 6	4.07E-02	$9.60 \mathrm{E}+18 \quad 27.970 .00$

```
METHACRO + HO. = #.5 "MA-RCO3. + RCO3." + #.42 "HOACET + CO" +
    #.08 "HCHO + MGLY" + #.5 "RO2-R. + RO2."
METHACRO + O3 = #.5 "(HCHO2) + HCHO + MGLY + (C2(.) (O2.)CHO)"
(HCHO2) = #.37 O3OL-SB + #. 12 "HO2. + CO + HO." + #. 88 -C
(C2(.)(O2.)CHO) = #.435 "O3OL-SB + #3 -C" + #.565 "HO. + HCHO +
    #2 CO + RO2-R. + RO2."
METHACRO + HV + #2.06E-3 = HO2. + CO + HCHO + CCO-O2. + RCO3.
METHACRO + NO3 = MA-RCO3. + RCO3 . + HNO3
MA-RCO3. + NO = NO2 + CO2 + HCHO + CCO-O2 . + RCO3.
MA-RCO3. + NO2 = MA-PAN
MA-RCO3. + HO2. = -OOH + #2 "HCHO + CO2"
MA-RCO3. + RO2. = RO2. + #.5 HO2. + #2 "HCHO + CO2"
MA-RCO3. + RCO3. = RCO3. + HO2. + #2 "HCHO + CO2"
MA-PAN = MA-RCO3. + NO2 + RCO3.
```


Methylvinyl Ketone [c]

MV1	$2.74 \mathrm{E}+04$	$6.08 \mathrm{E}+03-0.90-1.00$
MV2	$7.67 \mathrm{E}-03$	$6.29 \mathrm{E}+00 \quad 4.00-1.00$
MVZ1	$6.00 \mathrm{E}+01$	(No T Dependence)
MV4	(Phot	Set $=$ ACROLEIN)
ACP 1	(Same	k as Reaction B2)
ACP 2	$8.73 \mathrm{E}+03$	$8.73 \mathrm{E}+03 \quad 0.00-4.60$
ACP 3	(Same	k as Reaction B6)
ACP 4	(Same	k as Reaction B9
ACP 5	(Same	k as Reaction B10
ACP 6	4.07E-02	$9.60 \mathrm{E}+18 \quad 27.970 .00$

```
MVK + HO. = #.7 "HOCCHO + R2O2. + CCO-O2. + RCO3." + #.3 "HCHO +
    MGLY + RO2-R." + RO2.
MVK + O3 = #.5 "(HCHO2) + HCHO + MGLY + (C-CO-CHO2)"
(C-CO-CHO2)=#.74 "O3OL-SB + #3 - C" + #.26 "HO. + HCHO + #2 CO +
    RO2-R. + RO2."
MVK + HV +#2.1E-3 = HCHO + RO2-R. + RO2. + AC-RCO3. + RCO3.
AC-RCO3. + NO = NO2 + CO2 + HCHO + CO + HO2.
AC-RCO3. + NO2 = AC-PAN
AC-RCO3. + HO2. = -OOH + HCHO + CO + CO2
AC-RCO3. + RO2. = RO2. + #.5 HO2. + HCHO + CO + CO2
AC-RCO3. + RCO3. = RCO3. + HO2 + + HCHO + CO + CO2
AC-PAN = AC-RCO3. + NO2 + RCO3.
```


Hydroxyacetone

| IP18 | 3.38E $+03 \quad 3.38 \mathrm{E}+03 \quad 0.00$ | -1.00 |
| :---: | :---: | :---: | :---: | :---: |
| IP19 | (Phot. $\mathrm{Set}=$ ACETONE | |

Glycolaldehyde

IP20	$1.45 \mathrm{E}+04$	$1.45 \mathrm{E}+04$	$0.00-1$	00
IP21	(Phot	Set = C	HOR	
IP22	4.17E+00	$2.05 \mathrm{E}+03$	$3.70-1$	00
IP23	(Same	k as Reac	tion B2)
IP24	(Same	k as Rea	tion B4)
IP25	(Same	k as Reac	tion B6)
IP26	(Same	k as Reac	tion B9)
IP27	(Same	k as Reac	tion B10)
IP28	(Same	k as Reac	tion C18)

Methyl furan

K4	$1.38 \mathrm{E}+05$	$1.38 \mathrm{E}+05$	0.00	-1.00
K5	$2.05 \mathrm{E}+04$	$2.05 \mathrm{E}+04$	0.00	-1.00
K3	(Phot. Set $=$ ACROLEIN)			

C_{5} Methyl, Hydroxymethyl Acroleins [d

Table 5 (continued)

Rxn. Label	Kinetic Parameters [a]		Reactions [b]
	k (300)	A Ea B	
IPP2	$8.73 \mathrm{E}+03$	$8.73 \mathrm{E}+03 \quad 0.00-4.60$	IP-RCO3. + NO2 = IP-PAN
IPP 3	(Same	k as Reaction B6)	IP-RCO3. + HO2. = -ООН + \#1.5 CO2 + \#.5 "CO + HCHO + HOCCHO + HOACET"
IPP 4	(Same	k as Reaction B9)	IP-RCO3. + RO2. = RO2. + \#.5 HO2. + \#.5 "CO + HCHO + HOCCHO + HOACET"
IPP 5	(Same	k as Reaction B10)	IP-RCO3. + RCO3. = RCO3. + HO2. + \#.5 "CO + HCHO + HOCCHO + HOACET"
IPP 6	$4.07 \mathrm{E}-02$	$9.60 \mathrm{E}+18 \quad 27.97 \quad 0.00$	IP-PAN $=$ IP-RCO3. $+\mathrm{NO} 2+\mathrm{RCO3}$.
IPO3	9.32E-02	$8.07 \mathrm{E}+002.66-1.00$	```ISOPROD + O3 = #. 25 "HOACET + HOCCHO + ACET + GLY + (HOCCHO2) + (HCOCHO2) + (C2(.)(O2.)CHO) + (HOC2.O2.CH3)"```
ZAC	$6.00 \mathrm{E}+01$	(No T Dependence)	$(\mathrm{HCOCHO} 2)=\# .435$ "O3OL-SB + \#2 -C" + \#. $565 \mathrm{CCO} 2+\# 2 \mathrm{HO2}$ + + CO"
ZIP1	$6.00 \mathrm{E}+01$	(No T Dependence)	```(HOCCHO2) = #.7 "O3OL-SB + #2 -C" + #.3 HCHO + #.15 CO2 + #.45 HO2. + #.15 "CO + HO."```
ZIP2	$6.00 \mathrm{E}+01$	(No T Dependence)	$(\mathrm{HOC2} 2.02 . \mathrm{CH} 3)=$ \#. 8 "MEK + \#-1 -C" + \#.2 "HO. + MGLY + HO2."
IPHV	(Phot.	. Set = ACROLEIN)	```ISOPROD + HV + #2.06E-3 = HCHO + #1.5 HO2. + #.5 "ACET + CO + GLY + RCO3." + #.3 HOCCO-O2. + #.2 CCO-O2.```
IPN3	$4.26 \mathrm{E}+00$	$2.11 \mathrm{E}+03 \quad 3.70-1.00$	ISOPROD + NO3 = IP-RCO3. + RCO3. + HNO3

[a] Except as noted, expression for rate constant is $k=A e^{\mathrm{Ea} / \mathrm{RT}}(\mathrm{T} / 300)^{\mathrm{B}}$. Rate constants and A factor are in ppm, min units. Units of Ea is kcal mole ${ }^{-1}$. "Phot Set" means this is a photolysis reaction, with the absorption coefficients and quantum yields given in Carter (1990) or in Table ?
[b] Format of reaction listing same as used in documentation of the detailed mechanism (Carter 1990).
[c] Overall photolysis quantum yield and radical yield in ozone reaction adjusted to yield best fit of model simulations to results of methacrolein - NO_{x} - air or methylvinyl ketone - NO_{x} - air chamber experiments.
[d] Overall photolysis quantum yield and radical yield in ozone reaction assumed to be same as for methacrolein. Rate constant for ozone reaction adjusted to give best fit to model simulations of SAPRC isoprene runs.
represented by a single model species, with product yields being derived based on the distribution of isomers expected to be formed.) The mechanisms for methacrolein and methylvinyl ketone have been adjusted to simulate results of environmental chamber experiments employing those compounds, and the mechanisms for the C_{5} hydroxy-substituted acroleins have been adjusted in part to simulate isoprene - NO_{x} - air runs. The species added to the SAPRC-91 mechanism to represent isoprene and its products are given in Table 4 and 5, respectively. This mechanism performs significantly better than the SAPRC-90 mechanism (e. g., see Carter and Lurmann, 1991) in simulating the results of the isoprene experiments (Carter, unpublished results).

This mechanism is preliminary and still under development, and a more detailed documentation of it is beyond the scope of this report. (In many respects it is similar to the recently published mechanism of Paulson and Seinfeld [1992].) It is presented here to illustrate the degree to which the results of these experiments are consistent with our current and most detailed estimates for the atmospheric reactions of isoprene and its major products. Note that while this mechanism was adjusted to fit isoprene and isoprene product $-\mathrm{NO}_{\mathrm{x}}$ - air chamber experiments, the results of these reactivity experiments were not used in its development, so they provide an independent test of this mechanism.

The Carbon Bond IV mechanism used in the calculations discussed here is based on that documented by Gery et al (1988), but modified as recommended by the EPA (Dodge, personal communication, 1991) The species in this mechanism are the same as given by Gery et. al (1988), and reactions of this version of the mechanism are listed in Table 6 . The modifications relative to the documented (Gery et al., 1988) mechanism include adding the XO2 + HO2 reaction as recommended by Dodge (1990), and updating the kinetics for PAN formation and formaldehyde photolysis. Absorption cross section and quantum yield data for this mechanism were supplied by Gery (personal communication), and are listed on Table 7 .

Like the unadjusted SAPRC-91 mechanism (Appendix A), the unadjusted Carbon Bond mechanism also significantly underpredicted the rate of ozone formation in the base case experiment. Thus, it had to be adjusted before it could be used to simulate reactivities measured in these experiments. The need for such an adjustment is not surprising in this case, since this mechanism was not designed to simulate aromatic chemistry with a blacklight light source. In this case, the adjustment consisted of increasing the photolysis rates of the two model species used to represent photoreactive aromatic fragmentation products (MGLY and OPEN) by a factor of two.

The Carbon Bond IV mechanism includes a separate representation for the reaction of isoprene, though like the $S A P R C-90$ mechanism it does not use separate model species to represent the reactions of its products. However, unlike SAPRC90 which uses a generalized procedure which is applied to all the alkenes to represent the products, the Carbon Bond isoprene mechanism uses a mix of species already in the model to represent the type of reactions the Carbon Bond developers felt the isoprene products might undergo, with adjustments being made to fit results of isoprene $-\mathrm{NO}_{\mathrm{x}}$ outdoor chamber experiments (Gery et. al. 1988). For example, ethene is represented among the mix of species isoprene is represented to form, to account for the fact that isoprene is expected to form products which react with ozone.

Chamber Effects Model

The testing of a chemical mechanism against environmental chamber data requires including in the model appropriate representations for chamber-dependent effects such as wall reactions and characteristics of the light source used during the experiments. The methods used to represent them in this study are based on those discussed in detail by Carter and Lurmann (1990, 1991), adapted

Table 6. Listing of The Carbon Bond IV Mechanism as used to Simulate Results of Isoprene Reactivity Experiments.

Rxn. Label	Kinetic Parameters [a]				Reactions [b]
	k (300)	A	Ea	B	

1
$\begin{array}{llrl} & \text { (Phot. Set }=\mathrm{NO} 2 \mathrm{CB} & \\ 4.32 \mathrm{E}+06 & 8.61 \mathrm{E}+04 & -2.33 & 0.00 \\ 2.66 \mathrm{E}+01 & 2.56 \mathrm{E}+03 & 2.72 & 0.00 \\ 1.37 \mathrm{E}+04 & \text { (No T Dependence) }\end{array}$ $2.31 \mathrm{E}+03 \quad 2.34 \mathrm{E}+02-1.37 \quad 0.00$ $\begin{array}{llll}2.44 \mathrm{E}+03 & 3.28 \mathrm{E}+02 & -1.20 & 0.00\end{array}$ $4.73 \mathrm{E}-02 \quad 1.67 \mathrm{E}+02 \quad 4.87 \quad 0.00$ (Phot. Set $=0303 \mathrm{PCB}$) (Phot. Set $=0301 \mathrm{DCB}$) $4.25 \mathrm{E}+05 \quad 1.16 \mathrm{E}+05-0.78 \quad 0.00$ $3.26 \mathrm{E}+00 \quad$ (No T Dependence) $\begin{array}{llll}1.00 \mathrm{E}+02 & 2.29 \mathrm{E}+03 & 1.87 & 0.00\end{array}$ $3.00 \mathrm{E}+00 \quad 2.07 \mathrm{E}+01 \quad 1.15 \quad 0.00$ (Phot. Set $=$ NO3CBEST)
$4.42 \mathrm{E}+04 \quad 1.92 \mathrm{E}+04-0.50 \quad 0.00$ $\begin{array}{llll}5.90 \mathrm{E}-01 & 3.56 \mathrm{E}+01 & 2.44 & 0.00\end{array}$ $\begin{array}{llrl}1.85 \mathrm{E}+03 & 7.89 \mathrm{E}+02 & -0.51 & 0.00\end{array}$ 1.90E-06 (No T Dependence) $2.78 \mathrm{E}+00 \quad 1.65 \mathrm{E}+16 \quad 21.65 \quad 0.00$ $\begin{array}{llll}1.54 \mathrm{E}-04 & 2.63 \mathrm{E}-05 & -1.05 & 0.00\end{array}$ 1.60E-11 (No T Dependence) $9.80 \mathrm{E}+03 \quad 6.67 \mathrm{E}+02-1.60 \quad 0.00$ (Phot. Set $=$ HONOCB) 1.50E-05 (No T Dependence) $1.68 \mathrm{E}+04 \quad 1.56 \mathrm{E}+03-1.42 \quad 0.00$ $2.18 \mathrm{E}+02 \quad 7.77 \mathrm{E}+00-1.99 \quad 0.00$ $\begin{array}{llll}1.23 \mathrm{E}+04 & 5.51 \mathrm{E}+03 & -0.48 & 0.00\end{array}$ $2.02 \mathrm{E}+03 \quad 1.67 \mathrm{E}+02-1.49 \quad 0.00$ $\begin{array}{llll}5.11 \mathrm{E}+00 & 2.29 \mathrm{E}+15 & 20.11 & 0.00\end{array}$ $\begin{array}{llll}6.83 \mathrm{E}+03 & 1.92 \mathrm{E}+03 & -0.76 & 0.00\end{array}$ $\begin{array}{llll}4.14 \mathrm{E}+03 & 8.97 \mathrm{E}+01 & -2.29 & 0.00\end{array}$ $2.18 \mathrm{E}-01 \quad 8.76 \mathrm{E}-10-11.53 \quad 0.00$ (Phot. Set $=\mathrm{H} 2 \mathrm{O} 2 \mathrm{CB}$) $2.52 \mathrm{E}+03 \quad 4.70 \mathrm{E}+03 \quad 0.37 \quad 0.00$ 3.22E+02 (No T Dependence) 1.50E+04 (No T Dependence) (Phot. Set $=$ HCHORMCB) (Phot. Set $=$ HCHOSMCB) $2.37 \mathrm{E}+02 \quad 4.15 \mathrm{E}+04 \quad 3.08 \quad 0.00$ 9.30E-01 (No T Dependence) $6.36 \mathrm{E}+02 \quad 1.70 \mathrm{E}+04 \quad 1.96 \quad 0.00$ $\begin{array}{llrl}2.40 \mathrm{E}+04 & 1.04 \mathrm{E}+04 & -0.50 & 0.00\end{array}$ $\begin{array}{rr}2.40 \mathrm{E}+04 & 1.04 \mathrm{E}+04-0.50 \\ 3.70 \mathrm{E}+00 & \text { (NO T Dependence) }\end{array}$ (Phot. Set $=$ ALD2RCB) $\begin{array}{llll}2.83 \mathrm{E}+04 & 5.15 \mathrm{E}+04 & 0.36 & 0.00\end{array}$ $\begin{array}{llll}1.36 \mathrm{E}+04 & 3.84 \mathrm{E}+03 & -0.76 & 0.00\end{array}$ $\begin{array}{llll}3.44 \mathrm{E}-02 & 1.20 \mathrm{E}+18 & 26.83 & 0.00\end{array}$ 3.70E+03 (No T Dependence) $\begin{array}{ll}3.70 \mathrm{E}+03 & \text { (NO T Dependence) } \\ 9.60 \mathrm{E}+03 & \text { (No T Dependence) }\end{array}$ $\begin{array}{llll}2.10 \mathrm{E}+01 & 6.28 \mathrm{E}+03 & 3.40 & 0.00\end{array}$ $1.20 \mathrm{E}+03$ (No T Dependence) $1.37 \mathrm{E}+05 \quad 5.23 \mathrm{E}+16 \quad 15.90 \quad 0.00$

