EXPERIMENTAL DETERMINATION OF THE REACTIVITY OF ISOPRENE WITH RESPECT TO OZONE FORMATION

Final Report for

UCAR Contract no. 59166

Roger Atkinson and William P. L. Carter Principal Investigators

by

William P. L. Carter John A Pierce Irina L. Malkina Dongmin Luo William D. Long

January 28, 1993

Statewide Air Pollution Research Center University of California Riverside, California 92521-0312

ABSTRACT

A series of environmental chamber experiments were conducted to measure the effects of isoprene on ozone formation, NO oxidation, and OH radical levels in a simplified model photochemical smog system. The experiments consisted of repeated 6-hour irradiations of a simplified mixture of smog precursors, alternating with runs with varying amounts of isoprene added. The experiments were conducted at relatively low ROG/NO, ratios to simulate conditions where VOCs have the greatest effect on ozone formation, and were carried out in conjunction with a larger program where similar data was obtained for 35 other types of VOCs. The amount of ozone formed and NO oxidized per isoprene reacted increased with reaction time, being approximately two molecules of ozone formed and NO oxidized per molecule of isoprene reacted in the first hour, and approximately four molecules in six hours, under the conditions of these experiments. Approximately half of this is estimated to be due directly to the reactions of isoprene and its oxidation products, while the other half is estimated to be due to the fact that isoprene increases the radical levels present in the system, causing additional ozone formation from the other VOCs present. Current atmospheric chemical mechanisms for isoprene, including a preliminary detailed isoprene mechanism, could not correctly simulate the results of these experiments.

PREFACE

The report describes work carried out at the Statewide Air Pollution Research Center (SAPRC) at the University of California at Riverside as a part of the Southern Oxidant Study (SOS). This report is a draft which is being submitted for review. It has has not been approved for release as an SOS project output.

The authors wish to acknowledge Dr. Roger Atkinson of SAPRC for assistance in administering this project and for helpful discussions. We also acknowledge Ms. Kathalema M. Smihula and Mr. Armando D. Avallone of the UCR College of Engineering, Center for Environmental Research and Technology (CE-CERT) for assistance in carrying out the experiments in this study. We thank Dr. Joseph Norbeck, director of CE-CERT, for supporting Ms. Smihula and Mr. Avallone during this period.

The opinions and conclusions in this report are entirely those of the authors. Mention of trade names and commercial products do not constitute endorsement or recommendation for use.

TABLE OF CONTENTS

Page

PREFACE	ii
LIST OF TABLES	iv
LIST OF FIGURES	v
INTRODUCTION	1
EXPERIMENTAL AND DATA ANALYSIS METHODS	3
General Approach	3
Data Analysis Methods	4
MECHANISMS USED IN MODEL SIMULATIONS	8
SAPRC-91 Base Case Mechanism	8
SAPRC-90 Isoprene Mechanism	9
Preliminary Detailed Isoprene Mechanism	9
Carbon Bond Mechanism	20
Chamber Effects Model	20
RESULTS AND DISCUSSION	26
Experimental Results	26
Results of Model Calculations	31
CONCLUSIONS	37
REFERENCES	40

APPENDIX

Α.	REPORT 1	ENTITLED	" ENV	IRONMENTA	L CHAMBE	R STUDIES	OF	MA	XIN	MUN	1 1	INC	RE	ME	N-	
	TAL REA	CTIVITIES	OF	VOLATILE	ORGANIC	COMPOUNDS	".									A-1

LIST OF TABLES

Nui	mbei	<u>r</u>	page
1	•	List of Model Species Used in the SAPRC-91 Mechanism to Simulate the Reactivity of Isoprene	10
2		Listing of SAPRC-91 Mechanism as used to Simulate Results of Isoprene Reactivity Experiments. The SAPRC-90 Mechanism for Isoprene is also Shown	12
3	•	Absorption Cross Sections and Quantum Yields for Photolysis Reactions in the SAPRC-90 Mechanism which are not in the mechanism of Carter (1990)	15
4	•	List of Model Species Added to the SAPRC-91 Mechanism used to Represent the Reactive Products of Isoprene in the Preliminary Detailed Isoprene Mechanism	17
5	•	Listing of Reactions in the Preliminary Detailed Mechanism for Isoprene	18
6	•	Listing of The Carbon Bond IV Mechanism as used to Simulate Results of Isoprene Reactivity Experiments	21
7	•	Absorption Cross Sections and Quantum Yields for Photolysis Reactions in the Carbon Bond IV Mechanism as Used to Simulate the Isoprene Reactivity Experiments	22
8	•	Conditions and Selected Results of the Mini-Surrogate Runs used for Isoprene Reactivity Assessment	28
9	•	Derivation of Isoprene Reactivities with Respect to Hourly Ozone Formation and NO Oxidation	30
1	0.	Derivation of Reactivities with Respect to Hourly Integrated OH Radical Levels for All Test VOC Experiments	30
1	1.	Derivation of Conversion Factors for the Isoprene Experiments	31
1	2.	Summary of Reactivity Results For Isoprene and Other Selected VOCs	35

LIST OF FIGURES

Numbe	<u>r</u>	page
1.	Concentration-time profiles of species measured during the represen- tative Set 3 standard run ETC-292. Results of model calculations using the adjusted SAPRC-91 mechanism are also shown	27
2.	Concentration-time profiles of selected species measured during a selected added isoprene run and during the standard run immediately preceding it	28
3.	Plots of representative mechanistic reactivity results for isoprene against amounts of isoprene added	32
4.	Plots of d(O_3-NO) and IntOH mechanistic reactivity results against time measured in the added isoprene runs ETC-277 and ETC-275	33
5.	Plots of $d(O_3-NO)$ and IntOH mechanistic reactivity results against time measured in the added isoprene runs ETC-271 and ETC-273	34

INTRODUCTION

The formation of ground-level ozone is a serious air pollution problem in many areas of the United States. Ozone is not emitted directly, but is formed from the photochemical interactions of emitted volatile organic compounds (VOCs) and oxides of nitrogen (NO_x) . In order to reduce ground level ozone levels and achieve existing air quality standards, it is necessary to reduce emissions of both of these types of ozone precursors. VOC controls generally reduce the rate at which ozone is formed and thus have the greatest effects on the concentrations of ozone nearer the source areas, while NO_x controls generally reduce the ultimate amount of ozone which can be formed, and thus have the greatest effects on ozone downwind of the source areas. Traditionally ozone control strategies have focused on VOC controls because there are a wide variety of sources of VOCs, and because significant reductions of NO_{\star} emissions have proven to be difficult and expensive. However, VOCs are emitted from biogenic as well as anthropogenic sources, and thus there is a certain component of the VOC emissions inventory which probably can never be completely controlled. Because of this it appears likely that the ground-level ozone pollution problem will not be solved unless significant new NO, controls are also implemented. However, models predict that continued VOC control will have the greatest effect in reducing ozone near most of the urban centers, so VOC control will continue to be an important part of any comprehensive ozone control strategy.

In developing cost-effective VOC control strategies for reduction of ozone formation, it is critical to be able to quantify the effects of the naturally emitted VOCs which will not be controlled. It is also important to recognize that not all VOCs are equal in the amount of ozone formation they cause. The rate of reaction is clearly important, and if this were the only factor, the biogenic VOCs would be judged to be highly reactive. However, VOCs can also differ significantly on their effect on ozone formation even after differences in their rates of reaction are factored out. For example, Carter and Atkinson (1989) calculated that some VOCs can form five or more additional molecules of ozone being formed per molecule of VOC being reacted, while others form less than one molecule, and still others actually cause the amount of ozone formation to be reduced. Although the rates of reaction of most of the biogenic VOCs in the atmosphere have been determined, there presently are no experimental data concerning how much ozone is formed once they do react.

The effect of a VOC on ozone formation can be quantified by its "incremental reactivity". This is defined as the amount of additional ozone formation resulting from the addition of a small amount of the compound to the emissions

1

in the episode, divided by the amount of compound added. The incremental reactivity of a VOC in an actual air pollution episode cannot be measured experimentally, except by making changes in emissions and observing changes in air quality under similar meteorological conditions. However, they can be calculated using computer airshed models if the VOC's atmospheric reaction mechanism is known or can be estimated. (e.g., see Dodge, 1984; Carter and Atkinson, 1989; Chang and Rudy, 1990; Carter, 1991). However, such calculations are no more reliable than the model for the VOCs' atmospheric chemical reactions. Therefore, experimental data are needed to test the ability of chemical mechanisms to reliably predict the incremental reactivities of VOCs of interest.

This report describes the results of a series of experiments to obtain the data needed to test the ability of models to predict the effects of isoprene on ozone formation under atmospheric conditions where VOC emissions have the greatest effect on ozone. Isoprene was chosen for initial study because it is believed to be the most important single emitted biogenic VOC, at least in the southern United States. Although the effects of VOCs on ozone depend significantly on environmental conditions, particularly NO_x levels, the initial experiments concerned the relatively high NO_x conditions because these are the conditions where VOCs have the greatest effect on ozone, and thus are the most relevant to the assessment of effects of VOC controls on ozone (Carter, 1991).

EXPERIMENTAL AND DATA ANALYSIS METHODS

This experimental study of isoprene reactivity was carried out as part of a much larger study of the reactivities of a variety of other VOCs, and the detailed methods of procedure and results are given in Appendix A to this report. This section gives a summary of the overall experimental approach and the methods used for data analysis.