$9.54 \mathrm{E}+04$	(No T Dependence)
$2.20 \mathrm{E}+04$	(No T Dependence)

$\begin{array}{rrrr}4.20 \mathrm{E}+04 & 7.83 \mathrm{E}+03 & -1.00 & 0.00\end{array}$

$1.80 \mathrm{E}-02 \quad 2.01 \mathrm{E}+01 \quad 4.18 \quad 0.00$
1.14E+01 (No T Dependence)
$\begin{array}{llll}1.08 \mathrm{E}+03 & 1.51 \mathrm{E}+04 & 1.57 & 0.00\end{array}$
$\begin{array}{llll}1.19 \mathrm{E}+04 & 3.03 \mathrm{E}+03 & -0.82 & 0.00\end{array}$
$\begin{array}{llll}2.70 \mathrm{E}-03 & 1.75 \mathrm{E}+01 & 5.23 & 0.00\end{array}$
$9.15 \mathrm{E}+03 \quad 3.13 \mathrm{E}+03-0.64 \quad 0.00$
1.20E+04 (No T Dependence)
$2.50 \mathrm{E}+02$ (No T Dependence)
$6.10 \mathrm{E}+04$ (No T Dependence)
3.25E+04 (No T Dependence)
2.00E+04 (No T Dependence)
(Phot. Set $=$ HCHORBCB)
4.40E +04 (No T Dependence)
$1.50 \mathrm{E}-02 \quad 7.94 \mathrm{E}-02 \quad 0.99 \quad 0.00$
$3.62 \mathrm{E}+04 \quad 2.46 \mathrm{E}+04-0.23 \quad 0.00$

BASE CASE REACTIONS [C]

```
NO2 + HV = NO + O
O=03
O3+NO = NO2
O}+\textrm{NO2}=\textrm{NO
O}+\textrm{NO2}=\textrm{NO}
O}+\textrm{NO}=\textrm{NO}
NO2 + O3 = NO3
O3 + HV = O
O3+HV = O1D
O1D = O
O1D + H2O = #2 OH
O3+OH}=\textrm{HO}
O3+HO2 = OH
NO3 + HV = #.89 NO2 + #.89 O + #. 11 NO
NO3 + NO = #2 NO2
NO3 + NO2 = NO + NO2
NO3 + NO2 = N2O5
N2O5 + H2O = #2 HNO3
N2O5 = NO3 + NO2
NO + NO = #2 NO2
NO + NO2 + H2O = #2 HONO
NO + OH = HONO
NO + OH = HONO
HONO + HV = NO + OH
HONO + HONO = NO
OH}+\mathrm{ HNO3 = NO3
HO2 + NO = OH + NO2
HO2 + NO2 = PNA
PNA = HO2 + NO2
PNA = HO2 + NO2
HO2 + HO2 = H2O2
HO2 + HO2 + H2O = H2O2
H2O2 + HV = #2 OH
OH + H2O2 = HO2
OH}+\textrm{CO}=\textrm{HO}
HCHO + OH = HO2 + CO
HCHO + HV =#2 HO2 + CO
HCHO + HV = CO
HCHO}+\textrm{O}=\textrm{OH}+\textrm{HO}2+\textrm{CO
HCHO + NO3 = HNO3 + HO2 + CO
ALD2 + O = C2O3 + OH
ALD2 + OH = C2O3
ALD2 + OH = C2O3 
ALD2 + NO3 = C2O3 + HNO3 
ALD2 + HV = HCHO + #2 HO2 + CO + XO2 
C2O3 + NO2 = PAN
PAN = C2O3 + NO2
C2O3 + C2O3 = #2 HCHO + #2 XO2 + #2 HO2
C2O3+ HO2 = #.79 HCHO + #.79 XO2 + #.79 HO2 + #.79 OH
OH}=\textrm{HCHO}+\textrm{XO}2+\textrm{HO}
PAR + OH = #. 87 XO2 + #. 130 XO2N + #. 11 HO2 + #. 11 ALD2 + #-0.11 PAR +
    #.76 ROR
ROR = #.96 XO2 + #1.1 ALD2 + #.94 HO2 + #-2.1 PAR + #.04 XO2N +
    #.02 ROR
ROR = HO2
ROR = HO2
ROR + NO2 =
O + OLE = #.63 ALD2 + #. 38 HO2 + #. 28 XO2 + #. 30 CO + #. 20 HCHO +
    #.02 XO2N + #. 22 PAR + #. 2 OH
OH + OLE = HCHO + ALD2 + #-1.0 PAR + XO2 + HO2
O3 + OLE = #.5 ALD2 + #. }740\textrm{HCHO}+#.220 XO2 + #. 10 OH + #. 330 CO +
    #.44 HO2 + #-1.0 PAR
NO3 + OLE = #.91 XO2 + HCHO + #.09 XO2N + ALD2 + NO2 + #-1 PAR
O + ETH = HCHO + #1.7 HO2 + CO + #.7 XO2 + #.3 OH
OH}+\textrm{ETH}=\textrm{XO}2+#1.56 HCHO +#.22 ALD2 + HO2
O3+ETH = HCHO +#.42 CO + #.12 HO2
TOL + OH = #.44 HO2 + #.08 XO2 + #.36 CRES + #.56 TO2
TO2 + NO = #.90 NO2 + #.90 HO2 + #.90 OPEN
TO2 = CRES + HO2
TO2 = CRES + HO2 
CRES + NO3 = CRO + HNO3
CRO + NO2 =
OPEN + #Fudge + #9.04 + HV = C2O3 + HO2 + CO (see note [d])
OPEN + OH = XO2 + #2 CO + #2 HO2 + C2O3 + HCHO
OPEN + O3 = #.03 ALD2 + #.62 C2O3 + #.70 HCHO + #.03 XO2 + #. 69 CO +
    #.08 OH + #.76 HO2 + #.20 MGLY
OH. # XYL = #.70 HO2 + #.50 XO2 + #. 20 CRES + #.8 MGLY + #1.1 PAR +
```

Table 6 (continued)

Rxn.	Kinetic Parameters [a]		
	$\mathrm{k}(300)$	Reactions [b]	

\#. 30 TO 2			
73	$2.60 \mathrm{E}+04$	(No T Dependence)	$\mathrm{OH}+\mathrm{MGLY}=\mathrm{XO} 2+\mathrm{C} 2 \mathrm{O} 3$
74	(Phot.	Set $=$ HCHORBCB)	MGLY + \#Fudge + \#9.64 $+\mathrm{HV}=\mathrm{C} 2 \mathrm{O} 3+\mathrm{HO} 2+\mathrm{CO}$ (see note [d])
79	1.20E+04	(No T Dependence)	$\mathrm{XO} 2+\mathrm{NO}=\mathrm{NO} 2$
80	1.00E+03	(No T Dependence)	$\mathrm{XO} 2 \mathrm{~N}+\mathrm{NO}=$
81	$2.00 \mathrm{E}+03$	$2.63 \mathrm{E}+01-2.58 \quad 0.00$	$\mathrm{XO} 2+\mathrm{XO} 2=$
82	8.64E+03	$1.13 \mathrm{E}+02-2.58 \quad 0.00$	$\mathrm{XO} 2+\mathrm{HO} 2=$
ISOPRENE REACTIONS			
75	$2.70 \mathrm{E}+04$	(No T Dependence)	$\begin{aligned} & \mathrm{O}+\mathrm{ISOP}=\# .60 \mathrm{HO} 2+\text { \#. } 8 \mathrm{ALD} 2+\# .55 \mathrm{OLE}+\# .5 \mathrm{XO} 2+\# .5 \mathrm{CO}+ \\ & \text { \#.450 ETH }+ \text { \#. } 9 \mathrm{PAR}+\text { \#R-ISOP TEST_RCT } \end{aligned}$
76	1.42E+05	(No T Dependence)	$\mathrm{OH}+\mathrm{ISOP}=\mathrm{XO} 2+\mathrm{HCHO}+\# .67 \mathrm{HO} 2+\# .13 \mathrm{XO} 2 \mathrm{~N}+\mathrm{ETH}+\# .4 \mathrm{MGLY}+$ $\text { \#. } 2 \mathrm{C} 2 \mathrm{O} 3 \text { + \#. } 2 \text { ALD2 +\#R-ISOP TEST_RCT }$
77	1.80E-02	(No T Dependence)	```O3 + ISOP = HCHO + #.4 ALD2 + #.55 ETH + #. 2 MGLY + #. 1 PAR + #.060 CO + #.44 HO2 + #.1 OH + #R-ISOP TEST_RCT```
78	4.70E+02	(No T Dependence)	NO3 + ISOP $=$ XO2N + \#R-ISOP TEST_RCT

CHAMBER-DEPENDENT REACTIONS

(Applicable for these ETC runs only)

O3W	$3.70 \mathrm{E}-04$	(No T Dependence)	
N25I	$2.50 \mathrm{E}-03$	(No T	Dependence)
N25S	$5.00 \mathrm{E}+08$	(No T	Dependence)
NO2W	$1.40 \mathrm{E}-04$	(No T Dependence)	
RSI	(Same k as Reaction 1		
ONO2	(Same	k as	Reaction 1
XSHC	$2.50 \mathrm{E}+02$	(No T Dependence)	

```
O3 =
N2O5 = #2 NOX-WALL
N2O5 + H2O = #2 NOX-WALL
NO2 = #.2 HONO + #. }8\mathrm{ NOX-WALL
HV + #2.E-5 = OH
HV + #1.1E-4 = NO2 + #-1 NOX-WALL
OH = HO2
```

[a] Except as noted, expression for rate constant is $k=A e^{E / R T}(T / 300){ }^{B}$. Rate constants and A factor are in ppm, min units. Units of Ea is kcal mole ${ }^{-1}$. "Phot Set" means this is a photolysis reaction, with the absorption coefficients and quantum yields given in Table ?.
[b] Format of reaction listing same as used in documentation of the detailed mechanism (Carter 1990).
[c] Not all reactions in this listing are needed to simulate the experiments discussed here. The entire mechanism is given for completeness.
[d] The rates of these photolysis reactions were multiplied by a factor of two relative to the standard mechanism to simulate the base case experiments. "Fudge" is 1 for the standard mechanism, while "Fudge" = 2 was used for simulating these experiments.

Table 7. Absorption Cross Sections and Quantum Yields for Photolysis Reactions in the Carbon Bond IV Mechanism as Used to Simulate the Isoprene Reactivity Experiments.

$W L$	$A b s$	$Q Y$	$W L$	$A b s$	$Q Y$	WL	Abs	QY	WL	Abs	$Q Y$	WL
(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)	Abs $\left(\mathrm{cm}^{2}\right)$		(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)	$\left(\mathrm{cm}^{2}\right)$	$Q Y$	

Photolysis File $=$ NO2CB					
280.0	$5.54 \mathrm{E}-20$	0.984	281.0	$5.58 \mathrm{E}-20$	0.984
285.0	$6.99 \mathrm{E}-20$	0.984	286.0	$7.29 \mathrm{E}-20$	0.984
290.0	$8.18 \mathrm{E}-20$	0.984	291.0	$9.90 \mathrm{E}-20$	0.984
295.0	$9.68 \mathrm{E}-20$	0.984	296.0	$9.30 \mathrm{E}-20$	0.983
300.0	$1.17 \mathrm{E}-19$	0.980	301.0	$1.23 \mathrm{E}-19$	0.980
305.0	$1.66 \mathrm{E}-19$	0.976	306.0	$1.58 \mathrm{E}-19$	0.975
310.0	$1.76 \mathrm{E}-19$	0.972	311.0	$1.88 \mathrm{E}-19$	0.971
315.0	$2.25 \mathrm{E}-19$	0.968	316.0	$2.13 \mathrm{E}-19$	0.967
320.0	$2.54 \mathrm{E}-19$	0.964	321.0	$2.65 \mathrm{E}-19$	0.963
325.0	$2.79 \mathrm{E}-19$	0.960	326.0	$2.88 \mathrm{E}-19$	0.959
330.0	$2.99 \mathrm{E}-19$	0.956	331.0	$3.05 \mathrm{E}-19$	0.955
335.0	$3.45 \mathrm{E}-19$	0.952	336.0	$3.51 \mathrm{E}-19$	0.951
340.0	$3.88 \mathrm{E}-19$	0.948	341.0	$4.17 \mathrm{E}-19$	0.947
345.0	$4.07 \mathrm{E}-19$	0.944	346.0	$4.29 \mathrm{E}-19$	0.943
350.0	$4.10 \mathrm{E}-19$	0.940	351.0	$4.52 \mathrm{E}-19$	0.939
355.0	$5.13 \mathrm{E}-19$	0.936	356.0	$4.60 \mathrm{E}-19$	0.935
360.0	$4.51 \mathrm{E}-19$	0.932	361.0	$5.39 \mathrm{E}-19$	0.931
365.0	$5.78 \mathrm{E}-19$	0.928	366.0	$5.40 \mathrm{E}-19$	0.912
370.0	$5.42 \mathrm{E}-19$	0.849	371.0	$5.21 \mathrm{E}-19$	0.833
375.0	$5.35 \mathrm{E}-19$	0.770	376.0	$6.24 \mathrm{E}-19$	0.780
380.0	$5.99 \mathrm{E}-19$	0.900	381.0	$5.66 \mathrm{E}-19$	0.810
385.0	$5.94 \mathrm{E}-19$	0.770	386.0	$5.32 \mathrm{E}-19$	0.840
390.0	$6.00 \mathrm{E}-19$	0.800	391.0	$5.83 \mathrm{E}-19$	0.880
395.0	$5.89 \mathrm{E}-19$	0.840	396.0	$6.15 \mathrm{E}-19$	0.830

282.0	$5.36 \mathrm{E}-20$	0.984
287.0	$7.37 \mathrm{E}-20$	0.984
292.0	$9.37 \mathrm{E}-20$	0.984
297.0	$1.22 \mathrm{E}-19$	0.982
302.0	$1.39 \mathrm{E}-19$	0.978
307.0	$1.63 \mathrm{E}-19$	0.974
312.0	$1.96 \mathrm{E}-19$	0.970
317.0	$2.33 \mathrm{E}-19$	0.966
322.0	$2.65 \mathrm{E}-19$	0.962
327.0	$2.91 \mathrm{E}-19$	0.958
332.0	$3.01 \mathrm{E}-19$	0.954
337.0	$3.46 \mathrm{E}-19$	0.950
342.0	$3.83 \mathrm{E}-19$	0.946
347.0	$4.28 \mathrm{E}-19$	0.942
352.0	$4.44 \mathrm{E}-19$	0.938
357.0	$5.58 \mathrm{E}-19$	0.934
362.0	$5.04 \mathrm{E}-19$	0.930
367.0	$5.19 \mathrm{E}-19$	0.896
372.0	$5.98 \mathrm{E}-19$	0.817
377.0	$5.67 \mathrm{E}-19$	0.920
382.0	$5.64 \mathrm{E}-19$	0.700
387.0	$5.60 \mathrm{E}-19$	0.750
392.0	$6.05 \mathrm{E}-19$	0.840
397.0	$5.67 \mathrm{E}-19$	0.820

283.0	$5.36 \mathrm{E}-20$	0.984		284.0	$6.25 \mathrm{E}-20$	0.984
288.0	$7.66 \mathrm{E}-20$	0.984		289.0	$7.89 \mathrm{E}-20$	0.984
293.0	$9.75 \mathrm{E}-20$	0.984		294.0	$9.48 \mathrm{E}-20$	0.984
298.0	$1.17 \mathrm{E}-19$	0.982		299.0	$1.26 \mathrm{E}-19$	0.981
303.0	$1.59 \mathrm{E}-19$	0.978		304.0	$1.60 \mathrm{E}-19$	0.977
308.0	$1.62 \mathrm{E}-19$	0.973		309.0	$1.84 \mathrm{E}-19$	0.973
313.0	$2.04 \mathrm{E}-19$	0.970		314.0	$1.94 \mathrm{E}-19$	0.969
318.0	$2.48 \mathrm{E}-19$	0.966		319.0	$2.31 \mathrm{E}-19$	0.965
323.0	$2.77 \mathrm{E}-19$	0.962		324.0	$2.67 \mathrm{E}-19$	0.961
328.0	$3.08 \mathrm{E}-19$	0.958		329.0	$3.00 \mathrm{E}-19$	0.957
333.0	$3.73 \mathrm{E}-19$	0.954		334.0	$2.98 \mathrm{E}-19$	0.953
338.0	$3.48 \mathrm{E}-19$	0.950		339.0	$3.99 \mathrm{E}-19$	0.949
343.0	$3.54 \mathrm{E}-19$	0.946		344.0	$4.02 \mathrm{E}-19$	0.945
348.0	$4.82 \mathrm{E}-19$	0.942	349.0	$4.61 \mathrm{E}-19$	0.941	
353.0	$3.99 \mathrm{E}-19$	0.938	354.0	$5.04 \mathrm{E}-19$	0.937	
358.0	$5.04 \mathrm{E}-19$	0.934	359.0	$4.55 \mathrm{E}-19$	0.933	
363.0	$5.12 \mathrm{E}-19$	0.930	364.0	$4.87 \mathrm{E}-19$	0.929	
368.0	$5.34 \mathrm{E}-19$	0.881	369.0	$5.18 \mathrm{E}-19$	0.865	
373.0	$5.50 \mathrm{E}-19$	0.802	374.0	$5.21 \mathrm{E}-19$	0.786	
378.0	$5.17 \mathrm{E}-19$	0.820	379.0	$5.47 \mathrm{E}-19$	0.870	
383.0	$5.37 \mathrm{E}-19$	0.680	384.0	$5.97 \mathrm{E}-19$	0.700	
388.0	$5.98 \mathrm{E}-19$	0.810	389.0	$6.02 \mathrm{E}-19$	0.780	
393.0	$5.45 \mathrm{E}-19$	0.900	394.0	$5.54 \mathrm{E}-19$	0.900	
398.0	$6.41 \mathrm{E}-19$	0.770	399.0	$5.60 \mathrm{E}-19$	0.780	

Table 7 (continued)

$W L$	$A b s$	$Q Y$	$W L$	$A b s$	$Q Y$	$W L$	$A b s$	$Q Y$	WL	Abs		
(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)	$\left(\mathrm{cm}^{2}\right)$	QL	

Photolysis File $=$ NO2CB (continued)

| 400.0 | $6.76 \mathrm{E}-19$ | 0.680 | 401.0 | $6.53 \mathrm{E}-19$ | 0.650 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 405.0 | $6.32 \mathrm{E}-19$ | 0.320 | 406.0 | $5.39 \mathrm{E}-19$ | 0.330 |
| 410.0 | $5.77 \mathrm{E}-19$ | 0.150 | 411.0 | $5.88 \mathrm{E}-19$ | 0.100 |
| 415.0 | $6.04 \mathrm{E}-19$ | 0.070 | 416.0 | $4.85 \mathrm{E}-19$ | 0.060 |
| 420.0 | $5.77 \mathrm{E}-19$ | 0.020 | 421.0 | $5.80 \mathrm{E}-19$ | 0.000 |

Photolysis File $=0301 \mathrm{DCB}$
$280.03 .97 \mathrm{E}-18 \quad 0.900$ $285.02 .44 \mathrm{E}-18 \quad 0.900$ $290.01 .41 \mathrm{E}-18 \quad 0.900$ $295.0 \quad 7.67 \mathrm{E}-19 \quad 0.900$ $300.03 .92 \mathrm{E}-190.900$ $305.0 \quad 2.02 \mathrm{E}-19 \quad 0.884$ $310.01 .03 \mathrm{E}-19 \quad 0.560$ $315.0 \quad 5.22 \mathrm{E}-20 \quad 0.120$
$281.0 \quad 3.60 \mathrm{E}-18 \quad 0.900$ $286.02 .21 \mathrm{E}-18 \quad 0.900$ $291.01 .26 \mathrm{E}-18 \quad 0.900$ $296.06 .64 \mathrm{E}-190.900$ $301.0 \quad 3.44 \mathrm{E}-19 \quad 0.900$ $306.0 \quad 1.80 \mathrm{E}-19 \quad 0.848$ 311.0 9. $27 \mathrm{E}-200.450$ $\begin{array}{lll}316.0 & 4.78 \mathrm{E}-20 & 0.080\end{array}$
$402.05 .71 \mathrm{E}-19 \quad 0.620$ $407.04 .73 \mathrm{E}-190.250$ $412.05 .36 \mathrm{E}-19 \quad 0.090$ $\begin{array}{lll}412.0 & 5.36 \mathrm{E}-19 & 0.090 \\ 417.0 & 5.31 \mathrm{E}-19 & 0.050\end{array}$
403.0 5.10E-19 0.570 $408.0 \quad 6.26 \mathrm{E}-19 \quad 0.200$ $13.0 \quad 7.00 \mathrm{E}-19 \quad 0.080$ $418.0 \quad 5.52 \mathrm{E}-19 \quad 0.040$
$404.06 .07 \mathrm{E}-190.420$ $409.05 .90 \mathrm{E}-190.190$ $414.05 .94 \mathrm{E}-19 \quad 0.080$ $419.0 \quad 5.28 \mathrm{E}-19 \quad 0.030$
$282.0 \quad 3.24 \mathrm{E}-18 \quad 0.900$ $287.02 .01 \mathrm{E}-18 \quad 0.900$ $292.01 .10 \mathrm{E}-180.900$ $297.05 .88 \mathrm{E}-190.900$ 302.0 3.03E-19 0.900 $307.0 \quad 1.56 \mathrm{E}-19 \quad 0.800$ $312.08 .00 \mathrm{E}-20 \quad 0.340$ $\begin{array}{lll}312.0 & 8.04 \mathrm{E}-20 & 0.340\end{array}$

283.0	$3.01 \mathrm{E}-18$	0.900	284.0	$2.73 \mathrm{E}-18$	0.900
288.0	$1.76 \mathrm{E}-18$	0.900	289.0	$1.58 \mathrm{E}-18$	0.900
293.0	$9.89 \mathrm{E}-19$	0.900	294.0	$8.62 \mathrm{E}-19$	0.900
298.0	$5.10 \mathrm{E}-19$	0.900	299.0	$4.52 \mathrm{E}-19$	0.900
303.0	$2.63 \mathrm{E}-19$	0.900	304.0	$2.35 \mathrm{E}-19$	0.900
308.0	$1.36 \mathrm{E}-19$	0.740	309.0	$1.23 \mathrm{E}-19$	0.660
313.0	$6.92 \mathrm{E}-20$	0.250	314.0	$6.29 \mathrm{E}-20$	0.180
318.0	$3.72 \mathrm{E}-20$	0.020	319.0	$2.91 \mathrm{E}-20$	0.000

Photolysis File $=0303 \mathrm{PCB}$

$280.0 \quad 3.97 \mathrm{E}-18 \quad 0.100$ $290.0 \quad 1.41 \mathrm{E}-18 \quad 0.100$ $300.0 \quad 3.92 \mathrm{E}-19 \quad 0.100$ $310.0 \quad 1.03 \mathrm{E}-19 \quad 0.440$ $320.02 .99 \mathrm{E}-201.000$ $330.05 .76 \mathrm{E}-211.000$ $340.01 .21 \mathrm{E}-211.000$ $350.0 \quad 2.66 \mathrm{E}-221.000$ $360.05 .50 \mathrm{E}-231.000$ 424.0 5.50E-23 1.000 $424.06 .00 \mathrm{E}-231.000$ $434.0 \quad 1.00 \mathrm{E}-221.000$ 444.0 1.70E-22 1.000 $454.02 .90 \mathrm{E}-221.000$ $464.0 \quad 4.30 \mathrm{E}-221.000$ $474.0 \quad 6.00 \mathrm{E}-221.000$ $484.08 .10 \mathrm{E}-221.000$ $494.01 .07 \mathrm{E}-211.000$ $504.01 .33 \mathrm{E}-211.000$ $514.01 .61 \mathrm{E}-211.000$ $524.02 .00 \mathrm{E}-211.000$ $534.02 .55 \mathrm{E}-211.000$ 544.0 3.55E-21 1.000 $554.03 .08 \mathrm{E}-211.000$ $564.038 \mathrm{E}-211.000$ $57.04 .01 \mathrm{E}-211.000$ 584.0 4. 62E-21. 1.000 $584.04 .62 \mathrm{E}-211.000$ $594.04 .79 \mathrm{E}-211.000$ $604.04 .69 \mathrm{E}-211.000$ $614.04 .20 \mathrm{E}-211.000$ $624.03 .67 \mathrm{E}-211.000$ 634.0 3.09E-21 1.000 $644.02 .61 \mathrm{E}-211.000$ $654.02 .27 \mathrm{E}-211.000$ 664.0 1.93E-21 1.000 674.01 58E-21 1.000 684.0 1. 28E-21 1.000 694.0 1.05E-21 1.000 $79.01 .05 \mathrm{E}-211.000$ 71.0 7. $00 \mathrm{E}-221.000$ $714.0 \quad 7.20 \mathrm{E}-221.000$ $724.05 .90 \mathrm{E}-221.000$