General Approach

The reactivities of isoprene were measured by carrying out a series of repeated 6-hour irradiations of a standard mixture representing photochemical smog precursors in an indoor environmental chamber, alternating with irradiations of the same mixture with varying amounts of isoprene added. The ~3000 liter SAPRC indoor Teflon chamber #2, called the "ETC", was employed. The chamber consists of a flexible FEP Teflon bag held in a framework surrounded by blacklights which were used as the light source. Dry purified air for the experiments was provided by an in-house air purification system. The chamber was flushed with purified air overnight, and then the reactants were injected, mixed, and monitored. The blacklights were then turned on, and the chamber contents were irradiated for six hours. Ozone and NO_x were monitored continuously by commercial continuous analyzers, whose readings, along with the temperature data, were recorded on the data acquisition computer every 15 minutes. Organic reactants were monitored approximately hourly by gas chromatography. After the run the reaction bag chamber was deflated and flushed with pure air to remove the contents and prepare for the next run. Various types of characterization and control runs were also carried out from time to time; these are discussed in Appendix A.

The photochemical smog precursors utilized in the experiments consisted of a ~4.5 ppmC of a "mini-surrogate" reactive organic gas (ROG) mixture containing 35% (as carbon) ethene, 50% n-hexane, and 15% m-xylene, along with ~0.5 ppm of oxides of nitrogen (NO_x) in air. This was designed to represent "maximum reactivity" conditions, i.e., relatively low ROG/NO_x ratios where VOCs have the greatest effects on ozone formation (Carter, 1991). The 3-component minisurrogate was designed to be an experimentally simple representative of the reactive organic compounds emitted into the atmosphere. Although this minisurrogate is a significant oversimplification of the complex mixture of ROGs present in the atmosphere (see, for example, Jeffries et al. 1989), model calculations show that use of this simpler mixture provides a more sensitive measure of mechanistic reactivities than use of more complex mixtures.

The amount of VOCs added in the test experiments were varied, but generally the amount added was determined so that it caused at least a 40%, but less than a factor of 2, change in the sum of amount of NO consumed plus the amount of ozone formed in six hours. In the case of the isoprene experiments, the amount of isoprene ranged from 76 to 157 ppb, causing a 40-80% change in NO consumed and ozone formed.

A total of four experiments with added isoprene were carried out, each alternating with a standard $ROG-NO_x$ -air experiment without the added isoprene. Since a large number of similar experiments were carried out with other VOCs added, this procedure resulted in a large number of replicates of the standard experiments being carried out. As discussed in Appendix A, this large number of standard runs is useful for determining the precision of the incremental reactivity measurements, and for controlling for the effects of run to run variability in the analysis of the effects of the added isoprene. Therefore, the results of all the relevant standard runs, not just those preceding or following the isoprene runs, were used in the analysis.

Data Analysis Methods

The results of the experiments with added isoprene, together with the results of the repeated standard runs, were analyzed to yield three measures of reactivity. The first was the effect of the added isoprene on the amount of NO reacted plus the amount of ozone formed at hourly intervals in the experiment. The amount of NO reacted plus the amount of ozone formed is referred to as $d(O_3-NO)$. As discussed elsewhere (e.g., Johnson, 1983; Carter and Atkinson, 1987; Carter and Lurmann, 1990, 1991) this gives a direct measure of the amount of conversion of NO to NO_2 by peroxy radicals formed in the photooxidation reactions, which is the process that is directly responsible for ozone formation in the atmosphere. The incremental reactivity of the test VOC (e.g., isoprene) relative to $d(O_3-NO)$ at time t, designated $IR[d(O_3-NO)]_{t}^{voc}$, is given by

$$IR[d(0_{3}-NO)]_{t}^{VOC} = \frac{d(0_{3}-NO)_{t}^{test} - d(0_{3}-NO)_{t}^{base}}{[VOC]_{0}}$$
(I)

where $d(O_3-NO)_t^{test}$ is the $d(O_3-NO)$ measured at time t from the experiment where the isoprene was added, $d(O_3-NO)_t^{base}$ is the corresponding value from the "base case" experiments where the isoprene was not present, and $[VOC]_0$ is the initial isoprene concentration in the experiment where it was added (i.e., the amount

added). The incremental reactivity with respect to $d(O_3-NO)$ was calculated for each hour of the experiment.

The second reactivity measure determined in this study is the effect of the isoprene on the integrated hydroxyl (OH) radical concentration in the experiment. The integrated OH radical concentration, referred to as IntOH, is derived from the fraction of the initially present m-xylene which reacts in the experiment, according to

$$IntOH_{t} = \frac{\ln\left(\frac{[m-xyl]_{0}}{[m-xyl]_{t}}\right) - Dt}{kOH^{m-xyl}}, \qquad (II)$$

where $[m-xyl]_0$ and $[m-xyl]_t$ are the initial and time=t concentrations of m-xylene, respectively, kOH^{m-xyl} is the rate constant for the reaction of m-xylene with OH radicals, and D is the dilution rate in the experiments, which was estimated to be small but non-negligible (see Appendix A). The effect of the isoprene on IntOH was measured by its incremental reactivity relative to IntOH, or IR[IntOH]^{voc}_t, defined in a way exactly analogous to the incremental reactivity relative to d(0₃-NO):

$$IR[IntOH]_{t}^{voc} = \frac{IntOH_{t}^{test} - IntOH_{t}^{base}}{[VOC]_{0}}$$
(III)

Reactivities relative to IntOH are also calculated at hourly intervals.

The third measure of reactivity obtained from the results of these experiments is a quantity we designate as the "direct reactivity", which is defined as:

Direct Reactivity^{VOC} =
$$\frac{d(O_3 - NO)^{\text{test}} - d(O_3 - NO)^{\text{base ROG (test)}}}{[VOC]_0}$$
 (IV)

where $d(O_3-NO)^{\text{base ROG (test)}}$ is given by,

$$d(O_3 - NO)^{\text{base ROG (test)}} = \left(\frac{d(O_3 - NO)}{\text{IntOH}}\right)^{\text{base}} \text{IntOH}^{\text{test}}$$
 (V)

As discussed in Appendix A, $d(O_3-NO)^{\text{base ROG (test)}}$ is the estimated amount of NO oxidized and ozone formed from the reactions of the base ROG surrogate components in the added test VOC run, and thus $d(O_3-NO)^{\text{test}} - d(O_3-NO)^{\text{base ROG (test)}}$ is the amount of ozone formed and NO oxidized estimated to be due to the direct reactions of the added VOC. Thus, the direct reactivity is sensitive to the amount of NO oxidation and ozone formation resulting directly from the test VOC's reactions, as opposed to the effect of the added VOC on how much ozone is formed and NO is

oxidized from the reactions of the other ROGs present. If a compound has a strong effect on radical levels, i.e., has a high IntOH reactivity, it can have a significant effect on NO oxidation and ozone formation by affecting how rapidly the other VOCs present react and oxidize NO and form ozone. In such cases, the compound's $d(O_3-NO)$ reactivity is not sensitive to the amount of NO oxidation and ozone formation formed directly from the test VOC's reactions, and thus does not provide a good test for this aspect of the VOC's mechanism. On the other hand, the direct reactivity is sensitive to this aspect of the mechanism, and thus provides a useful tool for mechanism evaluation.

The quantities $d(O_3-NO)^{test}$, IntOH^{test}, and [VOC]₀ are obtained from the results of each of the individual experiments where a test VOC (e.g., isoprene) is added. However, because of run-to-run variability in temperature, light intensity, and initial reactant concentrations, the quantities $d(O_3-NO)^{base}$, $IntOH^{base}$, and $[d(O_3-NO)/IntOH]^{base}$ are not measured in a single experiment, but are estimates, based on the results of many base case runs, of what the result of the base case experiment would be if it were carried out under the conditions of the added test VOC experiment. These are obtained by linear multiple regression analyses on the results of the base case experiments as a function of the variable run conditions which were found to affect the result in the base case runs (see Appendix A). Because of the large number of VOCs studied under the higher NO,, lower ROG/NO, series, results from a total of 92 base case runs could be used to determine the base case estimates for these runs. The uncertainties in the estimates of the base case conditions from the regressions are used to estimate the uncertainties in the reactivities due to run-to-run variabilities which could not be accounted for by the regressions.

As discussed in Appendix A, a useful alternative measurement of reactivity which can be obtained from these data is what we term "mechanistic reactivities". Incremental reactivity can be thought of as being a product of two factors, the "kinetic reactivity", which is defined as the fraction of the emitted VOC which undergoes chemical reaction in the pollution scenario being considered,

Kinetic		Fraction		VOC Reacted
Reactivity	=	Reacted	=	
				VOC Added

and the "mechanistic reactivity", which is the amount of ozone formed relative to the amount of VOC which reacts in that scenario,

Mechanistic		Ozone	Formed
Reactivity	=		
		VOC Re	eacted

(Carter and Atkinson, 1987). The utility of this concept is that this provides a means to factor out (at least to a first approximation) the effect of a VOC's reaction rate from all the other mechanistic aspects which affect reactivity. Since the only aspect of the VOCs mechanism which affects kinetic reactivities are the VOC's rate constants, which generally are known, the ability of a mechanism to predict kinetic reactivities are not considered to be particularly uncertain. On the other hand, the mechanistic reactivities are sensitive to all the other aspects of the VOC's mechanism, many (or all) of which are uncertain. For this reason, the mechanistic reactivities are the quantities of greatest interest to determine in these experiments.

Because of this, the discussion of these experiments, as well as most of the experiments in Appendix A, focus primarily on analysis of the data to yield mechanistic reactivities, and the ability of the mechanisms to simulate them. Mechanistic reactivities, or $MR[d(O_3-NO)]$, MR[IntOH], and direct $MR[d(O_3-NO)]$ (or ConvF - see below) are determined in an analogous way to incremental reactivities, except that (VOC reacted)_t, the amount of VOC reacted up to time=t, appears in the denominator of Equations (I), (III), and (IV), respectively, instead of [VOC]₀:

$$MR[d(O_3-NO)]_t^{VOC} = \frac{d(O_3-NO)_t^{test} - d(O_3-NO)_t^{base}}{[VOC reacted]_t}$$
(VI)

$$MR[IntOH]_{t}^{VOC} = \frac{IntOH_{t}^{test} - IntOH_{t}^{base}}{[VOC reacted]_{t}}$$
(VII)

$$ConvF_{t}^{voc} = \frac{d(O_{3}-NO)^{test} - d(O_{3}-NO)^{base ROG (test)}}{[VOC reacted]_{t}}$$
(VIII)

The direct mechanistic reactivity is called the "conversion factor", or "ConvF", because under high NO_x conditions the direct mechanistic reactivity is approximately equal to the number of NO conversions caused by the reactions of one molecule of the test VOC (see Appendix A).

The amounts of isoprene reacted at the various times in the experiment were determined by direct measurement. Most or all of the initially present isoprene reacted during the experiments, so by the end of the experiment the mechanistic reactivities were essentially the same as the incremental reactivities. However, this was not the case during the first several hours of the experiments.

MECHANISMS USED IN MODEL SIMULATIONS

The primary utility of these experiments is to provide data to test the ability of the chemical mechanisms used in airshed models to correctly predict the effects of emitted isoprene on NO oxidation, ozone formation, and radical levels in the atmosphere. Although a discussion of the development and characteristics of isoprene mechanisms is beyond the scope of this report, a series of model calculations were carried out to determine the extent to which these data are consistent with current mechanisms for isoprene's atmospheric reactions. The chemical mechanisms used to simulate these experiments are listed and briefly discussed in this section.

Model simulation of reactivity experiments involves simulations of the base case experiment, then simulations of the same experiment with the test compound added, then analyzing the results using the same methodology as employed with the experimental data, as described above. These simulations thus require mechanisms for the compounds in the base case experiment (referred to as the "base case" mechanisms in the discussion below) as well as mechanisms for isoprene. They also require a model for the chamber effects and other run conditions in these experiments.

Two base case mechanisms were used in this study for the purpose of testing three different isoprene mechanisms. The "SAPRC-91" mechanism, discussed in Appendix A, was used to test the version of the isoprene mechanism which is included in the SAPRC-90 mechanism of Carter (1990), and was also used to test a preliminary detailed isoprene mechanism which we are developing. A slightly modified version of the Carbon Bond IV mechanism (Gery et al., 1988) was used to test the isoprene representation incorporated in that mechanism.

SAPRC-91 Base Case Mechanism

The SAPRC-91 base case mechanism used in this work is the same as the SAPRC-91 mechanism used in the model simulations discussed in Appendix A. This consists of a slightly updated and modified version of the "SAPRC-90" mechanism of Carter et al (1990). The aspects of the mechanism which were updated involved the kinetics of PAN formation and the photolysis of formaldehyde, and also several modifications were made to the mechanisms for m-xylene and the species representing its unknown photoreactive products. The unadjusted SAPRC mechanisms were found to somewhat underpredict the rate of ozone formation in the standard experiment in this study, and an adjustment had to be made to the m-xylene

mechanism to yield acceptable fits to the data and to minimize possible biases being introduced into the reactivity simulations which might result if the mechanism could not simulate the results of the base case experiment. The species and reactions for this mechanisms are given in Tables 1 and 2, and the absorption cross sections and quantum yields which are different from those given by Carter (1990) are listed in Table 3.

Note that this mechanism is still in the process of being updated, and is subject to further modification before its documentation is published. In addition, the modified m-xylene mechanism it incorporates is considered to be suitable only for modeling the conditions of these experiments (see Appendix A).

SAPRC-90 Isoprene Mechanism

The SAPRC-90 mechanism of Carter (1990) uses a generalized parameter approach to represent the reactions of a wide variety of alkenes and other species, with isoprene being among the species for which parameter assignments are given. This mechanism in effect represents isoprene by using a model species which reacts with the appropriate OH, O_3 , NO_3 , and O^3P rate constants, but which form the same types of products as do the other alkenes once it reacts. Thus, the only species added to the mechanism to predict the reactivity of isoprene is isoprene itself; no new species are added to represent the reactions of isoprene's products. This is similar to the approach used to represent isoprene in the RADM-2 chemical mechanism of Stockwell et al. (1990), and the performance of that mechanism is expected to be similar to the SAPRC-90 isoprene mechanism in simulating these data. The SAPRC-90 isoprene reactions are included with the listing of the SAPRC-91 mechanism on Table 2.

Preliminary Detailed Isoprene Mechanism

Under funding from a separate EPA program, we are in the process of developing a detailed mechanism for the reactions of isoprene and its major photooxidation products. This will then be used as the basis for developing improved condensed mechanisms for isoprene for use in airshed models. As part of this effort, a preliminary detailed mechanism for isoprene has been developed which has explicit representations for the reactions of its major primary and secondary reaction products. These known or expected products include methacrolein, methyl vinyl ketone, glycolaldehyde, hydroxyacetone, 3-methyl furan, and various C_5 hydroxy-methyl and methyl substituted acrolein species which we estimate are also formed (Carter, unpublished results – see also Paulson and Seinfeld, 1992). (The various C_5 hydroxy-substituted acroleins are

Table 1. List of Model Species Used in the SAPRC-91 Mechanism to Simulate the Reactivity of Isoprene

Name Description

Constant Species.

02	Oxygen
М	Air
Н2О	Water

Active Inorganic Species.

03	Ozone
NO	Nitric Oxide
NO2	Nitrogen Dioxide
NO3	Nitrate Radical
N205	Nitrogen Pentoxide
HONO	Nitrous Acid
HNO3	Nitric Acid
HNO4	Peroxynitric Acid
но2н	Hydrogen Peroxide

Active Radical Species and Operators.

но2.	Hydropero	oxic	le Radicals	3			
RO2.	Operator	to	Calculate	Total	Organic	Peroxy	[.] Radicals
RCO3.	Operator	to	Calculate	Total	Acetyl	Peroxy	Radicals

Active Reactive Organic Product Species.

CO	Carbon Monoxide
HCHO	Formaldehyde
ССНО	Acetaldehyde
RCHO	Lumped C3+ Aldehydes
ACET	Acetone
MEK	Lumped Ketones
PHEN	Phenol
CRES	Cresols
BALD	Aromatic aldehydes (e.g., benzaldehyde)
GLY	Glyoxal
MGLY	Methyl Glyoxal
AFG1	Reactive Aromatic Fragmentation Products from benzene and naphthalene
AFG2	Other Reactive Aromatic Fragmentation Products.
rno3	Organic Nitrates
NPHE	Nitrophenols
PAN	Peroxy Acetyl Nitrate
PPN	Peroxy Propionyl Nitrate
GPAN	PAN Analogue formed from Glyoxal
PBZN	PAN Analogues formed from Aromatic Aldehydes
-OOH	Operator Representing Hydroperoxy Groups.

Non-Reacting Species

CO2	Carbon	Dioxide

- -C "Lost Carbon"
- -N "Lost Nitrogen"
- H2 Hydrogen

Table 1, (continued)

- O3OL-SB Operator used to account for total stabilized "Criegee biradical" formation. (When SO₂ is present, it is a steady-state species used to account for conversion of SO₂ to SO₃. Otherwise, it can be ignored.)
 NOX-WALL Counter species to account for NOx lost on walls, or (if negative)
- for NOx input coming off walls

Steady State Species and Operators.

HO.	Hydroxyl Radicals
0	Ground State Oxygen Atoms
O*1D2	Excited Oxygen Atoms
RO2-R.	Peroxy Radical Operator representing NO to NO_2 conversion with HO ₂ formation.
RO2-N.	Peroxy Radical Operator representing NO consumption with organic nitrate formation.
RO2-NP.	Peroxy Radical Operator representing NO consumption with nitrophenol formation
R2O2.	Peroxy Radical Operator representing NO to NO, conversion.
CCO-02.	Peroxy Acetyl Radicals
C2CO-O2.	Peroxy Propionyl Radicals
HCOCO-O2.	Peroxyacyl Radical formed from Glyoxal
BZ-CO-02.	Peroxyacyl Radical formed from Aromatic Aldehydes
HOCOO.	Intermediate formed in Formaldehyde + HO, reaction
BZ-O.	Phenoxy Radicals
BZ(NO2)-O.	Nitratophenoxy Radicals
HOCOO.	Radical Intermediate formed in the HO_2 + Formaldehyde system.

Mini-Surrogate Components and Related Species

ETHE	Ethene
NC6	n-Hexane
N // 3 / 3 / 7 /	

MXYL m-Xylene MXYP Product formed from m-Xylene in mini-surrogate instead of AFG2, for the m-xylene mechanism which is adjusted to fit the ETC Set 3 standard experiment.

Isoprene

ISOP Isoprene

Table 2.Listing of SAPRC-91 Mechanism as used to Simulate Results of
Isoprene Reactivity Experiments. The SAPRC-90 Mechanism for
Isoprene is also Shown.