Photolysis File $=$ HONOCB

$311.0 \quad 0.00 \mathrm{E}+001.000$ $316.03 .00 \mathrm{E}-211.000$ $321.04 .27 \mathrm{E}-201.000$ $326.0 \quad 3.13 \mathrm{E}-201.000$ $331.08 .70 \mathrm{E}-201.000$ $336.0 \quad 5.91 \mathrm{E}-20 \quad 1.000$ $341.08 .70 \mathrm{E}-201.000$ $346.08 .32 \mathrm{E}-201.000$ $351.01 .74 \mathrm{E}-191.000$ $356.01 .19 \mathrm{E}-191.000$ $361.0 \quad 6.90 \mathrm{E}-20 \quad 1.000$ $366.02 .13 \mathrm{E}-191.000$ 371.0 9.46E-20 1.000 $376.01 .90 \mathrm{E}-201.000$ $381.01 .14 \mathrm{E}-191.000$ $386.01 .19 \mathrm{E}-191.000$ $391.05 .00 \mathrm{E}-211.000$
$282.0 \quad 3.24 \mathrm{E}-18 \quad 0.100$ $292.01 .10 \mathrm{E}-18 \quad 0.100$ $302.0 \quad 3.03 \mathrm{E}-19 \quad 0.100$ $312.08 .00 \mathrm{E}-20 \quad 0.660$ $322.02 .17 \mathrm{E}-201.000$ $332.0 \quad 4.58 \mathrm{E}-21 \quad 1.000$ $342.0 \quad 9.60 \mathrm{E}-221.000$ $352.0 \quad 2.03 \mathrm{E}-221.000$ $362.0 \quad 0.00 \mathrm{E}+00 \quad 1.000$ $426.0 \quad 7.00 \mathrm{E}-231.000$ $436.01 .10 \mathrm{E}-221.000$ $446.0 \quad 1.90 \mathrm{E}-22 \quad 1.000$ $\begin{array}{lll}446.0 & 1.90 \mathrm{E}-22 & 1.000 \\ 456.0 & 3.10 \mathrm{E}-22 & 1.000\end{array}$ $\begin{array}{lll}456.0 & 3.10 \mathrm{E}-22 & 1.000 \\ 466.0 & 4.60 \mathrm{E}-22 & 1.000\end{array}$ $\begin{array}{lll}466.0 & 4.60 \mathrm{E}-22 & 1.000 \\ 476.0 & 6.40 \mathrm{E}-22 & 1.000\end{array}$ $\begin{array}{lll}476.0 & 6.40 \mathrm{E}-22 & 1.000 \\ 486.0 & 8.60 \mathrm{E}-22 & 1.000\end{array}$ $496.01 .12 \mathrm{E}-211.000$ $506.01 .39 \mathrm{E}-211.000$ $516.01 .67 \mathrm{E}-211.000$ $526.02 .11 \mathrm{E}-211.000$ $536.0 \quad 2.66 \mathrm{E}-211.000$ $546.0 \quad 3.18 \mathrm{E}-211.000$ $556.03 .18 \mathrm{E}-211.000$ $566.03 .68 \mathrm{E}-211.000$ 576.0 4.08E-21 1.000 $586.04 .65 \mathrm{E}-211.000$ $\begin{array}{lll}586.0 & 4.65 \mathrm{E}-21 & 1.000 \\ 596.0 & 4.82 \mathrm{E}-21 & 1.000\end{array}$ $\begin{array}{lll}596.0 & 4.82 \mathrm{E}-21 & 1.000 \\ 606.0 & 4.59 \mathrm{E}-21 & 1.000\end{array}$ $\begin{array}{lll}606.0 & 4.59 \mathrm{E}-21 & 1.000 \\ 616.0 & 4.10 \mathrm{E}-21 & 1.000\end{array}$ $\begin{array}{lll}616.0 & 4.10 \mathrm{E}-21 & 1.000 \\ 626.0 & 3.55 \mathrm{E}-21 & 1.000\end{array}$ $\begin{array}{lll}626.0 & 2.97 \mathrm{E}-21 & 1.000\end{array}$ $646.02 .54 \mathrm{E}-211.000$ $656.02 .20 \mathrm{E}-211.000$ $666.01 .86 \mathrm{E}-211.000$ 676.0 1.81E-21 1.000 $686.01 .23 \mathrm{E}-211.000$ 696.0 1.23E-21 1.000 706.0 1.00E-21 1.000 $706.08 .30 \mathrm{E}-221.000$ $\begin{array}{lll}716.0 & 6.90 \mathrm{E}-22 & 1.000 \\ 726.0 & 5.70 \mathrm{E}-22 & 1.000\end{array}$
$284.0 \quad 2.73 \mathrm{E}-18 \quad 0.100$ $294.08 .62 \mathrm{E}-190.100$ $304.02 .35 \mathrm{E}-19 \quad 0.100$ $314.06 .29 \mathrm{E}-20 \quad 0.820$ $324.01 .29 \mathrm{E}-201.000$ $334.05 .02 \mathrm{E}-211.000$ $344.0 \quad 7.12 \mathrm{E}-221.000$ 354.0 1.40E-22 1.000 418.0 . $00 \mathrm{E}+001.000$ 488.000 128.0 . $1.00 \mathrm{E}-231.000$ $438.01 .20 \mathrm{E}-221.000$ $448.02 .20 \mathrm{E}-221.000$ $458.03 .30 \mathrm{E}-221.000$ $468.0 \quad 5.00 \mathrm{E}-221.000$ $478.0 \quad 6.80 \mathrm{E}-221.000$ 488.0 9.10E-22 1.000 $498.01 .17 \mathrm{E}-211.000$ $508.01 .44 \mathrm{E}-211.000$ $518.01 .72 \mathrm{E}-211.000$ $528.02 .22 \mathrm{E}-211.000$ $538.02 .77 \mathrm{E}-211.000$ 548.0 3.28E-21 1.000 558.0 3. $78 \mathrm{E}-211.000$ $558.03 .78 \mathrm{E}-211.000$ 568.0 4.15E-21 1.000 58.0 . $48 \mathrm{E}-21.000$ $588.0 \quad 4.69 \mathrm{E}-211.000$ $598.0 \quad 4.86 \mathrm{E}-211.000$ $608.04 .49 \mathrm{E}-211.000$ $618.0 \quad 4.00 \mathrm{E}-211.000$ $628.03 .44 \mathrm{E}-211.000$ $638.02 .86 \mathrm{E}-211.000$ $648.02 .47 \mathrm{E}-211.000$ $658.02 .14 \mathrm{E}-211.000$ $668.01 .79 \mathrm{E}-211.000$ 678.0 1.44E-21 1.000 688.0 1.19E-21 1.000 698.0 9.60E-22 1.000 698.0 9.60E-22 1.000 718.0 . $7.00 \mathrm{E}-221.000$ $\begin{array}{lll}718.0 & 6.70 \mathrm{E}-22 & 1.000 \\ 728.0 & 5.50 \mathrm{E}-22 & 1.000\end{array}$
$286.0 \quad 2.21 \mathrm{E}-18 \quad 0.100$ $296.06 .64 \mathrm{E}-19 \quad 0.100$ $306.01 .80 \mathrm{E}-19 \quad 0.152$ $316.0 \quad 4.78 \mathrm{E}-20 \quad 0.920$ $326.01 .16 \mathrm{E}-201.000$ $336.02 .16 \mathrm{E}-211.000$ $346.05 .24 \mathrm{E}-221.000$ 356.0 9.80E-23 1.000 20.0 4.80E-23 1.000 430.0 8.00E-23 1.000 430.02000 $440.0 \quad 1.30 \mathrm{E}-221.000$ $\begin{array}{lll}450.0 & 2.40 \mathrm{E}-22 & 1.000 \\ 460.0 & 3.60 \mathrm{E}-22 & 1.000\end{array}$ $460.0 \quad 3.60 \mathrm{E}-221.000$ $470.0 \quad 5.30 \mathrm{E}-22 \quad 1.000$ $480.0 \quad 7.10 \mathrm{E}-221.000$ $490.0 \quad 9.70 \mathrm{E}-221.000$ $500.01 .22 \mathrm{E}-211.000$ $510.01 .50 \mathrm{E}-211.000$ $520.01 .78 \mathrm{E}-211.000$ $530.02 .33 \mathrm{E}-211.000$ $540.02 .88 \mathrm{E}-211.000$ 550.0 3.38E-21 1.000 $560.0 \quad 3.88 \mathrm{E}-211.000$ $560.03 .88 \mathrm{E}-211.000$ $570.04 .22 \mathrm{E}-211.000$ $580.04 .55 \mathrm{E}-211.000$ $590.0 \quad 4.72 \mathrm{E}-211.000$ $600.0 \quad 4.89 \mathrm{E}-211.000$ $610.0 \quad 4.40 \mathrm{E}-211.000$ $620.0 \quad 3.90 \mathrm{E}-21 \quad 1.000$ $630.0 \quad 3.32 \mathrm{E}-211.000$ $640.02 .74 \mathrm{E}-211.000$ $650.02 .41 \mathrm{E}-211.000$ $660.0 \quad 2.07 \mathrm{E}-211.000$ $670.0 \quad 1.72 \mathrm{E}-21 \quad 1.000$ 680.0 1.37E-21 1.000 $690.01 .34 \mathrm{E}-211.000$ 700.0 9.10E-22 1.000 710.0 . $7.80 \mathrm{e}-2221.000$ $\begin{array}{lll}710.0 & 7.80 \mathrm{E}-22 & 1.000 \\ 720.0 & 6.40 \mathrm{E}-22 & 1.000\end{array}$ $\begin{array}{lll}720.0 & 6.40 \mathrm{E}-22 & 1.000 \\ 730.0 & 5.10 \mathrm{E}-22 & 1.000\end{array}$
$288.0 \quad 1.76 \mathrm{E}-18 \quad 0.100$ $298.0 \quad 5.10 \mathrm{E}-19 \quad 0.100$ $308.0 \quad 1.36 \mathrm{E}-19 \quad 0.260$ $318.03 .72 \mathrm{E}-20 \quad 0.980$ $328.01 .11 \mathrm{E}-201.000$ $338.02 .29 \mathrm{E}-211.000$ $348.0 \quad 3.95 \mathrm{E}-221.000$ $358.0 \quad 7.70 \mathrm{E}-231.000$ $422.0 \quad 5.00 \mathrm{E}-231.000$ $432.0 \quad 9.00 \mathrm{E}-231.000$ $442.01 .50 \mathrm{E}-221.000$ $452.0 \quad 2.60 \mathrm{E}-22 \quad 1.000$ $462.0 \quad 3.90 \mathrm{E}-22 \quad 1.000$ $472.0 \quad 5.70 \mathrm{E}-22 \quad 1.000$ $482.0 \quad 7.60 \mathrm{E}-221.000$ $492.01 .02 \mathrm{E}-211.000$ $502.01 .28 \mathrm{E}-211.000$ $512.01 .56 \mathrm{E}-211.000$ $522.01 .89 \mathrm{E}-211.000$ $532.0 \quad 2.44 \mathrm{E}-21 \quad 1.000$ $542.02 .98 \mathrm{E}-211.000$ $552.0 \quad 3.48 \mathrm{E}-21 \quad 1.000$ $562.03 .95 \mathrm{E}-21 \quad 1.000$ $572.04 .28 \mathrm{E}-211.00$ $582.0 \quad 4.58 \mathrm{E}-211.000$ $592.04 .75 \mathrm{E}-21 \quad 1.000$ $602.04 .79 \mathrm{E}-211.000$ $612.0 \quad 4.30 \mathrm{E}-211.000$ $622.0 \quad 3.78 \mathrm{E}-21 \quad 1.000$ $632.03 .20 \mathrm{E}-21 \quad 1.000$ $642.02 .67 \mathrm{E}-211.000$ $652.02 .34 \mathrm{E}-211.000$ $662.02 .00 \mathrm{E}-211.000$ $672.01 .65 \mathrm{E}-211.000$ $682.01 .32 \mathrm{E}-211.000$ $682.01 .32 \mathrm{E}-211.00$ $692.01 .10 \mathrm{E}-211.000$ 712.0 . $7.9 \mathrm{E}-221.000$ $\begin{array}{lll}712.0 & 7.50 \mathrm{E}-22 & 1.000 \\ 722.0 & 6.10 \mathrm{E}-22 & 1.000\end{array}$ $\begin{array}{lll}722.0 & 6.10 \mathrm{E}-22 & 1.000 \\ 732.0 & 0.00 \mathrm{E}+00 & 1.000\end{array}$
$313.04 .20 \mathrm{E}-211.000$ $318.0 \quad 3.60 \mathrm{E}-201.000$ $323.0 \quad 3.93 \mathrm{E}-201.000$ 328.0 7.55E-20 1.000 $333.05 .91 \mathrm{E}-201.000$ 338.0 1.91E-19 1.000 $338.01 .91 \mathrm{E}-191.000$ $343.02 .01 \mathrm{E}-191.000$ $353.02 .49 \mathrm{E}-201.000$ $353.0 \quad 3.71 \mathrm{E}-191.000$ $358.0 \quad 7.78 \mathrm{E}-20 \quad 1.000$ $363.0 \quad 9.00 \mathrm{E}-20 \quad 1.000$ $368.0 \quad 4.50 \mathrm{E}-191.000$ $373.0 \quad 7.44 \mathrm{E}-201.000$ $378.01 .90 \mathrm{E}-201.000$
$383.01 .72 \mathrm{E}-191.000$ $388.03 .20 \mathrm{E}-201.000$

314.0	$4.60 \mathrm{E}-21$	1.000		315.0	$4.20 \mathrm{E}-21$
319.0	$6.10 \mathrm{E}-20$	1.000		320.0	$2.10 \mathrm{E}-20$
1.000					
324.0	$4.01 \mathrm{E}-20$	1.000		325.0	$4.04 \mathrm{E}-20$
1.000					
329.0	$6.64 \mathrm{E}-20$	1.000	330.0	$7.29 \mathrm{E}-20$	1.000
334.0	$5.91 \mathrm{E}-20$	1.000	335.0	$6.45 \mathrm{E}-20$	1.000
339.0	$1.63 \mathrm{E}-19$	1.000	340.0	$1.05 \mathrm{E}-19$	1.000
344.0	$1.02 \mathrm{E}-19$	1.000	345.0	$8.54 \mathrm{E}-20$	1.000
349.0	$7.13 \mathrm{E}-20$	1.000	350.0	$6.83 \mathrm{E}-20$	1.000
354.0	$4.96 \mathrm{E}-19$	1.000	355.0	$2.46 \mathrm{E}-19$	1.000
359.0	$7.29 \mathrm{E}-20$	1.000	360.0	$6.83 \mathrm{E}-20$	1.000
364.0	$1.21 \mathrm{E}-19$	1.000	365.0	$1.33 \mathrm{E}-19$	1.000
369.0	$2.93 \mathrm{E}-19$	1.000	370.0	$1.19 \mathrm{E}-19$	1.000
374.0	$4.77 \mathrm{E}-20$	1.000	375.0	$2.70 \mathrm{E}-20$	1.000
379.0	$5.80 \mathrm{E}-20$	1.000	380.0	$7.78 \mathrm{E}-20$	1.000
384.0	$1.99 \mathrm{E}-19$	1.000	385.0	$1.90 \mathrm{E}-19$	1.000
389.0	$1.90 \mathrm{E}-20$	1.000	390.0	$1.20 \mathrm{E}-20$	1.000

Table 7 (continued)

$W L$	$A b s$	$Q Y$	$W L$	$A b s$	$Q Y$	$W L$	$A b s$	$Q Y$	WL	Abs		
(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)	$\left(\mathrm{cm}^{2}\right)$		QY	(nm)	$\left(\mathrm{cm}^{2}\right)$	Abs

Photolysis File $=$ H2O2CB

280.0	$2.09 \mathrm{E}-20$	1.000	281.0	$2.00 \mathrm{E}-20$	1.000
285.0	$1.62 \mathrm{E}-20$	1.000	286.0	$1.54 \mathrm{E}-20$	1.000
290.0	$1.23 \mathrm{E}-20$	1.000	291.0	$1.17 \mathrm{E}-20$	1.000
295.0	$9.33 \mathrm{E}-21$	1.000	296.0	$8.88 \mathrm{E}-21$	1.000
300.0	$7.08 \mathrm{E}-21$	1.000	301.0	$6.74 \mathrm{E}-21$	1.000
305.0	$5.38 \mathrm{E}-21$	1.000	306.0	$5.14 \mathrm{E}-21$	1.000
310.0	$4.17 \mathrm{E}-21$	1.000	311.0	$3.97 \mathrm{E}-21$	1.000
315.0	$3.16 \mathrm{E}-21$	1.000	316.0	$3.02 \mathrm{E}-21$	1.000
320.0	$2.45 \mathrm{E}-21$	1.000	321.0	$2.33 \mathrm{E}-21$	1.000
325.0	$1.86 \mathrm{E}-21$	1.000	326.0	$1.77 \mathrm{E}-21$	1.000
330.0	$1.41 \mathrm{E}-21$	1.000	331.0	$1.35 \mathrm{E}-21$	1.000
335.0	$1.10 \mathrm{E}-21$	1.000	336.0	$1.05 \mathrm{E}-21$	1.000
340.0	$8.30 \mathrm{E}-22$	1.000	341.0	$7.90 \mathrm{E}-22$	1.000
345.0	$6.30 \mathrm{E}-22$	1.000	346.0	$6.00 \mathrm{E}-22$	1.000
350.0	$4.80 \mathrm{E}-22$	1.000	351.0	$0.00 \mathrm{E}+00$	1.000