Rxn.	Kine	tic Parameters [a]	Descriptions [h]
Label	k(300)	A Ea B	Reactions [D]
		CO	MMON REACTIONS IN SAPRC-91 MECHANISM
Inorga	anic		
1 2 3A 3B	(Phot 2.16E-05 1.42E+04 2.28E+03 k0 = kINF =	. Set = NO2) 2.16E-05 0.00 -4.30 9.54E+03 -0.24 -1.00 (Falloff Kinetics) 3.23E-03 0.00 -4.00 3.23E+04 0.00 -1.00 F= 0.60 p= 1.00	NO2 + HV = NO + O O + O2 + M = O3 + M O + NO2 = NO + O2 O + NO2 = NO3 + M
4 5 6 7 8	2.76E+01 4.94E-02 4.11E+04 6.90E-10 1.84E+03 k0 = kINF =	2.94E+03 2.78 -1.00 2.06E+02 4.97 -1.00 2.49E+04 -0.30 -1.00 1.19E-10 -1.05 -2.00 (Falloff Kinetics) 7.90E-02 0.00 -6.30 2.20E+03 0.00 -1.50 F = 0.60 n = 1.00	$\begin{array}{l} 03 + N0 = N02 + 02 \\ 03 + N02 = 02 + N03 \\ N0 + N03 = \#2 N02 \\ N0 + N0 + 02 = \#2 N02 \\ N02 + N03 = N205 \end{array}$
9 10 11 12A 12B 13A 13B 14 15 16	2.26E-03 1.47E-06 6.13E-01 (Phot (Phot (Phot 3.23E+05 4.29E+04 7.05E+03 k0 = kINF =	3.72E+13 22.26 1.00 1.47E-06 0.00 -1.00 3.67E+01 2.44 -1.00 . Set = NO3NO) . Set = NO3NO2) . Set = O3O3P) 3.23E+05 0.00 -1.00 (Falloff Kinetics) 2.51E-02 0.00 -4.60 2.20E+04 0.00 -1.50 F= 0.60 m= 1.00	N205 + $\#RCON8 = NO2 + NO3$ N205 + H2O = $\#2 + HNO3$ NO2 + NO3 = NO + NO2 + O2 NO3 + HV = NO + O2 NO3 + HV = NO2 + O O3 + HV = 0 + O2 O3 + HV = 0 + D2 O*1D2 + H2O = $\#2$ HO. O*1D2 + H2O = $\#2$ HO. O*1D2 + M = O + M HO. + NO = HONO
17 18	(Phot 1.66E+04 k0 = kINF =	. Set = HONO) (Falloff Kinetics) 9.34E-02 0.00 -5.20 3.52E+04 0.00 -2.30 F = 0.60 p= 1.00	HONO + HV = HO. + NO HO. + NO2 = HNO3
19 21 22 23 24	1.51E+02 3.52E+02 1.02E+02 1.21E+04 2.00E+03 k0 = kINF =	9.47E+00 -1.65 -1.00 3.52E+02 0.00 -1.00 2.35E+03 1.87 -1.00 5.43E+03 -0.48 -1.00 (Falloff Kinetics) 6.46E-03 0.00 -5.20 6.90E+03 0.00 -2.40 F= 0.60 F= 100	HO. + HNO3 = H2O + NO3 HO. + CO = HO2. + CO2 HO. + O3 = HO2. + O2 HO2. + NO = HO. + NO2 HO2. + NO2 = HNO4
25 27 28 29A 29B 29C 29D 30A 30B 30C 30D 31 32 33	3.24E-03 6.77E+03 3.05E+00 2.54E+03 1.34E-01 9.52E-02 (Same (Same (Same (Phot 2.49E+03 1.45E+05	$\begin{array}{c} 1.95E+13 \ 21.66 \ 1.00\\ 1.91E+03 \ -0.75 \ -1.00\\ 1.61E+01 \ 0.99 \ -1.00\\ 3.23E+02 \ -1.23 \ -1.00\\ 6.82E-05 \ -1.95 \ -2.00\\ 1.11E-05 \ -5.60 \ -2.00\\ 2.37E-06 \ -6.32 \ -2.00\\ k \ as \ Reaction \ 29A \)\\ k \ as \ Reaction \ 29B \)\ Reaction \ Reaction \ Reaction \ 29B \)\)\ Reaction \ Reaction \)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Genera	al Peroxy		
B1 B2	1.13E+04 3.31E+04 k0 = kINF =	6.16E+03 -0.36 -1.00 (Falloff Kinetics) 2.03E+01 0.00 -9.10 3.87E+04 0.00 -1.90 F= 0.27 p= 1.00	RO2. + NO = NO RCO3. + NO = NO
в4	1.52E+04 k0 = kINF =	(Falloff Kinetics) 9.23E+00 0.00 -9.10 1.76E+04 0.00 -1.90 F= 0.30 n= 1.00	RCO3. + NO2 = NO2
B5 B6 B8 B9 B10	7.19E+03 7.19E+03 1.47E+00 1.60E+04 2.40E+04	4.99E+02 -1.59 -1.00 4.99E+02 -1.59 -1.00 1.47E+00 0.00 -1.00 2.73E+03 -1.05 -1.00 4.11E+03 -1.05 -1.00	<pre>RO2. + HO2. = HO2. RC03. + HO2. = HO2. RO2. + RO2. = RO2. + RC03. = RC03. + RC03. =</pre>

Table 2 (continued)

Rxn.	Kinetic Parameters [a]	
Label	k(300) A Ea B	Reactions [b]
B11 B12 B13 B14	(Same k as Reaction B1) (Same k as Reaction B5) (Same k as Reaction B8) (Same k as Reaction B9)	RO2-R. + NO = NO2 + HO2. RO2-R. + HO2. = -OOH RO2-R. + RO2. = RO2. + #.5 HO2. RO2-R. + RCO3. = RCO3. + #.5 HO2.
B19 B20 B21 B22	(Same k as Reaction B1) (Same k as Reaction B5) (Same k as Reaction B8) (Same k as Reaction B9)	RO2-N. + NO = RNO3 RO2-N. + HO2. = -OOH + MEK + #1.5 -C RO2-N. + RO2. = RO2. + #.5 HO2. + MEK + #1.5 -C RO2-N. + RCO3. = RCO3. + #.5 HO2. + MEK + #1.5 -C
B15 B16 B17 B18	(Same k as Reaction B1) (Same k as Reaction B5) (Same k as Reaction B8) (Same k as Reaction B9)	R202. + NO = NO2 R202. + H02. = R202. + R02. = R02. R202. + RC03. = RC03.
B23 B24 B25 B26	(Same k as Reaction B1) (Same k as Reaction B5) (Same k as Reaction B8) (Same k as Reaction B9)	RO2-XN. + NO = -N RO2-XN. + HO2. = -OOH RO2-XN. + RO2. = RO2. + #.5 HO2. RO2-XN. + RCO3. = RCO3. + HO2.
G2 G3 G4 G5	(Same k as Reaction B1) (Same k as Reaction B5) (Same k as Reaction B8) (Same k as Reaction B9)	RO2-NP. + NO = NPHE RO2-NP. + HO2. = -OOH + #6 -C RO2-NP. + RO2. = RO2. + #.5 HO2. + #6 -C RO2-NP. + RCO3. = RCO3. + HO2. + #6 -C
Commo	n Organic Products	
B7 B7A B7B	(Phot. Set = CO2H) 2.65E+03 1.73E+03 -0.25 -1.00 5.45E+03 2.63E+03 -0.44 -1.00	-OOH + HV = HO2. + HO. HO. + -OOH = HO. HO. + -OOH = RO2-R. + RO2.
C1 C2 C3 C4 C4A C4B C9	(Phot. Set = HCHONEWR) (Phot. Set = HCHONEWM) 1.43E+04 1.65E+03 -1.29 1.00 1.14E+02 1.42E+01 -1.24 -1.00 1.06E+04 1.44E+14 13.91 0.00 (Same k as Reaction B1) 9.36E-01 4.11E+03 5.00 -1.00	$\begin{array}{llllllllllllllllllllllllllllllllllll$
C10 C11A C12	2.30E+04 8.15E+03 -0.62 -1.00 (Phot. Set = CCHOR) 4.17E+00 2.05E+03 3.70 -1.00	CCHO + HO. = CCO-O2. + H2O + RCO3. CCHO + HV = CO + HO2. + HCHO + RO2-R. + RO2. CCHO + NO3 = HNO3 + CCO-O2. + RCO3.
C25 C26 C27	2.89E+04 1.25E+04 -0.50 -1.00 (Phot. Set = RCHO) 4.17E+00 2.05E+03 3.70 -1.00	RCHO + HO. = C2CO-O2. + RCO3. RCHO + HV = CCHO + RO2-R. + RO2. + CO + HO2. NO3 + RCHO = HNO3 + C2CO-O2. + RCO3.
C38	3.39E+02 2.82E+02 -0.11 1.00	ACET + HO. = #.8 "MGLY + RO2-R." + #.2 "R2O2. + HCHO + CCO-O2. + RCO3." + RO2.
C39	(Phot. Set = ACETONE)	ACET + $HV = CCO-O2$. + $HCHO + RO2-R$. + $RCO3$. + $RO2$.
C44	1.70E+03 4.29E+02 -0.82 1.00	MEK + HO. = H2O + #.5 "CCHO + HCHO + CCO-O2. + C2CO-O2." + RCO3. + #1.5 "R2O2. + RO2."
C57	(Phot. Set = KETONE)	MEK + HV + #.1 = CCO-02. + CCHO + RO2-R. + RCO3. + RO2.
095	3.03E+03 3.22E+04 1.41 -1.00	#.11 -C + #1.39 "R202. + R02."
C68A C68B C69 C70	(Phot. Set = MEGLYOX1) (Phot. Set = MEGLYOX2) 2.52E+04 2.52E+04 0.00 -1.00 (Same k as Reaction Cl2)	MGLY + HV = HO2. + CO + CCO-O2. + RCO3. MGLY + HV + #.107 = HO2. + CO + CCO-O2. + RCO3. MGLY + HO. = CO + CCO-O2. + RCO3. MGLY + NO3 = HNO3 + CO + CCO-O2. + RCO3.
C13 C14 C15 C16 C17 C18	<pre>(Same k as Reaction B2) (Same k as Reaction B4) (Same k as Reaction B6) (Same k as Reaction B9) (Same k as Reaction B10) 3.90E-02 (Falloff Kinetics) k0 = 7.19E+12 23.97 -1.00 kINF = 2.40E+18 27.08 0.00 F= 0.30 n= 1.00</pre>	CCO-O2. + NO = CO2 + NO2 + HCHO + RO2-R. + RO2. CCO-O2. + NO2 = PAN CCO-O2. + HO2. = -OOH + CO2 + HCHO CCO-O2. + RO2. = RO2. + #.5 HO2. + CO2 + HCHO CCO-O2. + RCO3. = RCO3. + HO2. + CO2 + HCHO PAN = CCO-O2. + NO2 + RCO3.
C28 C29 C30 C31	(Same k as Reaction B2) 1.23E+04 1.23E+04 0.00 -1.00 (Same k as Reaction B6) (Same k as Reaction B9)	C2CO-O2. + NO = CCHO + RO2-R. + CO2 + NO2 + RO2. C2CO-O2. + NO2 = PPN C2CO-O2. + HO2. = $-OOH + CCHO + CO2$ C2CO-O2. + HO2. = RO2. + #.5 HO2. + CCHO + CO2

Table 2 (continued)

Rxn.	Kine	tic Parame	eters [a]	Reactions [b]					
Haber	k(300)	A	Ea B						
C32 C33	(Same) 4.07E-02	k as Reac 9.60E+18	tion B10) 27.97 0.0	C2CO-O2. + RCO3. = RCO3. + HO2. + CCHO + CO2 0 PPN = C2CO-O2. + NO2 + RCO3.					
C58A C58B C59 C60	(Phot (Phot 1.67E+04 (Same	. Set = GL . Set = GL 1.67E+04 k as Reac	YOXAL1) YOXAL2) 0.00 -1.0 tion C12)	GLY + HV = #.8 HO2. + #.45 HCHO + #1.55 CO GLY + HV + #0.029 = #.13 HCHO + #1.87 CO 0 GLY + HO. = #.6 HO2. + #1.2 CO + #.4 "HCOCO-O2. + RCO3." GLY + NO3 = HNO3 + #.6 HO2. + #1.2 CO + #.4 "HCOCO-O2. + RCO3."					
C62 C63 C64 C65 C66 C67	(Same (Same (Same (Same (Same (Same	k as Reac k as Reac k as Reac k as Reac k as Reac k as Reac k as Reac	etion B2) etion B4) etion C18) etion B6) etion B9) etion B10)	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
G46 G51	3.86E+04 5.28E+03	3.86E+04 5.28E+03	0.00 -1.0 0.00 -1.0	0 HO. + PHEN = #.15 RO2-NP. + #.85 RO2-R. + #.2 GLY + #4.7 -C + RO2. NO3 + PHEN = HNO3 + BZ-O.					
G52 G57	6.16E+04 3.08E+04	6.16E+04 3.08E+04	0.00 -1.0 0.00 -1.0	0 HO. + CRES = #.15 RO2-NP. + #.85 RO2-R. + #.2 MGLY + #5.5 -C + RO2. NO3 + CRES = HNO3 + BZ-O. + -C					
G30 G31 G32 G33 G34 G36 G37 G38 G35 G43 G44 G45	1.89E+04 (Phot 3.83E+00 (Same (Same (Same 1.30E-02 5.19E+04 (Same 6.00E-02	1.89E+04 . Set = BZ 2.05E+03 k as Reac k as Reac k as Reac k as Reac 9.60E+16 1.91E+04 k as Reac (No T De	0.00 -1.0 CHO) 3.75 -1.0 ttion B2) 0.00 -1.0 ttion B6) ttion B9) ttion B10) 25.90 0.0 -0.60 -1.0 ttion B5) pendence)	0 BALD + HO. = BZ-CO-O2. + RCO3. BALD + HV + $\#.05 = \#7 - C$ 0 BALD + NO3 = HNO3 + BZ-CO-O2. BZ-CO-O2. + NO2 = BZ-O. + CO2 + NO2 + R2O2. + RO2. 0 BZ-CO-O2. + NO2 = PBZN BZ-CO-O2. + HO2. = $-OOH + CO2 + PHEN$ BZ-CO-O2. + RCO3. = RCO3. + HO2. + CO2 + PHEN BZ-CO-O2. + RCO3. = RCO3. + HO2. + CO2 + PHEN 0 PBZN = BZ-CO-O2. + NO2 + RCO3. 0 BZ-O. + NO2 = NPHE BZ-O. + HO2. = PHEN BZ-O. = PHEN					
G58 G59 G60 G61	5.28E+03 (Same (Same (Same	5.28E+03 k as Reac k as Reac k as Reac	0.00 -1.0 tion G43) tion B5) tion G45)	0 NPHE + NO3 = HNO3 + BZ(NO2)-O. BZ(NO2)-O. + NO2 = #2 -N + #6 -C BZ(NO2)-O. + HO2. = NPHE BZ(NO2)-O. = NPHE					
				(See note [c])					
G7 G8 U1O3	1.67E+04 (Phot 0.00E+00	1.67E+04 . Set = AC 0.00E+00	0.00 -1.0 CROLEIN) 0.00 -1.0	0 HO. + AFG1 = HCOCO-O2. + RCO3. AFG1 + HV + #.029 = HO2. + HCOCO-O2. + RCO3. 0 AFG1 + O3 = #.5 "HCHO + GLY + -C" + HO2.					
G9 G10	2.52E+04 (Phot	2.52E+04 . Set = AC	0.00 -1.0 ROLEIN)	0 HO. + AFG2 = C2CO-O2. + RCO3. AFG2 + HV = HO2. + CO + CCO-O2. + RCO3.					
			(m-Xyl	REACTIONS OF MINI-SURROGATE COMPONENTS ene mechanism applicable for these runs only)					
D1 D6 D8 D9	1.24E+04 2.75E-03 1.09E+03 3.16E-01	2.88E+03 1.76E+01 1.53E+04 7.97E+03	-0.87 -1.0 5.23 -1.0 1.57 -1.0 6.04 -1.0	0 ETHE + HO. = #.22 CCHO + #1.56 HCHO + RO2-R. + RO2. 0 ETHE + O3 = HCHO + #.37 O3OL-SB + #.44 CO + #.56 -C + #.12 HO2. 0 ETHE + O = HCHO + CO + HO2. + RO2-R. + RO2. 0 ETHE + NO3 = NO2 + #2 HCHO + R2O2. + RO2.					
СбОН	8.27E+03	1.98E+04	0.52 -1.0	0 NC6 + HO. = #.815 RO2-R. + #.185 RO2-N. + #.74 R2O2. + #1.74 RO2. + #.020 CCHO + #.105 RCHO + #1.134 MEK + #.186 -C					
MXOH MXP1 MXP2	3.46E+04 2.52E+04 (Phot	3.46E+04 2.52E+04 . Set = AC	0.00 -1.0 0.00 -1.0 CROLEIN)	<pre>0 MXYL + HO. = #.82 RO2-R. + #.18 HO2. + #.82 RO2. + #.18 CRES + #.04 BALD + #.108 GLY + #.37 MGLY + #2 MXYP + #-8.866 -C 0 HO. + MXYP = C2CO-O2. + RCO3. MXYP + HV + #.22 = HO2. + CO + CCO-O2. + RCO3.</pre>					
				CHAMBER-DEPENDENT REACTIONS (Applicable for these ETC runs only)					

O3W	3.70E-04	(No T Dependence)	03 =
N25I	2.50E-03	(No T Dependence)	N2O5 = #2 NOX-WALL
N25S	5.00E-08 (0.00E+00 0.00 -1.00	N2O5 + H2O = #2 NOX-WALL
NO2W	1.40E-04	(No T Dependence)	NO2 = #.2 HONO + #.8 NOX-WALL
RSI	(Phot.	Set = NO2)	HV + #2.E-5 = HO.
ONO2	(Phot.	Set = NO2)	HV + #1.E-4 = NO2 + #-1 NOX-WALL
XSHC	2.50E+02	(No T Dependence)	HO. = HO2.

Table 2 (continued)

Rxn. Label	Kine	tic Parame	eters [a]	Peastions [b]
Laber	k(300)	A	Ea	В	Reactions [D]
					SAPRC-90 ISOPRENE MECHANISM
ISOH ISO3	9.97E-11 1.50E-17	2.54E-11 1.23E-14	-0.81 4.00	0.00	ISOP + HO. = RO2-R. + RO2. + HCHO + RCHO + -C ISOP + O3 = #.135 RO2-R. + #.165 HO2. + #.135 RO2. + #.5 HCHO +

1902	T. 20E-T/	1.236-14	4.00 0.00	130F + 03 = #.133 K02-K, + #.103 H02, + #.133 K02, + #.3 H000 +
				#.15 CCHO + #.5 RCHO + #.21 MEK + #.295 CO + #1.565 -C + #.06 HO. +
				#.285 O3OL-SB + #.36 OLE-RI
ISN3	6.85E-13	3.03E-12	0.89 0.00	ISOP + NO3 = R2O2. + RO2. + HCHO + RCHO + -C + NO2
ISOA	6.00E-11	(No T De	pendence)	ISOP + O = #.4 HO2. + #.5 RCHO + #.5 MEK + #1.5 -C + #.4 OLE-RI

Except as noted, expression for rate constant is $k = A e^{Ea/RT} (T/300)^B$. Rate constants and A factor are in ppm, min units. Units of Ea is kcal mole⁻¹. "Phot Set" means this is a photolysis reaction, with the absorption coefficients and quantum yields given in Carter (1990) or in Table ?. Format of reaction listing same as used in documentation of the detailed mechanism (Carter 1990). AFG1 and AFG2 are not formed in the mini-surrogate or mini-surrogate + isoprene experiments. Their reactions are included here because they are among the common products in the SAPRC-91 mechanism. [a] [b]

[c]

Table 3.	Absorption	n (Cross	s Section	ns and	and Quantum		Yields		for		Photolysis	
	Reactions	in	the	SAPRC-90	Mechan	ĺsm	which	are	not	in	the	mechanism	
	of Carter	(19	990).										

WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY
Photo	lysis File	= ACROI	LEIN											
$\begin{array}{c} 250.0\\ 256.0\\ 261.0\\ 271.0\\ 271.0\\ 276.0\\ 291.0\\ 296.0\\ 301.0\\ 301.0\\ 301.0\\ 321.0\\ 321.0\\ 321.0\\ 331.0\\ 331.0\\ 331.0\\ 331.0\\ 331.0\\ 356.0\\ 351.0\\ 356.0\\ 351.0\\ 356.0\\ 351.0\\ 356.0\\ 351.0\\ 351.0\\ 356.0\\ 351.0\\ 35$	$\begin{array}{c} 1.80E-21\\ 2.56E-21\\ 3.24E-21\\ 1.04E-20\\ 1.26E-20\\ 1.44E-20\\ 1.78E-20\\ 2.26E-20\\ 2.85E-20\\ 3.51E-20\\ 4.25E-20\\ 4.25E-20\\ 4.25E-20\\ 5.43E-20\\ 5.62E-20\\ 5.43E-20\\ 5.62E-20\\ 5.44E-20\\ 5.54E-20\\ 5.54E-20\\ 5.54E-20\\ 5.54E-20\\ 3.45E-20\\ 2.95E-20\\ 3.45E-20\\ 3.45E-20\\ 3.45E-20\\ 3.45E-20\\ 3.57E-21\\ 0.00E+00\\ \end{array}$	1.000 1.000	252.0 267.0 267.0 272.0 287.0 297.0 297.0 302.0 302.0 302.0 312.0 312.0 327.0 327.0 332.0 337.0 342.0 357.0 357.0 362.0 367.0 372.0 377.0	$\begin{array}{c} 2, \ 05E-21\\ 2, \ 65E-21\\ 3, \ 47E-21\\ 5, \ 38E-21\\ 7, \ 77E-21\\ 1, \ 12E-20\\ 1, \ 26E-20\\ 1, \ 50E-20\\ 2, \ 37E-20\\ 5, \ 52E-20\\ 2, \ 78E-20\\ 3, \ 55E-21\\ 3, \ 55E-21\\ \end{array}$	1.000 1.000	$\begin{array}{c} 253.0\\ 258.0\\ 268.0\\ 273.0\\ 278.0\\ 288.0\\ 298.0\\ 298.0\\ 303.0\\ 303.0\\ 313.0\\ 313.0\\ 328.0\\ 338.0\\ 338.0\\ 338.0\\ 338.0\\ 338.0\\ 358.0\\ 358.0\\ 358.0\\ 358.0\\ 368.0\\ 373.0\\ 378.0 \end{array}$	$\begin{array}{c} 2 & 2 & 0 & E - 21 \\ 2 & . & 7 & 4 & E - 21 \\ 3 & . & 5 & 8 & E - 21 \\ 3 & . & 7 & 3 & E - 21 \\ 1 & . & 1 & 9 & E - 20 \\ 1 & . & 2 & 8 & E & -20 \\ 1 & . & 5 & 7 & E & -20 \\ 2 & . & 4 & 8 & E & -20 \\ 3 & . & 1 & 3 & E & -20 \\ 3 & . & 1 & 3 & E & -20 \\ 3 & . & 1 & 3 & E & -20 \\ 3 & . & 1 & 3 & E & -20 \\ 5 & . & 5 & -2 & E & -20 \\ 5 & . & 7 & E & -20 \\ 5 & . & 7 & E & -20 \\ 5 & . & 7 & E & -20 \\ 5 & . & 7 & E & -20 \\ 5 & . & 7 & E & -20 \\ 5 & . & 7 & E & -20 \\ 5 & . & 7 & E & -20 \\ 5 & . & 7 & E & -20 \\ 2 & . & 1 & 5 & -20 \\ 5 & . & 8 & 5 & -21 \\ 2 & . & 8 & E & -21 \\ 2 & . & 8 & E & -21 \\ \end{array}$	1.000 1.000	$\begin{array}{c} 254.0\\ 259.0\\ 264.0\\ 279.0\\ 279.0\\ 284.0\\ 299.0\\ 304.0\\ 309.0\\ 314.0\\ 329.0\\ 324.0\\ 329.0\\ 334.0\\ 339.0\\ 334.0\\ 339.0\\ 359.0\\ 359.0\\ 359.0\\ 359.0\\ 364.0\\ 359.0\\ 374.0\\ 379.0\\ \end{array}$	$\begin{array}{c} 2 & 32E-21\\ 2 & 83E-21\\ 3 & 93E-21\\ 6 & 13E-21\\ 8 & 94E-21\\ 1 & 27E-20\\ 1 & 33E-20\\ 2 & 60E-20\\ 3 & 27E-20\\ 3 & 27E-20\\ 3 & 27E-20\\ 3 & 27E-20\\ 5 & 57E-20\\ 1 & 59E-21\\ 1 & 69E-21\\ 1 & 69E-21\\ \end{array}$	1.000 1.000	$\begin{array}{c} 255.0\\ 260.0\\ 265.0\\ 270.0\\ 285.0\\ 390.0\\ 295.0\\ 300.0\\ 305.0\\ 315.0\\ 325.0\\ 335.0\\ 345.0\\ 345.0\\ 355.0\\ 355.0\\ 355.0\\ 355.0\\ 360.0\\ 375.0\\ 375.0\\ 380.0\\ \end{array}$	$\begin{array}{c} 2.\ 45\text{E}-21\\ 2.\ 98\text{E}-21\\ 4.\ 67\text{E}-21\\ 9.\ 55\text{E}-21\\ 1.\ 27\text{E}-20\\ 1.\ 38\text{E}-20\\ 2.\ 73\text{E}-20\\ 2.\ 73\text{E}-20\\ 3.\ 39\text{E}-20\\ 4.\ 59\text{E}-20\\ 5.\ 31\text{E}-20\\ 5.\ 31\text{E}-20\\ 5.\ 31\text{E}-20\\ 5.\ 31\text{E}-20\\ 5.\ 80\text{E}-20\\ 3.\ 54\text{E}-20\\ 3.\ 54\text{E}-20\\ 3.\ 54\text{E}-20\\ 3.\ 54\text{E}-21\\ 8.\ 29\text{E}-24\\ \end{array}$	$\begin{array}{c} 1.000\\ 1.$
Photo	lysis File	= HCHON	IEWR											
280.0 282.5 285.0 290.0 292.5 295.0 297.5 300.0 301.2 302.2 304.2 305.2 304.2 306.2 307.2 308.2 307.2 308.2 309.2 311.2	2.49E-20 6.76E-21 3.95E-20 1.0CE-20 1.0CE-20 1.51E-20 1.51E-20 1.51E-20 1.51E-20 1.51E-20 1.52E-20 3.81E-20 5.79E-20 5.79E-20 5.28E-20 1.26E-20 1.26E-20 1.26E-20	0.590 0.620 0.680 0.747 0.745 0.745 0.778 0.778 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777	280.5 283.0 285.5 298.0 290.5 293.0 290.5 298.0 300.4 302.4 302.4 304.4 305.4 305.4 305.4 306.4 307.4 308.4 308.4 309.4 311.4	$\begin{array}{c} 1.42E-20\\ 5.82E-21\\ 2.87E-20\\ 0.62E-20\\ 1.35E-20\\ 1.11E-20\\ 3.51E-20\\ 3.51E-20\\ 3.51E-20\\ 7.13E-21\\ 5.57E-20\\ 7.13E-21\\ 5.57E-20\\ 2.42E-20\\ 4.77E-20\\ 2.66E-20\\ 1.19E-20\\ 2.39E-20\\ 2.39E-20\\ 9.26E-21\\ 4.54E-21\\ \end{array}$	0.596 0.626 0.626 0.713 0.731 0.749 0.766 0.779 0.778 0.777 0.7776 0.7776 0.7775 0.7774 0.772 0.772 0.772 0.772 0.7749 0.7749 0.775 0.7749 0.7749 0.775 0.7749	281.0 283.5 286.0 288.5 291.0 293.5 296.0 298.5 300.6 301.6 302.6 305.6 305.6 305.6 305.6 307.6 308.6 309.6 311.6	$\begin{array}{c} 1.51E-20\\ 9.10E-21\\ 2.24E-20\\ 4.00E-20\\ 1.99E-20\\ 6.26E-20\\ 4.40E-20\\ 4.40E-20\\ 4.40E-20\\ 6.61E-21\\ 6.91E-20\\ 6.61E-21\\ 6.91E-20\\ 4.30E-20\\ 4.43E-20\\ 2.42E-20\\ 1.01E-20\\ 3.08E-20\\ 2.46E-20\\ 7.71E-21\\ 6.81E-21\\ \end{array}$	0.602 0.632 0.692 0.717 0.755 0.779 0.775 0.776 0.777 0.776 0.775 0.774 0.773 0.771 0.771 0.771 0.771 0.771	281.5 284.0 286.5 289.0 291.5 299.0 300.8 302.8 302.8 304.8 305.8 305.8 305.8 305.8 306.8 307.8 308.8 309.8 311.8	$\begin{array}{c} 1.32E-20\\ 3.71E-20\\ 1.74E-20\\ 3.55E-20\\ 1.56E-20\\ 7.40E-20\\ 3.44E-20\\ 1.75E-20\\ 3.44E-20\\ 1.26E-20\\ 1.26E-20\\ 1.44E-20\\ 6.58E-20\\ 4.60E-20\\ 1.95E-20\\ 9.01E-21\\ 3.39E-20\\ 1.95E-20\\ 6.05E-21\\ 1.04E-20\end{array}$	0.608 0.638 0.638 0.721 0.738 0.773 0.779 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.775 0.777 0.775 0.777 0.775 0.777 0.775 0.777 0.775 0.777 0.775 0.772 0.775 0.775 0.775 0.772 0.775 0.775 0.775 0.775 0.775 0.772 0.775 0.775 0.775 0.775 0.775 0.775 0.772 0.775 0.775 0.775 0.774 0.775 0.775 0.775 0.774 0.775 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.774 0.775 0.775 0.774 0.775 0.743 0	282.0 284.5 287.0 289.5 292.0 294.5 297.0 299.5 301.0 303.0 303.0 305.0 306.0 306.0 307.0 308.0 309.0 311.0	$\begin{array}{c} 9.73E-21\\ 4.81E-20\\ 1.13E-20\\ 2.12E-20\\ 8.65E-21\\ 5.36E-20\\ 2.02E-20\\ 2.02E-20\\ 2.01E-20\\ 3.18E-20\\ 6.96E-20\\ 3.60E-20\\ 4.01E-20\\ 1.58E-20\\ 8.84E-21\\ 3.18E-20\\ 1.57E-20\\ 5.13E-21\\ 1.43E-20\\ \end{array}$	$\begin{array}{c} 0.614\\ 0.674\\ 0.704\\ 0.704\\ 0.724\\ 0.779\\ 0.776\\ 0.779\\ 0.776\\ 0.777\\ 0.776\\ 0.773\\ 0.773\\ 0.773\\ 0.773\\ 0.771\\ 0.770\\ 0.775\\ 0.774\\ 0.773\\ 0.772\\ 0.774\\ 0.773\\ 0.772\\ 0.774\\ 0.773\\ 0.772\\ 0.774\\ 0.773\\ 0.772\\ 0.774\\ 0.773\\ 0.774\\ 0.773\\ 0.774\\ 0.773\\ 0.774\\ 0.773\\ 0.774\\ 0.773\\ 0.774\\ 0.773\\ 0.774\\ 0.774\\ 0.775\\ 0.744\\ 0.774\\ 0.774\\ 0.774\\ 0.776\\ 0.744\\ 0.774\\ 0.774\\ 0.776\\ 0.774\\ 0.776\\ 0.774\\ 0.776\\ 0.776\\ 0.774\\ 0.776\\ 0.776\\ 0.774\\ 0.776\\ 0.776\\ 0.774\\ 0.772\\ 0.776\\ 0.774\\ 0.772\\ 0.774\\ 0.772\\ 0.774\\ 0.772\\ 0.776\\ 0.774\\ 0.773\\ 0.776\\ 0.774\\ 0.773\\ 0.776\\ 0.776\\ 0.774\\ 0.773\\ 0.776\\ 0.776\\ 0.774\\ 0.773\\ 0.776\\ 0.776\\ 0.774\\ 0.773\\ 0.776\\ 0.776\\ 0.774\\ 0.773\\ 0.776\\ 0.776\\ 0.774\\ 0.773\\ 0.776\\ 0.776\\ 0.774\\ 0.776\\ 0.776\\ 0.774\\ 0.776\\ 0.776\\ 0.774\\ 0.772\\ 0.776\\ 0.776\\ 0.774\\ 0.772\\ 0.776\\ 0.774\\ 0.772\\ 0.776\\ 0.776\\ 0.776\\ 0.774\\ 0.776\\ 0.$