$350.04 .80 \mathrm{E}-221.000$

Photolysis File $=$ NO3CBEST

$400.0 \quad 0.00 \mathrm{E}+00 \quad 1.000$ $425.01 .00 \mathrm{E}-191.000$ $450.0 \quad 2.80 \mathrm{E}-191.000$ $475.06 .00 \mathrm{E}-19 \quad 1.000$ $500.0 \quad 1.01 \mathrm{E}-18 \quad 1.000$ $525.01 .48 \mathrm{E}-181.000$ $550.02 .36 \mathrm{E}-181.000$ $575.02 .74 \mathrm{E}-181.000$ $600.02 .83 \mathrm{E}-181.000$ $625.0 \quad 9.25 \mathrm{E}-18 \quad 1.000$
$405.0 \quad 3.00 \mathrm{E}-20 \quad 1.000$ $430.0 \quad 1.30 \mathrm{E}-191.000$ $455.0 \quad 3.30 \mathrm{E}-191.000$ $480.0 \quad 6.40 \mathrm{E}-191.000$ $505.01 .10 \mathrm{E}-181.000$ $530.01 .94 \mathrm{E}-181.000$ $555.02 .68 \mathrm{E}-181.000$ $580.0 \quad 3.05 \mathrm{E}-181.000$ $605.0 \quad 3.45 \mathrm{E}-18 \quad 1.000$ $630.0 \quad 5.66 \mathrm{E}-18 \quad 1.000$
$410.0 \quad 4.00 \mathrm{E}-20 \quad 1.000$ $435.0 \quad 1.80 \mathrm{E}-191.000$ $\begin{array}{lll}435.0 & 1.80 \mathrm{E}-19 & 1.000 \\ 460.0 & 3.70 \mathrm{E}-19 & 1.000\end{array}$ $\begin{array}{lll}460.0 & 3.70 \mathrm{E}-19 & 1.000 \\ 485.0 & 6.90 \mathrm{E}-19 & 1.000\end{array}$ $\begin{array}{lll}485.0 & 6.90 \mathrm{E}-19 & 1.000 \\ 510.0 & 1.32 \mathrm{E}-18 & 1.000\end{array}$ $510.0 \quad 1.32 \mathrm{E}-18 \quad 1.000$ $535.02 .04 \mathrm{E}-181.000$ $560.0 \quad 3.07 \mathrm{E}-181.000$ $585.0 \quad 2.77 \mathrm{E}-18 \quad 1.000$ $610.0 \quad 1.45 \mathrm{E}-18 \quad 1.000$ $635.0 \quad 1.45 \mathrm{E}-18 \quad 1.000$

$420.0 \quad 8.00 \mathrm{E}-20 \quad 1.000$ $445.02 .20 \mathrm{E}-191.000$ $470.0 \quad 5.10 \mathrm{E}-191.000$ 495.0 9.50E-19 1.000 520.0 1.45E-18 1.00 $545.01 .81 \mathrm{E}-18 \quad 1.000$ $570.02 .54 \mathrm{E}-181.000$ $595.04 .08 \mathrm{E}-181.000$ $620.0 \quad 3.58 \mathrm{E}-181.000$ $645.0 \quad 0.00 \mathrm{E}+00 \quad 1.000$

Photolysis File $=$ HCHORBCB

$280.0 \quad 2.34 \mathrm{E}-20 \quad 0.560$ $285.0 \quad 3.46 \mathrm{E}-20 \quad 0.650$ $\begin{array}{lll}285.0 & 1.43 \mathrm{E}-20 & 0.720\end{array}$ $295.0 \quad 3.21 \mathrm{E}-20 \quad 0.770$ $300.0 \quad 7.20 \mathrm{E}-21 \quad 0.800$ $305.04 .94 \mathrm{E}-20 \quad 0.790$ $310.01 .03 \mathrm{E}-20 \quad 0.760$ $315.02 .88 \mathrm{E}-200.700$ $320.01 .71 \mathrm{E}-20 \quad 0.610$ $325.0 \quad 2.19 \mathrm{E}-20 \quad 0.490$ $325.02 .19 \mathrm{E}-200.490$ $330.01 .96 \mathrm{E}-200.330$ 340.0 1.07E-20 0.000
$281.0 \quad 1.65 \mathrm{E}-20 \quad 0.580$ $286.0 \quad 2.32 \mathrm{E}-20 \quad 0.670$ $291.0 \quad 1.32 \mathrm{E}-20 \quad 0.730$ $296.0 \quad 1.59 \mathrm{E}-20 \quad 0.780$ $301.0 \quad 1.51 \mathrm{E}-20 \quad 0.800$ $306.0 \quad 3.02 \mathrm{E}-20 \quad 0.790$ 311.0 8.10E-21 0.750 $316.02 .79 \mathrm{E}-200.690$ $321.0 \quad 1.32 \mathrm{E}-20 \quad 0.590$ $326.0 \quad 3.44 \mathrm{E}-20 \quad 0.460$ $331.0 \quad 7.90 \mathrm{E}-21 \quad 0.290$ $336.0 \quad 1.70 \mathrm{E}-21 \quad 0.083$
$282.0 \quad 7.60 \mathrm{E}-21 \quad 0.600$ $287.0 \quad 9.50 \mathrm{E}-21 \quad 0.680$ $292.0 \quad 6.60 \mathrm{E}-21 \quad 0.750$ $297.01 .96 \mathrm{E}-20 \quad 0.790$ $302.0 \quad 7.40 \mathrm{E}-21 \quad 0.800$ $307.01 .16 \mathrm{E}-20 \quad 0.790$ $312.01 .49 \mathrm{E}-20 \quad 0.740$ $317.03 .59 \mathrm{E}-200.670$ $322.0 \quad 4.30 \mathrm{E}-21 \quad 0.570$ $327.01 .75 \mathrm{E}-20 \quad 0.430$ 332.0 3.20E-21 0.250 $337.03 .20 \mathrm{E}-21$. 25
$283.0 \quad 4.60 \mathrm{E}-21 \quad 0.620$ $288.0 \quad 2.32 \mathrm{E}-20 \quad 0.700$ $293.0 \quad 5.22 \mathrm{E}-20 \quad 0.760$ $298.0 \quad 3.66 \mathrm{E}-20 \quad 0.790$ $303.0 \quad 4.35 \mathrm{E}-20 \quad 0.800$ $308.0 \quad 2.18 \mathrm{E}-20 \quad 0.780$ $313.01 .55 \mathrm{E}-20 \quad 0.730$ $318.0 \quad 1.65 \mathrm{E}-20 \quad 0.650$ $323.0 \quad 6.00 \mathrm{E}-21 \quad 0.540$ $328.0 \quad 1.01 \mathrm{E}-20 \quad 0.390$ 333.0 1.01E-20 0.390 $338.0 \quad 1.93 \mathrm{E}-20 \quad 0.000$
$284.0 \quad 3.93 \mathrm{E}-20 \quad 0.630$ $289.02 .50 \mathrm{E}-20 \quad 0.710$ $294.0 \quad 4.30 \mathrm{E}-20 \quad 0.760$ $299.01 .55 \mathrm{E}-200.790$ $304.04 .79 \mathrm{E}-200.800$ $309.02 .25 \mathrm{E}-20 \quad 0.770$ $314.0 \quad 3.99 \mathrm{E}-20 \quad 0.720$ 319.0 7.30E-21 0.630 $324.0 \quad 7.50 \mathrm{E}-21 \quad 0.510$ $329.0 \quad 3.03 \mathrm{E}-20 \quad 0.360$ 3340 1.70E-21 0.170 $339.02 .15 \mathrm{E}-200.000$

Photolysis File $=$ HCHORMCB

$280.0 \quad 2.69 \mathrm{E}-20 \quad 0.560$ $285.0 \quad 4.10 \mathrm{E}-20 \quad 0.650$ $290.0 \quad 1.09 \mathrm{E}-20 \quad 0.720$ $295.03 .98 \mathrm{E}-20 \quad 0.770$ $300.0 \quad 5.30 \mathrm{E}-21 \quad 0.800$ $305.04 .40 \mathrm{E}-200.790$ $310.0 \quad 2.65 \mathrm{E}-20 \quad 0.760$ 315.0 4.83E-20 0.700 320.0 9.90E-21 0.610 $320.0 \quad 9.90 \mathrm{E}-21 \quad 0.610$ $325.0 \quad 6.40 \mathrm{E}-21 \quad 0.490$ $330.0 \quad 4.46 \mathrm{E}-20 \quad 0.330$ $335.0 \quad 8.00 \mathrm{E}-22 \quad 0.130$ $340.02 .78 \mathrm{E}-20 \quad 0.000$
$281.0 \quad 1.34 \mathrm{E}-20 \quad 0.580$ $286.0 \quad 1.95 \mathrm{E}-20 \quad 0.670$ $291.0 \quad 1.88 \mathrm{E}-20 \quad 0.730$ $296.02 .15 \mathrm{E}-200.780$ 301.0 1.15E-20 0.800 $306.0 \quad 5.01 \mathrm{E}-20 \quad 0.790$ $311.0 \quad 8.40 \mathrm{E}-21 \quad 0.750$ $316.02 .65 \mathrm{E}-20 \quad 0.690$ 321.0 1.59E-20 0.590 $326.0 \quad 3.74 \mathrm{E}-20 \quad 0.590$ $326.03 .74 \mathrm{E}-200.460$ $\begin{array}{lll}331.0 & 2.53 \mathrm{E}-20 & 0.290 \\ 336.0 & 1.00 \mathrm{E}-21 & 0.083\end{array}$
$282.0 \quad 9.80 \mathrm{E}-21 \quad 0.600$ $287.0 \quad 1.01 \mathrm{E}-20 \quad 0.680$ $292.05 .80 \mathrm{E}-21 \quad 0.750$ $297.01 .12 \mathrm{E}-200.790$ $302.01 .24 \mathrm{E}-20 \quad 0.800$ $307.02 .90 \mathrm{E}-20 \quad 0.790$ $312.0 \quad 8.70 \mathrm{E}-21 \quad 0.740$ $317.06 .15 \mathrm{E}-200.670$ $31.06 .15 \mathrm{E}-200.670$ $322.0 \quad 9.00 \mathrm{E}-21 \quad 0.570$ $327.0 \quad 5.67 \mathrm{E}-20 \quad 0.430$ $\begin{array}{lll}332.0 & 6.60 \mathrm{E}-21 & 0.250 \\ 337.0 & 3.10 \mathrm{E}-21 & 0.038\end{array}$

$284.0 \quad 2.78 \mathrm{E}-20 \quad 0.630$ $289.0 \quad 3.20 \mathrm{E}-20 \quad 0.710$ $294.05 .45 \mathrm{E}-20 \quad 0.760$ $299.02 .53 \mathrm{E}-20 \quad 0.790$ $304.0 \quad 7.36 \mathrm{E}-20 \quad 0.800$ $309.0 \quad 2.78 \mathrm{E}-20 \quad 0.770$ $314.0 \quad 5.07 \mathrm{E}-20 \quad 0.720$ $319.0 \quad 1.18 \mathrm{E}-20 \quad 0.630$ 324.0 . $18 \mathrm{E}-20.630$ $324.06 .00 \mathrm{E}-21 \quad 0.510$ $329.0 \quad 1.06 \mathrm{E}-20 \quad 0.360$ $\begin{array}{lll}334.0 & 1.00 \mathrm{E}-21 & 0.170 \\ 339.0 & 4.71 \mathrm{E}-20 & 0.000\end{array}$

Photolysis File $=$ нCHOSBCB

$280.0 \quad 2.34 \mathrm{E}-20 \quad 0.440$ $285.03 .46 \mathrm{E}-200.350$ $290.01 .43 \mathrm{E}-200.280$ $295.0 \quad 3.21 \mathrm{E}-20 \quad 0.230$ 300.0 7.20E-21 0.200 $305.04 .94 \mathrm{E}-200.210$ $305.0 \quad 4.94 \mathrm{E}-20 \quad 0.210$ 315.0 1.03E-20 0.240 $315.02 .88 \mathrm{E}-20 \quad 0.300$ $320.0 \quad 1.71 \mathrm{E}-200.390$ $325.0 \quad 2.19 \mathrm{E}-20 \quad 0.510$ $330.0 \quad 1.96 \mathrm{E}-20 \quad 0.590$ $335.0 \quad 2.00 \mathrm{E}-22 \quad 0.620$ $340.0 \quad 1.07 \mathrm{E}-20 \quad 0.600$ $345.01 .20 \mathrm{E}-21 \quad 0.520$ $350.03 .00 \mathrm{E}-220.390$ $355.0 \quad 2.60 \mathrm{E}-21 \quad 0.230$ $360.0 \quad 0.00 \mathrm{E}+00 \quad 0.063$
$281.0 \quad 1.65 \mathrm{E}-20 \quad 0.420$ $286.02 .32 \mathrm{E}-200.330$ $291.0 \quad 1.32 \mathrm{E}-20 \quad 0.270$ $296.0 \quad 1.59 \mathrm{E}-20 \quad 0.220$ $301.0 \quad 1.51 \mathrm{E}-20 \quad 0.200$ $301.0 \quad 1.51 \mathrm{E}-200.200$ $\begin{array}{lll}306.0 & 3.02 \mathrm{E}-20 & 0.210 \\ 311.0 & 8.10 \mathrm{E}-21 & 0.250\end{array}$ $311.0 \quad 8.10 \mathrm{E}-210.250$ $\begin{array}{lll}316.0 & 2.79 \mathrm{E}-20 & 0.310 \\ 321.0 & 1.32 \mathrm{E}-20 & 0.410\end{array}$ $321.0 \quad 1.32 \mathrm{E}-20 \quad 0.410$ $326.0 \quad 3.44 \mathrm{E}-20 \quad 0.540$ $331.0 \quad 7.90 \mathrm{E}-21 \quad 0.600$ $336.0 \quad 1.70 \mathrm{E}-21 \quad 0.620$ $341.0 \quad 3.10 \mathrm{E}-21 \quad 0.590$ $346.04 .00 \mathrm{E}-220.500$ $351.0 \quad 9.00 \mathrm{E}-22 \quad 0.360$ $356.05 .00 \mathrm{E}-22 \quad 0.200$
$282.0 \quad 7.60 \mathrm{E}-21 \quad 0.400$ $287.0 \quad 9.50 \mathrm{E}-21 \quad 0.320$ $292.0 \quad 6.60 \mathrm{E}-21 \quad 0.250$ $297.0 \quad 1.96 \mathrm{E}-20 \quad 0.210$ 302.0 7.40E-21 0.200 $307.01 .16 \mathrm{E}-200.210$ $307.01 .16 \mathrm{E}-200.210$ $312.01 .49 \mathrm{E}-200.260$ $317.0 \quad 3.59 \mathrm{E}-200.330$ $322.0 \quad 4.30 \mathrm{E}-21 \quad 0.430$ $327.0 \quad 1.75 \mathrm{E}-20 \quad 0.550$ $332.0 \quad 3.20 \mathrm{E}-21 \quad 0.610$ $337.0 \quad 3.20 \mathrm{E}-21 \quad 0.620$ $342.0 \quad 9.40 \mathrm{E}-21 \quad 0.570$ $347.04 .00 \mathrm{E}-22 \quad 0.470$ $352.09 .00 \mathrm{E}-210.330$ $357.03 .00 \mathrm{E}-220.160$
$283.04 .60 \mathrm{E}-21 \quad 0.380$ 288.0 2.32E-20 0.300 $293.05 .22 \mathrm{E}-20 \quad 0.240$ $298.0 \quad 3.66 \mathrm{E}-20 \quad 0.210$ $303.0 \quad 4.35 \mathrm{E}-20 \quad 0.200$ $308.02 .18 \mathrm{E}-200.220$ $313.02 .18 \mathrm{E}-20$. 220 $313.0 \quad 1.55 \mathrm{E}-20 \quad 0.270$ $318.01 .65 \mathrm{E}-200.350$ $323.0 \quad 6.00 \mathrm{E}-21 \quad 0.460$ $328.0 \quad 1.01 \mathrm{E}-20 \quad 0.570$ $333.0 \quad 1.50 \mathrm{E}-21 \quad 0.620$ $338.0 \quad 1.93 \mathrm{E}-20 \quad 0.610$ $343.0 \quad 1.37 \mathrm{E}-20 \quad 0.560$ $348.0 \quad 7.00 \mathrm{E}-22 \quad 0.450$ $353.01 .17 \mathrm{E}-20 \quad 0.300$ $358.04 .00 \mathrm{E}-220.130$
$284.03 .93 \mathrm{E}-20 \quad 0.370$ 289.0 2.50E-20 0.290 $294.04 .30 \mathrm{E}-200.240$ $299.01 .55 \mathrm{E}-20 \quad 0.210$ $304.0 \quad 4.79 \mathrm{E}-20 \quad 0.200$ $309.025 \mathrm{E}-200.230$ $309.02 .25 \mathrm{E}-20 \mathrm{O}$ $314.0 \quad 3.99 \mathrm{E}-20 \quad 0.280$ $319.0 \quad 7.30 \mathrm{E}-21 \quad 0.370$ $324.0 \quad 7.50 \mathrm{E}-21 \quad 0.490$ $329.0 \quad 3.03 \mathrm{E}-20 \quad 0.580$ $334.0 \quad 1.70 \mathrm{E}-21 \quad 0.620$ $339.0 \quad 2.15 \mathrm{E}-20 \quad 0.610$ $344.0 \quad 5.70 \mathrm{E}-21 \quad 0.540$ $349.0 \quad 3.00 \mathrm{E}-22 \quad 0.420$ $354.07 .20 \mathrm{E}-21 \quad 0.260$ $359.03 .00 \mathrm{E}-220.100$