Table 3. (continued)

WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY
Photo	lysis File	= HCHC	NEWR (co	ontinued)										
312.2 313.2	1.47E-20 6.48E-21	0.737 0.722	312.4 313.4	1.35E-20 1.07E-20	0.734 0.719	312.6 313.6	1.13E-20 2.39E-20) 0.731) 0.716	312.8 313.8	9.86E-21 3.80E-20	0.728 0.713	313.0 314.0	7.82E-21 5.76E-20	0.725 0.710
314.2	6.14E-20	0.707	314.4	7.45E-20	0.704	314.6	5.78E-20	0.701	314.8	5.59E-20	0.698	315.0	4.91E-20	0.695
315.2	4.37E-20 1.66E-20	0.692	315.4 316.4	3.92E-20 2.05E-20	0.689	315.6	4.38E-20	0.686	315.8	2.82E-20 5.86E-20	0.668	316.0	2.10E-20 6.28E-20	0.680
317.2	5.07E-20	0.662	317.4	4.33E-20	0.659	317.6	4.17E-20	0.656	317.8	3.11E-20	0.653	318.0	2.64E-20	0.650
318.2	2.24E-20 6.36E-21	0.64/	318.4 319.4	1.70E-20 5.36E-21	0.644 0.629	318.6 319.6	1.24E-20 4.79E-21	0.641	318.8 319.8	1.11E-20 6.48E-21	0.638	319.0	1.48E-20	0.635
320.2	1.47E-20	0.614	320.4	1.36E-20	0.608	320.6	1.69E-20	0.601	320.8	1.32E-20	0.595	321.0	1.49E-20	0.589
321.2	1.17E-20 4.13E-21	0.583	321.4	1.15E-20 3.36E-21	0.577	321.6 322.6	9.64E-21 2.39E-21	0.570	321.8	7.26E-21 2.01E-21	0.564	322.0	5.94E-21 1.76E-21	0.558
323.2	2.82E-21	0.521	323.4	4.65E-21	0.515	323.6	7.00E-21	0.508	323.8	7.80E-21	0.502	324.0	7.87E-21	0.496
324.2	6.59E-21 2.15E-20	0.490	324.4	3.75E-20	0.484	324.6	4.00E-21 4.10E-20	0.477	324.8	4.21E-21 6.47E-20	0.471	325.0	7.59E-20	0.465
326.2	6.51E-20	0.428	326.4	5.53E-20	0.422	326.6	5.76E-20	0.415	326.8	4.43E-20	0.409	327.0	3.44E-20	0.403
327.2	3.22E-20 6.79E-21	0.397	327.4	4.99E-21	0.391	327.6	4.77E-21	0.353	327.8	1.42E-20 1.75E-20	0.378	328.0	9.15E-21 3.27E-20	0.372
329.2	3.99E-20	0.335	329.4	5.13E-20	0.329	329.6	4.00E-20	0.322	329.8	3.61E-20	0.316	330.0	3.38E-20	0.310
331.2	5.08E-20 7.76E-21	0.273	331.4	6.16E-21	0.298	331.6	4.06E-21	0.291	331.8	3.03E-21	0.285	332.0	2.41E-21	0.279
332.2	1.74E-21	0.242	332.4	1.33E-21	0.236	332.6	2.70E-21	0.229	332.8	1.65E-21	0.223	333.0	1.17E-21	0.217
334.2	1.80E-21	0.180	334.4	1.43E-21	0.174	334.6	1.03E-21	0.198	334.8	7.19E-22	0.192	335.0	4.84E-22	0.155
335.2	2.73E-22	0.149	335.4	1.34E-22	0.143	335.6	-1.62E-22	2 0.136	335.8	1.25E-22	0.130	336.0	4.47E-22	0.124
337.2	2.29E-21	0.087	337.4	2.46E-21	0.081	337.6	2.92E-21	0.074	337.8	8.10E-21	0.068	338.0	1.82E-20	0.053
338.2 339.2	3.10E-20 4.33E-20	0.056	338.4 339.4	3.24E-20 4.20E-20	0.050 0.019	338.6 339.6	4.79E-20 3.99E-20) 0.043) 0.012	338.8 339.8	5.25E-20 3.11E-20	0.037 0.006	339.0 340.0	5.85E-20 2.72E-20	0.031 0.000
Photo	lysis File	= HCHC	NEWM											
280.0	2.49E-20	0.350	280.5	1.42E-20	0.346	281.0	1.51E-20	0.341	281.5	1.32E-20	0.336	282.0	9.73E-21	0.332
282.5	6.76E-21	0.327	283.0	5.82E-21	0.323	283.5	9.10E-21	0.319	284.0	3.71E-20	0.314	284.5	4.81E-20	0.309
287.5	1.10E-20	0.282	288.0	2.62E-20	0.278	288.5	4.00E-20	0.273	289.0	3.55E-20	0.269	289.5	2.12E-20	0.264
290.0	1.07E-20 5.90E-21	0.260	290.5 293.0	1.35E-20 1.11E-20	0.258	291.0 293.5	1.99E-20 6.26E-20	0.256	291.5	1.56E-20 7.40E-20	0.254	292.0	8.65E-21 5.36E-20	0.252
295.0	4.17E-20	0.240	295.5	3.51E-20	0.238	296.0	2.70E-20	0.236	296.5	1.75E-20	0.234	297.0	1.16E-20	0.232
300.0	1.51E-20 1.06E-20	0.230	298.0 300.4	3.69E-20 7.01E-21	0.228	298.5 300.6	4.40E-20 8.63E-21	0.226	299.0 300.8	3.44E-20 1.47E-20	0.224 0.221	299.5 301.0	2.02E-20 2.01E-20	0.222
301.2	2.17E-20 8 53E-21	0.221	301.4	1.96E-20 7 13E-21	0.221	301.6	1.54E-20	0.222	301.8	1.26E-20	0.222	302.0	1.03E-20	0.222
303.2	3.81E-20	0.223	303.4	5.57E-20	0.223	303.6	6.91E-20	0.223	303.8	6.58E-20	0.224	304.0	6.96E-20	0.224
304.2	5.79E-20 5.12E-20	0.224	304.4 305.4	5.24E-20 4 77E-20	0.224	304.6	4.30E-20 4 43E-20	0.225	304.8	3.28E-20 4 60E-20	0.225	305.0	3.60E-20 4 01E-20	0.225
306.2	3.28E-20	0.226	306.4	2.66E-20	0.226	306.6	2.42E-20	0.227	306.8	1.95E-20	0.227	307.0	1.58E-20	0.227
307.2	1.37E-20 2.08E-20	0.227	307.4	1.19E-20 2.39E-20	0.227	307.6	1.01E-20 3.08E-20	0.228	307.8	9.01E-21 3.39E-20	0.228	308.0	8.84E-21 3.18E-20	0.228
309.2	3.06E-20	0.229	309.4	2.84E-20	0.229	309.6	2.46E-20	0.230	309.8	1.95E-20	0.230	310.0	1.57E-20	0.230
310.2	1.26E-20 4.82E-21	0.233	310.4 311.4	9.26E-21 4.54E-21	0.236	310.6 311.6	7.71E-21 6.81E-21	0.239	310.8 311.8	6.05E-21 1.04E-20	0.242 0.257	311.0 312.0	5.13E-21 1.43E-20	0.245
312.2	1.47E-20	0.263	312.4	1.35E-20	0.266	312.6	1.13E-20	0.269	312.8	9.86E-21	0.272	313.0	7.82E-21	0.275