Table 7 (continued)

$W L$	$A b s$	$Q Y$	$W L$	$A b s$	$Q Y$	$W L$	$A b s$	$Q Y$	WL	Abs		
(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)	$\left(\mathrm{cm}^{2}\right)$		QY	(nm)	$\left(\mathrm{cm}^{2}\right)$	Abs

Photolysis File $=$ HCHOSMCB

280.0	$2.69 \mathrm{E}-20$	0.440
285.0	$4.10 \mathrm{E}-20$	0.350
290.0	$1.09 \mathrm{E}-20$	0.280
295.0	$3.98 \mathrm{E}-20$	0.230
300.0	$5.30 \mathrm{E}-21$	0.200
305.0	$4.40 \mathrm{E}-20$	0.210
310.0	$2.65 \mathrm{E}-20$	0.240
315.0	$4.83 \mathrm{E}-20$	0.300
320.0	$9.90 \mathrm{E}-21$	0.390
325.0	$6.40 \mathrm{E}-21$	0.510
330.0	$4.46 \mathrm{E}-20$	0.590
335.0	$8.00 \mathrm{E}-22$	0.620
340.0	$2.78 \mathrm{E}-20$	0.600
345.0	$3.70 \mathrm{E}-21$	0.520
350.0	$0.00 \mathrm{E}+00$	0.390
355.0	$1.33 \mathrm{E}-20$	0.230
360.0	$0.00 \mathrm{E}+00$	0.063

281.0	$1.34 \mathrm{E}-20$	0.420
286.0	$1.95 \mathrm{E}-20$	0.330
291.0	$1.88 \mathrm{E}-20$	0.270
296.0	$2.15 \mathrm{E}-20$	0.220
301.0	$1.15 \mathrm{E}-20$	0.200
306.0	$5.01 \mathrm{E}-20$	0.210
311.0	$8.40 \mathrm{E}-21$	0.250
316.0	$2.65 \mathrm{E}-20$	0.310
321.0	$1.59 \mathrm{E}-20$	0.410
326.0	$3.74 \mathrm{E}-20$	0.540
331.0	$2.53 \mathrm{E}-20$	0.600
336.0	$1.00 \mathrm{E}-21$	0.620
341.0	$9.00 \mathrm{E}-21$	0.590
346.0	$6.00 \mathrm{E}-22$	0.500
351.0	$0.00 \mathrm{E}+00$	0.360
356.0	$3.40 \mathrm{E}-21$	0.200

282.0	$9.80 \mathrm{E}-21$	0.400
287.0	$1.01 \mathrm{E}-20$	0.320
292.0	$5.80 \mathrm{E}-21$	0.250
297.0	$1.12 \mathrm{E}-20$	0.210
302.0	$1.24 \mathrm{E}-20$	0.200
307.0	$2.90 \mathrm{E}-20$	0.210
312.0	$8.70 \mathrm{E}-21$	0.260
317.0	$6.15 \mathrm{E}-20$	0.330
322.0	$9.00 \mathrm{E}-21$	0.430
327.0	$5.67 \mathrm{E}-20$	0.550
332.0	$6.60 \mathrm{E}-21$	0.610
337.0	$3.10 \mathrm{E}-21$	0.620
342.0	$3.30 \mathrm{E}-21$	0.570
347.0	$0.00 \mathrm{E}+00$	0.470
352.0	$6.00 \mathrm{E}-22$	0.330
357.0	$8.00 \mathrm{E}-22$	0.160

283.0	$5.80 \mathrm{E}-21$	0.380		284.0	$2.78 \mathrm{E}-20$
0.370					
288.0	$2.23 \mathrm{E}-20$	0.300	289.0	$3.20 \mathrm{E}-20$	0.290
293.0	$1.81 \mathrm{E}-20$	0.240	294.0	$5.45 \mathrm{E}-20$	0.240
298.0	$4.46 \mathrm{E}-20$	0.210	299.0	$2.53 \mathrm{E}-20$	0.210
303.0	$2.41 \mathrm{E}-20$	0.200	304.0	$7.36 \mathrm{E}-20$	0.200
308.0	$1.33 \mathrm{E}-20$	0.220	309.0	$2.78 \mathrm{E}-20$	0.230
313.0	$1.15 \mathrm{E}-20$	0.270	314.0	$5.07 \mathrm{E}-20$	0.280
318.0	$3.62 \mathrm{E}-20$	0.350	319.0	$1.18 \mathrm{E}-20$	0.370
323.0	$2.10 \mathrm{E}-21$	0.460	324.0	$6.00 \mathrm{E}-21$	0.490
328.0	$3.14 \mathrm{E}-20$	0.570	329.0	$1.06 \mathrm{E}-20$	0.580
333.0	$2.20 \mathrm{E}-21$	0.620	334.0	$1.00 \mathrm{E}-21$	0.620
338.0	$1.09 \mathrm{E}-20$	0.610	339.0	$4.71 \mathrm{E}-20$	0.610
343.0	$2.09 \mathrm{E}-20$	0.560	344.0	$1.45 \mathrm{E}-20$	0.540
348.0	$5.00 \mathrm{E}-22$	0.450	349.0	$2.00 \mathrm{E}-22$	0.420
353.0	$1.57 \mathrm{E}-20$	0.300	354.0	$2.35 \mathrm{E}-20$	0.260
358.0	$2.00 \mathrm{E}-22$	0.130	359.0	$0.00 \mathrm{E}+00$	0.100

Photolysis File $=$ ALD2RCB

280.0	$4.50 \mathrm{E}-20$	0.580	281.0	$4.54 \mathrm{E}-20$	0.575	282.0	$4.58 \mathrm{E}-20$	0.570	283.0	4.62E-20	0.565	284.0	$4.66 \mathrm{E}-20$	0.560
285.0	$4.70 \mathrm{E}-20$	0.555	286.0	$4.74 \mathrm{E}-20$	0.550	287.0	$4.78 \mathrm{E}-20$	0.545	288.0	4.82E-20	0.540	289.0	$4.86 \mathrm{E}-20$	0.535
290.0	$4.90 \mathrm{E}-20$	0.530	291.0	4.82E-20	0.520	292.0	$4.74 \mathrm{E}-20$	0.510	293.0	$4.66 \mathrm{E}-20$	0.500	294.0	$4.58 \mathrm{E}-20$	0.490
295.0	$4.50 \mathrm{E}-20$	0.480	296.0	$4.46 \mathrm{E}-20$	0.470	297.0	$4.42 \mathrm{E}-20$	0.460	298.0	4.38E-20	0.450	299.0	$4.34 \mathrm{E}-20$	0.440
300.0	$4.30 \mathrm{E}-20$	0.430	301.0	$4.12 \mathrm{E}-20$	0.418	302.0	$3.94 \mathrm{E}-20$	0.406	303.0	$3.76 \mathrm{E}-20$	0.394	304.0	$3.58 \mathrm{E}-20$	0.382
305.0	$3.40 \mathrm{E}-20$	0.370	306.0	$3.27 \mathrm{E}-20$	0.350	307.0	$3.14 \mathrm{E}-20$	0.330	308.0	$3.01 \mathrm{E}-20$	0.310	309.0	$2.88 \mathrm{E}-20$	0.290
310.0	$2.75 \mathrm{E}-20$	0.270	311.0	$2.62 \mathrm{E}-20$	0.250	312.0	$2.49 \mathrm{E}-20$	0.230	313.0	$2.36 \mathrm{E}-20$	0.210	314.0	$2.23 \mathrm{E}-20$	0.190
315.0	$2.10 \mathrm{E}-20$	0.170	316.0	$2.04 \mathrm{E}-20$	0.156	317.0	$1.98 \mathrm{E}-20$	0.142	318.0	1.92E-20	0.128	319.0	$1.86 \mathrm{E}-20$	0.114
320.0	$1.80 \mathrm{E}-20$	0.100	321.0	$1.66 \mathrm{E}-20$	0.088	322.0	$1.52 \mathrm{E}-20$	0.076	323.0	1.38E-20	0.064	324.0	$1.24 \mathrm{E}-20$	0.052
325.0	$1.10 \mathrm{E}-20$	0.040	326.0	$1.18 \mathrm{E}-20$	0.032	327.0	9.36E-21	0.024	328.0	8.54E-21	0.016	329.0	7.72E-21	0.008

for this specific set of experiments as indicated in Appendix A. Where possible, the parameters were derived based on analysis of results of characterization experiments carried out in conjunction with these runs. In cases where no data are available for this specific chamber, the parameters used by Carter and Lurmann (1991) for model simulations of runs carried out in the SAPRC ITC chamber were used. The SAPRC ITC is similar in construction to the SAPRC ETC used for this study; both are indoor chambers consisting of $2-m i l$ thick FEP Teflon reaction bags with blacklight light source. The specific chamber-dependent parameters used in chamber model simulations for this study, and their derivations are discussed in Appendix A, and included in the reaction listings for the base case mechanisms in Table 2 and 6 . The same chamber model was used for both base case mechanisms.

RESULTS AND DISCUSSION

Experimental Results

A total of 4 mini-surrogate $-\mathrm{NO}_{x}$ experiments with added isoprene were carried out, each alternating with a standard (or "base case") mini-surrogate $-\mathrm{NO}_{x}$ experiment which did not have the added isoprene. In addition, since the experiments were carried out in conjunction with similar runs with other VOCs, the relevant base case runs conducted before and after those carried out for this program are also included in the data analysis. This provides the most comprehensive available baseline against which to compare the effects of the added isoprene.

Typical results are shown in Figures 1 and 2. Figure 1 gives concentra-tion-time profiles of species measured during a representative standard run, along with results of model simulations using the adjusted SAPRC-91 discussed in the previous section. Note that the standard run does not form an ozone maximum, since ozone is continuing to form at the end of the experiments. This is characteristic of "maximum reactivity" conditions, where the addition of vocs has the greatest effect on ozone formation (Carter, 1991). The results of the other standard runs are similar, though there is some variation from run to run because of run to run variations of temperature and (to a lesser extent) other reaction conditions. These variations, and the methods used to take them into account when deriving the measured incremental reactivities, are discussed in Appendix A.

Figure 2 shows concentration-time profiles for selected species measured during a selected added isoprene run, along with profiles for the same species (except for isoprene) measured during the standard run immediately preceding it. The added isoprene can be seen to cause an increase in the rate of NO consumption and the amount of ozone formed during the experiment, and also causes a slight but measurable increase in the rate of m-xylene consumption, relative to the standard run. The results of the other added isoprene experiments are similar.

Table 8 gives a summary of the results of all the added isoprene runs and of the standard runs conducted during the same period, with the runs listed in chronological order. The table gives the average temperatures, the initial reactant concentrations, the $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)(i . e .$, ozone formed +NO oxidized) results at 2,4 , and 6 hours, the final IntOH results derived as discussed in the previous sections, and the ratio of the final $d\left(O_{3}-N O\right)$ to the final IntOH (designated ConvR on the table, following the terminology in Appendix A).

Figure 1. Concentration-time profiles of species measured during the representative Set 3 standard run ETC-292. Results of model calculations using the adjusted SAPRC-91 mechanism are also shown.

Figure 2. Concentration-time profiles of selected species measured during a selected added isoprene run and during the standard run immediately preceding it.

Table 8. Conditions and Selected Results of the Mini-Surrogate Runs used for Isoprene Reactivity Assessment

Run	Added (ppm)	Avg. T (K)	Initial Conc (ppb)					$\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right) \quad(\mathrm{ppb})$			$\frac{\text { IntOH }}{(\text { ppt-min) }}$	$\frac{\text { ConvR [a] }}{\left(10^{3} \mathrm{~min}^{-1}\right)}$
			NO	NO2	$\mathrm{n}-\mathrm{C}_{6}$	Ethe.	m-Xyl	$t=2$	$\mathrm{t}=4$	$\mathrm{t}=6$		
270	----	301.2	382	105	384	681	96.1	163	442	762	$22.8 \pm 8 \%$	33.5
271	0.157	300.1	377	115	387	674	99.4	303	788	1207	$28.6 \pm 7 \%$	42.3
272		301.2	376	119	394	665	103.4	163	458	787	$23.8 \pm 8 \%$	33.0
273	0.139	301.7	389	108	376	653	103.9	334	840	1262	$30.3 \pm 8 \%$	41.7
274	----	302.3	397	112	381	659	103.3	159	479	839	$23.2 \pm 8 \%$	36.2
275	0.109	302.2	392	114	363	647	98.0	297	765	1217	$30.8 \pm 8 \%$	39.6
276		302.3	382	113	365	648	98.9	163	468	819	$25.6 \pm 7 \%$	32.0
277	0.076	303.1	390	113	364	645	98.8	268	701	1167	$29.9 \pm 6 \%$	39.0
278		302.8	394	119	364	635	98.9	153	456	826	$23.3 \pm 8 \%$	35.4

[a] ConvR is the ratio of the 6 -hour $d\left(O_{3}-N O\right)$ to the 6 -hour IntoH. It is assumed to have the same relative uncertainty as the IntOH.

The details of the reactivity analyses of each of the added isoprene runs are given on Tables 9-11. Tables 9 and 10 give the results for $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ and IntOH reactivities, respectively, and the data used to derive them. Specifically, for each added isoprene run, these tables give:

- the amount of isoprene added and (for Table 9) its estimated uncertainty;
- the amount of isoprene reacted at each hour of the run and its estimated uncertainty;
- the hourly $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ or IntOH results from the added isoprene run, and (for IntOH) the measurement uncertainties;
- the hourly $d\left(O_{3}-N O\right)$ or $I n t O H$ predicted, using a linear least squares regression analysis of the base case results against temperature, etc., to occur in a base case run carried out under the conditions of the added isoprene run, and the uncertainty of the prediction of the regression;
- the change in hourly $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ or IntOH attributed to the addition of the isoprene, i.e., the difference between the hourly $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ or IntOH for the added isoprene run and the corresponding predicted for the base case run, and the estimated uncertainty;
- the hourly $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ or IntOH incremental reactivities, calculated by dividing the change in hourly $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ or IntOH attributed to the added isoprene by the amount of isoprene added, and their uncertainties; and
- the hourly $d\left(O_{3}-N O\right)$ or $I n t O H$ mechanistic reactivities, calculated by dividing the change in hourly $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ or IntOH attributed to the addition of the isoprene by the amount of isoprene reacted, and their uncertainties.

Table 11 gives the results for the direct incremental and direct mechanistic (ConvF) reactivities and the data used to derive them. In addition to the amounts of isoprene added and reacted, it gives:

- the final IntOH for the added isoprene run, which is used in Equation (V) to calculate, $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {base }} \mathrm{ROG}^{(t e s t)}$, and its measurement uncertainty;
- the $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {base }} / \mathrm{IntOH}^{\text {base }}$ ratio estimated, using a linear least squares regression analysis of this ratio for the base case runs, to correspond to the conditions of the added isoprene experiment, and its estimated uncertainty from the regression;
- the $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {base }} \mathrm{ROG}^{(t e s t)}$ value estimated using the above two quantities and Equation (V), and its uncertainty;
- the final $d\left(O_{3}-N O\right)^{\text {test }}$ of the added isoprene run;
- the direct incremental reactivity, calculated as indicated on footnote [c] to the table; and
- the ConvF reactivity, calculated from the quantities on the table using Equation (VIII), and its estimated uncertainty.

Table 9. Derivation of Isoprene Reactivities with Respect to Hourly Ozone Formation and NO Oxidation.

Run	Added (ppm)	$\begin{aligned} & \text { Time } \\ & \text { (hr) } \end{aligned}$	Reacted [a]		$\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right) \quad(\mathrm{ppm})$			Reactivity (mol/mol)		
			(ppm)	Deriv.	Test	Base Fit	Change	Incre	ental	Mechanistic
277	$\begin{array}{r} 0.076 \\ \pm 0.002 \end{array}$	1	0.016 ± 0.002	D (d2)	0.079	0.043 ± 0.008	0.036 ± 0.012	0.48	$\pm 32 \%$	$2.23 \pm 34 \%$
		2	0.043 ± 0.002	D (d2)	0.268	0.163 ± 0.016	0.105 ± 0.023	1.38	$\pm 22 \%$	$2.46 \pm 22 \%$
		3	0.058 ± 0.002	D (d2)	0.476	0.320 ± 0.023	0.156 ± 0.033	2.1	$\pm 21 \%$	$2.68 \pm 21 \%$
		4	0.075 ± 0.002	D (d2)	0.701	0.471 ± 0.034	0.230 ± 0.048	3.0	$\pm 21 \%$	$3.06 \pm 21 \%$
		5	0.075 ± 0.002	D (d2)	0.944	0.639 ± 0.039	0.305 ± 0.055	4.0	$\pm 18 \%$	$4.05 \pm 18 \%$
		6	0.075 ± 0.002	D (d2)	1.167	0.829 ± 0.047	0.338 ± 0.067	4.4	$\pm 20 \%$	$4.48 \pm 20 \%$
275	$\begin{array}{r} 0.108 \\ \pm 0.002 \end{array}$	1	0.028 ± 0.003	D (d2)	0.097	0.041 ± 0.008	0.056 ± 0.012	0.52	$\pm 21 \%$	$2.02 \pm 23 \%$
		2	0.064 ± 0.002	D (d2)	0.297	0.153 ± 0.016	0.144 ± 0.023	1.33	$\pm 16 \%$	$2.24 \pm 16 \%$
		3	0.086 ± 0.002	D (d2)	0.523	0.301 ± 0.023	0.222 ± 0.033	2.0	$\pm 15 \%$	$2.58 \pm 15 \%$
		4	0.108 ± 0.002	D (d2)	0.765	0.446 ± 0.034	0.319 ± 0.048	2.9	$\pm 15 \%$	$2.97 \pm 15 \%$
		5	0.108 ± 0.002	D (d2)	1.010	0.601 ± 0.038	0.409 ± 0.054	3.8	$\pm 13 \%$	$3.80 \pm 13 \%$
		6	0.108 ± 0.002	D (d2)	1.217	0.776 ± 0.047	0.441 ± 0.066	4.1	$\pm 15 \%$	$4.10 \pm 15 \%$
273	$\begin{array}{r} 0.139 \\ \pm 0.004 \end{array}$	1	0.035 ± 0.006	D (d2)	0.103	0.039 ± 0.008	0.064 ± 0.012	0.46	$\pm 18 \%$	$1.83 \pm 24 \%$
		2	0.084 ± 0.005	D (d2)	0.334	0.151 ± 0.016	0.183 ± 0.022	1.31	$\pm 13 \%$	$2.16 \pm 14 \%$
		3	0.111 ± 0.005	D (d2)	0.580	0.297 ± 0.023	0.283 ± 0.032	2.0	$\pm 12 \%$	$2.54 \pm 12 \%$
		4	0.138 ± 0.004	D (d2)	0.840	0.441 ± 0.033	0.399 ± 0.047	2.9	$\pm 12 \%$	$2.89 \pm 12 \%$
		5	0.138 ± 0.004	D (d2)	1.076	0.592 ± 0.038	0.484 ± 0.054	3.5	$\pm 12 \%$	$3.50 \pm 12 \%$
		6	0.138 ± 0.004	D (d2)	1.262	0.762 ± 0.047	0.500 ± 0.066	3.6	$\pm 14 \%$	$3.62 \pm 14 \%$
271	$\begin{array}{r} 0.157 \\ \pm 0.007 \end{array}$	1	0.039 ± 0.009	D (d2)	0.101	0.036 ± 0.008	0.065 ± 0.012	0.42	$\pm 18 \%$	$1.66 \pm 29 \%$
		2	0.091 ± 0.008	D (d2)	0.303	0.133 ± 0.016	0.170 ± 0.022	1.09	$\pm 14 \%$	$1.87 \pm 16 \%$
		3	0.123 ± 0.007	D (d2)	0.540	0.261 ± 0.023	0.279 ± 0.032	1.78	$\pm 12 \%$	$2.27 \pm 13 \%$
		4	0.139 ± 0.007	D (d2)	0.788	0.391 ± 0.033	0.397 ± 0.047	2.5	$\pm 13 \%$	$2.85 \pm 13 \%$
		5	0.147 ± 0.007	D (d2)	1.021	0.519 ± 0.038	0.502 ± 0.054	3.2	$\pm 12 \%$	$3.41 \pm 12 \%$
		6	0.150 ± 0.007	D (d2)	1.207	0.661 ± 0.047	0.546 ± 0.066	3.5	$\pm 13 \%$	$3.63 \pm 13 \%$

[a] Codes for methods for deriving amounts reacted are as follows: "IntOH" = derived using IntOH and the OH radical rate constant for the VOC; "D(tn)" or "D(dn)" = amounts reacted determined directly from the measured data for the VOC, where the data was smoothed by fitting to linear ($n=2$) or quadratic ($n=3$) functions of time " (tn)" or d(O3-NO) " (dn)".

Table 10. Derivation of Reactivities with Respect to Hourly Integrated OH Radical Levels for All Test VOC Experiments.

Run	Added (ppm)	Time (hr)	Reacted (ppm)	Intoh (ppt-min)			Reactivity (ppt-min/ppm)		
				Test Run	Base Fit	Change		Incremental	Mechanistic
277	0.076	1	0.016 ± 0.002	1.0 ± 0.8	1.3 ± 0.6	-0.2 ± 1.0	(-3. \pm 13.)	(-14. ± 63.
		2	0.043 ± 0.002	3.7 ± 0.9	4.4 ± 0.9	-0.7 ± 1.3	(-9. \pm 17.)	(-16. \pm 30.)
		3	0.058 ± 0.002	7.9 ± 1.2	8.6 ± 1.2	-0.7 ± 1.6	1	-9. ± 21.	(-12. ± 28.
		4	0.075 ± 0.002	13.7 ± 1.4	13.1 ± 1.4	0.6 ± 2.0	(8. \pm 26.)	(8. ± 26.
		5	0.075 ± 0.002	21.0 ± 1.6	18.5 ± 1.6	2.6 ± 2.2		34. $\pm 87 \%$	34. $\pm 87 \%$
		6	0.075 ± 0.002	30.0 ± 1.9	24.8 ± 1.9	5.1 ± 2.7		67. $\pm 53 \%$	68. $\pm 53 \%$
275	0.108	1	0.028 ± 0.003	0.2 ± 2.3	1.2 ± 0.6	-1.0 ± 2.3	1	-9. \pm 21.)	(-36. ± 84.
		2	0.064 ± 0.002	2.0 ± 2.4	4.1 ± 0.9	-2.1 ± 2.6	(-19. ± 24.	(-33. ± 41.
		3	0.086 ± 0.002	5.9 ± 2.6	8.1 ± 1.1	-2.1 ± 2.9	$($	-20. \pm 26.)	(-25. ± 33.
		4	0.108 ± 0.002	12.4 ± 2.7	12.4 ± 1.4	0.0 ± 3.0	(-0.07 ± 28.	(0. ± 28.
		5	0.108 ± 0.002	21.4 ± 2.6	17.4 ± 1.6	4.0 ± 3.0		$36 . \pm 76 \%$	$37 . \pm 76 \%$
		6	0.108 ± 0.002	30.8 ± 2.6	23.3 ± 1.9	7.4 ± 3.2		68. $\pm 43 \%$	$69 . \pm 43 \%$
273	0.139	1	0.035 ± 0.006	1.3 ± 2.1	1.3 ± 0.6	0.0 ± 2.2		0.2 2 15.)	(1. \quad 62.)
		2	0.084 ± 0.005	4.1 ± 2.2	4.2 ± 0.9	-0.1 ± 2.4	(-0.4 ± 17.	(-1. ± 29.
		3	0.111 ± 0.005	8.4 ± 2.3	8.1 ± 1.1	0.3 ± 2.6	(2. \pm 19.)	(3. ± 23.
		4	0.138 ± 0.004	14.2 ± 2.4	12.4 ± 1.4	1.9 ± 2.7	(13. \pm 20.)	(13. ± 20.
		5	0.138 ± 0.004	21.5 ± 2.3	17.3 ± 1.6	4.2 ± 2.8		30. $\pm 66 \%$	$30 . \pm 66 \%$
		6	0.138 ± 0.004	30.3 ± 2.3	23.1 ± 1.9	7.2 ± 3.0		52. $\pm 42 \%$	52. $\pm 42 \%$
271	0.157	1	0.039 ± 0.009	1.3 ± 1.5	1.0 ± 0.6	0.3 ± 1.6		2. \pm 10.)	(7. ± 40.
		2	0.091 ± 0.008	4.0 ± 1.6	3.5 ± 0.9	0.5 ± 1.8	(3. \pm 12.)	(5. ± 20.
		3	0.123 ± 0.007	8.1 ± 1.6	7.0 ± 1.2	1.1 ± 2.0	(7. \pm 13.)	(9. ± 16.
		4	0.139 ± 0.007	13.6 ± 1.7	11.0 ± 1.4	2.6 ± 2.2		$16.4 \pm 84 \%$	18. $\pm 84 \%$
		5	0.147 ± 0.007	20.4 ± 1.6	15.3 ± 1.6	5.0 ± 2.3		32. $\pm 45 \%$	34. $\pm 45 \%$
		6	0.150 ± 0.007	28.6 ± 1.9	20.4 ± 1.9	8.1 ± 2.7		52. $\pm 33 \%$	54. $\pm 34 \%$

Table 11. Derivation of Conversion Factors for the Isoprene Experiments.

Run	Added (ppm)	$\begin{aligned} & \text { Reacted } \\ & (\mathrm{ppm}) \end{aligned}$	$\begin{aligned} & \text { IntOH } \\ & \text { (ppt-min) } \end{aligned}$	Base ROG ConvR [a] ($10^{3} \mathrm{~min}-1$)	$\begin{array}{ll} \quad \mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right) & (\mathrm{ppm}) \\ \text { Total } \\ & \text { From } \\ & \begin{array}{l} \text { Base ROG } \\ \\ {[\mathrm{b}]} \end{array} \end{array}$		-Direct d($\left.\mathrm{O}_{3}-\mathrm{NO}\right)$ Incremental ($\mathrm{mol} / \mathrm{mol}$) [c]		ReactivityMechanistic (ConvF)
277	0.076	$0.075 \pm 2 \%$	30.0 ± 1.9	33.2 ± 3.0	1.167	0.993 ± 0.110	2.3	$\pm 63 \%$	$2.3 \pm 63 \%$
275	0.108	0.108土 2\%	30.8 ± 2.6	33.2 ± 3.0	1.217	1.021 ± 0.126	1.81	$\pm 64 \%$	$1.8 \pm 64 \%$
273	0.139	$0.138 \pm 3 \%$	30.3 ± 2.3	33.1 ± 3.0	1.262	1.004 ± 0.119	1.85	$\pm 46 \%$	$1.9 \pm 46 \%$
271	0.157	$0.150 \pm 5 \%$	28.6 ± 1.9	32.9 ± 3.0	1.207	0.941 ± 0.106	1.70	$\pm 40 \%$	$1.8 \pm 40 \%$

[a] Conversion ratio from base case runs for the conditions of this experiment.
[b] Estimated from ConvR ${ }^{\text {base }} \mathrm{x}$ IntOH ${ }^{\text {test }}$ as discussed in the text.
$[c] \quad \operatorname{IR}\left[d\left(\mathrm{O}_{3}-\mathrm{NO}\right)\right]^{\mathrm{direct}^{d i n}}=\left[\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {test }}-\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {from base ROG }}\right] /[\mathrm{VOC}]_{0}$.

The details of how the quantities on Tables 9-11 are derived, and the methods used to estimate their uncertainties, are discussed in Appendix A.

Representative plots of the mechanistic reactivity results are given in Figures $3-5$. The two-hour and final $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ incremental reactivities and the final IntOH and direct incremental reactivities are plotted against amounts of isoprene added in Figure 3, and figures 4 and 5 show plots of the hourly $d\left(O_{3}-\right.$ NO), IntOH and direct mechanistic reactivities against time for each of the added isoprene runs. Results of model calculations using the SAPRC-91 mechanism (see above) are also shown.

A summary of the incremental and mechanistic reactivity results for isoprene is given on Table 12, where they can be compared with similar results for other selected VOCs. (A complete tabulation of comparable results of all VOCs studied using this approach is given in Appendix A.) It can be seen that isoprene is like the other alkenes studied in that it has a positive effect on NO oxidation, ozone formation and on OH radical levels, but that isoprene has a higher conversion factor than the other alkenes. Isoprene and the other alkenes differ from the alkanes in that they have positive effects on radical levels, yet the alkenes have smaller effects on radical levels than the alkylbenzenes. Isoprene has a comparable effect on radical levels as ethene and isobutene, and a smaller effect on radicals than trans-2-butene. However, because of its higher conversion factor (greater amounts of $N O$ oxidized and ozone formed from the direct reactions of isoprene and its products) relative to the other alkenes, isoprene has a higher 6 -hour $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ reactivity than does ethene or isobutene, and has almost as high a $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ reactivity as trans-2-butene.

Results of Model Calculations

The results of the model simulations of the isoprene reactivity measurements are shown on Figures 3-5, where they can be compared with the experimental data. As discussed above, model simulations were carried out using three

Figure 3. Plots of representative mechanistic reactivity results for isoprene against amounts of isoprene added.
isoprene mechanisms: the SAPRC-90 mechanism as documented by Carter (1990), the Carbon Bond IV isoprene mechanism (Gery et al., 1988), and a preliminary detailed isoprene mechanism we are developing for another program. The following results can be noted:

The SAPRC-90 isoprene mechanism predicts that the IntOH (i.e., the indirect) reactivities decline slightly with time, in contrast with the experimental results, where this increases with time. In particular, the IntOH reactivities are overpredicted early in the run, but are reasonably well predicted by the end of the run. The SAPRC-90 isoprene mechanism also systematically underpredicts the direct reactivities at all times in the runs. Since the $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ reactivities are the sum of the indirect (IntOH) and direct reactivi-

Figure 4. Plots of $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ and IntOH mechanistic reactivity results against time measured in the added isoprene runs ETC-277 and ETC-275.

Figure 5. Plots of $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ and IntOH mechanistic reactivity results against time measured in the added isoprene runs ETC-271 and ETC-273.

Table 12. Summary of Reactivity Results For Isoprene and Other Selected Vocs. (Quantities in parentheses are uncertainty estimates.)

[a] IntOH reactivities are expressed in terms of moles NO oxidized and ozone formed resulting from the change in IntOH caused by the addition of the VOC. The change in NO oxidized + ozone formed resulting from a given change in IntOH is estimated from the ratio $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)^{\text {base }} /$ Int $\mathrm{OH}^{\text {base }}$.
ties, these two factors together results in the $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ reactivities being overpredicted early in the run, and being underpredicted by the end of the run.

The Carbon Bond isoprene mechanism consistently overpredicts the IntOH reactivities throughout the runs, but also tends to underpredict the direct reactivities. However, it has less of a tendency to underpredict the direct reactivity early in the run. Because of these two factors, this mechanism significantly overpredicts the $d\left(O_{3}-N O\right)$ reactivity early in the run, but by the end of the run the errors in the indirect (i.e., IntOH) and direct reactivity predictions tend to cancel out, and the mechanism only slightly overpredicts the final $d\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ reactivities.

The detailed isoprene mechanism performs significantly better than the other two mechanisms in the simulations of the effects of isoprene on radical levels, fitting the IntOH reactivities to within the experimental uncertainties throughout all four runs. However, it has a tendency to overpredict the initial IntoH reactivities and underpredict the final values, though to a far lesser extent than is the case for the SAPRC-90 mechanism. More significantly, the detailed mechanism performs no better than the SAPRC-90 mechanism, and slightly worse than the Carbon Bond mechanism, in fitting the direct reactivities, underpredicting them throughout the runs, except perhaps at the beginning of the runs. These factors result in the detailed mechanism simulating the $d\left(O_{3}-N O\right)$ reactivities reasonably well initially, but significantly underpredicting them at the end of the run.

Thus, none of the three isoprene mechanisms we have considered are completely consistent with these data. The Carbon Bond mechanism appears to perform the best in simulating the effects of isoprene on the final ozone yield at the end of the run, but this is because of compensating errors in the predictions of direct and indirect reactivity. The SAPRC-90 mechanism, which represents isoprene in a manner similar to the RADM-II mechanism, is even less satisfactory than the Carbon Bond version, since it's errors in the direct and indirect components do not tend to compensate. The detailed mechanism is perhaps the least unsatisfactory, since at least it predicts, to within the experimental uncertainty, the effect of isorpene's reactions on OH radical levels. However, it is no better than the other mechanisms in predicting the relatively high direct reactivities of isoprene. As shown on Table 12, these data show that isoprene has a relatively high direct reactivity compared to the other alkenes, and none of the present mechanisms, even the most detailed, adequately explain this observation.

CONCLUSIONS

This study was successful in its objective of providing data concerning the amount of additional ozone formation resulting when isoprene is added to the emissions in already polluted atmospheres under conditions where ozone formation is most sensitive to VoCs. Information was also obtained concerning how much of that additional ozone was directly due to the reactions of isoprene and its products, and how much was due to the effect of the added isoprene on the amount of ozone formed from the reactions of the other VOCs which were present. Under the conditions of these experiments, isoprene was found to form approximately four molecules of ozone for each molecule of isoprene emitted and reacting in six hours, with approximately half of these being due directly to the reactions of isoprene and its reaction products, and the other half being due to the fact that the reactions of isoprene cause increased $O H$ radical levels, resulting in more of the other VOCs present reacting to form ozone.

These experiments were carried out in conjunction with a much larger study where similar data was obtained concerning other VOCs, allowing the reactivity characteristics of isoprene to be compared with those for other VOCs. Isoprene is like the other alkenes in having positive effects on radical levels, giving it relatively high ozone reactivities under conditions where ozone is sensitive to VOCs, especially when compared to alkanes and other types of VoCs which have low mechanistic reactivities because their reactions suppress radical levels. The effect of isoprene on radical levels is comparable to ethene, propene (see Appendix A), and isobutene, and approximately half that of trans-2-butene. Thus, it is similar to other terminal alkenes in that respect. However, the direct reactivity of isoprene, i.e., the amount of NO oxidized and ozone formed directly from the reactions of isoprene and its products, is significantly higher than observed for the other alkenes studied. This results in isoprene having a comparable total reactivity under the conditions of these experiments to trans-2butene, despite isoprene's lower reactivity relative to effects on radical levels. Thus, isoprene clearly has different reactivity characteristics from the other alkenes, at least in some respects.

The ultimate practical benefit of these data will come when the chemical mechanisms used in the airshed models are updated to take these results into account. These data were found to be inconsistent in a number of respects with predictions of the two isoprene mechanisms which represent the current state of the art for the airshed models which are presently in use. Perhaps the most widely used mechanism is Carbon Bond IV, which is implemented in the Urban Airshed Model (UAM) and the EPA's Regional Oxidant Model (ROM). Although this
mechanism was found to give the best prediction of the three studied on the effects of isoprene on the 6-hour ozone in these experiments, this was found to be due to compensation of errors, since this mechanism underpredicted isoprene's direct reactivity and overpredicted its effect on radical levels. The SAPRC-90 isoprene mechanism, which is being implemented into a version of the UAM (Lurmann et al, 1991), and is very similar to the isoprene used in the RADM-II model (Carter and Lurmann, 1990; Stockwell et al., 1990), is even less satisfactory than the Carbon Bond version, significantly underpredicting both the direct and the overall reactivity of isoprene. Thus, the isoprene mechanisms in the currently used models clearly need to be updated.

Although the relatively poor performance of the Carbon Bond IV and SAPRC-90 isoprene mechanisms in simulating these data is of obvious concern to the users of the models incorporating them, it is perhaps not surprising given the approximations in these condensed mechanisms. Of greater concern from a standpoint of developing improved isoprene mechanisms for future models is the performance of a preliminary detailed isoprene mechanism we are in the process of developing. Although this detailed mechanism employs relatively few condensations, and attempts to explicitly represent the reactions of isoprene's major primary and secondary products, and although it simulates the available isopreneNO_{x} and isoprene produce $-\mathrm{NO}_{\mathrm{x}}$ chamber experiments significantly better than the other mechanisms we have tested, it was also found to be not completely consistent with the results of these reactivity experiments. In particular, although it - unlike the more condensed mechanisms - can simulate the effect of isoprene on radical levels within the uncertainty of the experimental measurements, it does not successfully simulate the relatively high direct reactivity observed for isoprene. Since this discrepancy in this mechanism's predictions of incremental reactivity tend to increase with reaction time, we suspect that this is likely due to problems with the representation of isoprene's major reactive products. However, this is still under investigation. The only definitive conclusion we can draw at the present time is that our current and most detailed theories about how isoprene reacts in the atmosphere cannot explain the isoprene reactivity data. More work in this area is clearly needed.

It is also important to recognize that this study does not provide all the data needed to adequately evaluate the reactivities of biogenic VOC emissions. In the first place, isoprene is not the only biogenic compound emitted in significant quantities, and comparable experiments are needed to test the mechanisms for the monoterpenes, which are even more uncertain. In addition, the present experiments are suitable only for testing the effects of isoprene on ozone formation under the relatively high NO_{x} conditions where VoCs have their greatest effects on ozone formation. While this is obviously important, it is also important that the ability of the mechanisms to predict reactivity be tested under conditions where NO_{x} is more limited. This is particularly true for
biogenic VOCs, since their emissions tend to dominate in remote locations where NO_{x} is depleted or absent. Although the existing body of isoprene - NO_{x} - air experiments can provide useful data in this regard, experiments with the compound reacting in the absence of other VOCs do not always give a complete indication of the effect of a compound on ozone formation in an environment containing other reacting organic pollutants, as is usually the case in ambient atmospheres.

REFERENCES

Carter, W. P. L. and R. Atkinson (1987): "An Experimental Study of Incremental Hydrocarbon Reactivity," Environ. Sci. Technol., 21, 670-679

Carter, W. P. L. and R. Atkinson (1989): "A Computer Modeling Study of Incremental Hydrocarbon Reactivity", Environ. Sci. and Technol., 23, 864.

Carter, W. P. L. (1990): "A Detailed Mechanism for the Gas-Phase Atmospheric Reactions of Organic Compounds," Atm. Environ., 24A, 481-518.

Carter, W. P. L., and F. W. Lurmann (1990): "Evaluation of the RADM Gas-Phase Chemical Mechanism," Final Report, EPA-600/3-90-001.

Carter, W. P. L. (1991): "Development of Ozone Reactivity Scales for Volatile Organic Compounds", EPA-600/3-91/050, August.

Carter, W. P. L. and F. W. Lurmann (1991): "Evaluation of a Detailed Gas-Phase Atmospheric Reaction Mechanism using Environmental Chamber Data," Atm. Environ. 25A, 2771-2806.

Chang, T. Y. and S. J. Rudy (1990): "Ozone-Forming Potential of Organic Emissions from Alternative-Fueled Vehicles," Atmos. Environ., 24A, 2421-2430.

Dodge, M. C. (1984): "Combined Effects of Organic Reactivity and NMHC/NO Ratio on Photochemical Oxidant Formation -- A Modeling Study," Atmos. Environ., 18, 1657.

Dodge, M.C. (1990): "A Comparison of Three Photochemical Reaction Mechanisms," J. Geophys. Res. 94, 5121-5136.

Gery, M. W., G. Z. Whitten, and J. P. Killus (1988): "Development and Testing of the CBM-IV For Urban and Regional Modeling,", EPA-600/ 3-88-012, January.

Jeffries H. E., K. G. Sexton, J. R. Arnold, and T. L. Kale (1989): "Validation Testing of New Mechanisms with Outdoor Chamber Data. Volume 2: Analysis of VOC Data for the CB4 and CAL Photochemical Mechanisms," Final Report, EPA-600/3-89-010b.

Johnson, G. M. (1983): "Factors Affecting Oxidant Formation in Sydney Air," in "The Urban Atmosphere -- Sydney, a Case Study." Eds. J. N. Carras and G. M. Johnson (CSIRO, Melbourne), pp. 393-408.

Paulson, S. E. and J. H. Seinfeld (1992): "Development and Evaluation of a Photooxidation Mechanism for Isoprene," J. Geophys. Res. 97, 20,70320,715.

Lurmann, F. W., M. Gery, and W. P. L. Carter (1991): "Implementation of the 1990 SAPRC Chemical Mechanism in the Urban Airshed Model," Final Report to the South Coast Air Quality Management District, Sonoma Technology, Inc., Report STI-99290-1164-FR, Santa Rosa, California.

Stockwell, W. R., P. Middleton, J. S. Chang, and X. Tang (1990): "The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling," J. Geophys. Res. 95, 16343-16376.

REPORT ENTITLED:

```
"ENVIRONMENTAL CHAMBER STUDIES OF MAXIMUM INCREMENTAL
            REACTIVITIES OF VOLATILE ORGANIC COMPOUNDS"
```

by
William P. L. Carter, John A. Pierce,
Irina L. Malkina, Dongmin Luo, and William D. Long

This report is now finalized and available as a separate volume. The full reference citation is given below. The report is available from the Coordinating Research Council in Atlanta GA, or can be downloaded by anonymous FTP from cert.ucr.edu, directory /pub/carter/pubs, file RCTRPT-1.PDF. (June 1, 1995.)

Carter, W. P. L., J. A. Pierce, I. L. Malkina, D. Luo and W. D. Long (1993): "Environmental Chamber Studies of Maximum Incremental Reactivities of Volatile Organic Compounds," Report to Coordinating Research Council, Project No. ME-9, California Air Resources Board Contract No. A032-0692; South Coast Air Quality Management District Contract No. C91323, United States Environmental Protection Agency Cooperative Agreement No. CR-814396-01-0, University Corporation for Atmospheric Research Contract No. 59166, and Dow Corning Corporation. April 1.