314.2	6.14E-21	0.278	313.4	7.45E-20	0.201	313.6	5.78E-20	0.284	314.8	5.59E-20	0.287	314.0	4.91E-20	0.290
315.2	4.37E-20	0.308	315.4 316.4	3.92E-20 2.05E-20	0.311	315.6 316.6	2.89E-20 4 38E-20	0.314	315.8 316.8	2.82E-20 5.86E-20	0.317	316.0	2.10E-20 6 28E-20	0.320
317.2	5.07E-20	0.338	317.4	4.33E-20	0.341	317.6	4.17E-20	0.344	317.8	3.11E-20	0.347	318.0	2.64E-20	0.350
318.2	2.24E-20 6.36E-21	0.353	318.4 319.4	1.70E-20 5.36E-21	0.356	318.6 319.6	1.24E-20 4.79E-21	0.359	318.8 319.8	1.11E-20 6.48E-21	0.362	319.0 320.0	7.70E-21 1.48E-20	0.365
320.2	1.47E-20	0.386	320.4	1.36E-20	0.392	320.6	1.69E-20	0.399	320.8	1.32E-20	0.405	321.0	1.49E-20	0.411
321.2	1.17E-20 4.13E-21	0.417	321.4	1.15E-20 3.36E-21	0.423	321.6	9.64E-21 2.39E-21	0.430	321.8	7.26E-21 2.01E-21	0.436 0.467	322.0	5.94E-21 1.76E-21	0.442
323.2	2.82E-21	0.479	323.4	4.65E-21	0.485	323.6	7.00E-21	0.492	323.8	7.80E-21	0.498	324.0	7.87E-21	0.504
324.2	2.15E-20	0.510	324.4	3.75E-20	0.510	324.0	4.00E-20	0.523	324.8	4.21E-21 6.47E-20	0.529	325.0	7.59E-20	0.535
326.2	6.51E-20	0.572	326.4	5.53E-20 2 13E-20	0.578	326.6	5.76E-20	0.585	326.8	4.43E-20	0.591	327.0	3.44E-20 9.15E-21	0.597
328.2	6.79E-21	0.634	328.4	4.99E-21	0.640	328.6	4.77E-21	0.647	328.8	1.75E-20	0.653	329.0	3.27E-20	0.659
329.2	3.99E-20 3.08E-20	0.665	329.4 330.4	5.13E-20 2 16E-20	0.671	329.6 330.6	4.00E-20 2.09E-20	0.678	329.8 330.8	3.61E-20 1 41E-20	0.684	330.0	3.38E-20 9.95E-21	0.690
331.2	7.76E-21	0.717	331.4	6.16E-21	0.721	331.6	4.06E-21	0.726	331.8	3.03E-21	0.730	332.0	2.41E-21	0.735
332.2	⊥./4E-21 9.84E-22	0.739 0.762	332.4 333.4	1.33E-21 8.52E-22	U.744 0.766	332.6 333.6	2.70E-21 6.32E-22	0.748 0.771	332.8 333.8	1.65E-21 5.21E-22	0.753 0.775	333.0 334.0	1.46E-21	U.757 0.780
334.2	1.80E-21	0.784	334.4	1.43E-21	0.789	334.6	1.03E-21	0.793	334.8	7.19E-22	0.798	335.0	4.84E-22	0.802
335.2	2./3E-22 1.23E-21	0.798	335.4 336.4	1.34E-22 2.02E-21	0.794	335.6 336.6	3.00E+00	0.769	335.8 336.8	1.25E-22 2.40E-21	0.764	336.0 337.0	4.4/E-22 3.07E-21	0.782
337.2	2.29E-21	0.754	337.4	2.46E-21 3.24E-20	0.749	337.6	2.92E-21	0.745	337.8	8.10E-21 5.25E-20	0.740	338.0	1.82E-20	0.734
339.2	4.33E-20	0.703	339.4	4.20E-20	0.698	339.6	3.99E-20	0.693	339.8	3.11E-20	0.687	340.0	2.72E-20	0.682
340.2	1.99E-20 4.83E-21	0.676	340.4 341 4	1.76E-20 3.47E-21	0.671	340.6 341.6	1.39E-20 2.23E-21	0.666	340.8 341 8	1.01E-20 1.55E-21	0.660	341.0 342 0	6.57E-21 3.70E-21	0.655
342.2	4.64E-21	0.621	342.4	1.08E-20	0.616	342.6	1.14E-20	0.610	342.8	1.79E-20	0.604	343.0	2.33E-20	0.599

Table 3. (continued)

WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY
Photol	lysis File	е = НСНО	NEWM (CO	ontinued)										
343.2 344.2 345.2 347.2 348.2 349.2 350.2 351.2 352.2 353.2 354.2 355.2 356.2	$\begin{array}{c} 1.72E-20\\ 8.26E-21\\ 1.60E-21\\ 5.15E-22\\ 3.34E-22\\ 7.60E-22\\ 1.64E-22\\ 0.00E+00\\ 3.45E-23\\ 8.38E-21\\ 1.96E-20\\ 3.49E-21\\ 4.17E-22\\ \end{array}$	0.593 0.565 0.537 0.508 0.480 0.423 0.394 0.366 0.337 0.309 0.280 0.251 0.223	343.4 344.4 345.4 346.4 347.4 349.4 350.4 351.4 352.4 352.4 353.4 354.4 355.4 356.4	$\begin{array}{c} 1.55E-20\\ 6.32E-21\\ 1.15E-21\\ 3.45E-22\\ 2.88E-22\\ 6.24E-22\\ 1.49E-22\\ 5.16E-23\\ 1.97E-22\\ 1.55E-20\\ 1.67E-20\\ 0.82E-21\\ 2.41E-21\\ 1.95E-22 \end{array}$	$\begin{array}{c} 0.588\\ 0.559\\ 0.531\\ 0.503\\ 0.474\\ 0.446\\ 0.417\\ 0.389\\ 0.360\\ 0.331\\ 0.303\\ 0.274\\ 0.246\\ 0.217 \end{array}$	343.6 344.6 345.6 347.6 348.6 349.6 351.6 352.6 352.6 354.6 355.6 355.6	$\begin{array}{c} 1.46E-20\\ 4.28E-21\\ 8.90E-22\\ 3.18E-22\\ 2.84E-22\\ 4.99E-22\\ 8.30E-23\\ 0.00E+00\\ 4.80E-22\\ 1.86E-20\\ 1.75E-20\\ 8.66E-21\\ 1.74E-21\\ 1.50E-22 \end{array}$	0.582 0.554 0.525 0.497 0.468 0.411 0.383 0.354 0.297 0.269 0.240 0.211	343.8 344.8 345.8 347.8 347.8 348.8 349.8 351.8 352.8 352.8 354.8 355.8 355.8 356.8	1.38E-20 3.22E-21 6.50E-22 3.56E-22 9.37E-22 4.08E-22 2.52E-23 3.13E-21 1.94E-20 1.63E-20 6.44E-21 1.11E-21 8.14E-23	$\begin{array}{c} 0.576\\ 0.548\\ 0.520\\ 0.491\\ 0.463\\ 0.434\\ 0.406\\ 0.377\\ 0.349\\ 0.320\\ 0.291\\ 0.263\\ 0.234\\ 0.206\end{array}$	344.0 345.0 346.0 347.0 349.0 350.0 351.0 352.0 353.0 354.0 355.0 355.0 355.0 355.0 357.0	1.00E-20 2.54E-21 5.09E-22 3.24E-22 2.57E-23 3.39E-22 2.57E-23 6.41E-21 2.78E-20 1.36E-20 1.36E-20 4.84E-21 7.37E-22 0.00E+00	0.571 0.542 0.514 0.485 0.457 0.428 0.371 0.343 0.314 0.286 0.257 0.229 0.200

Table	4.	List o	f Model	Species	Added	to	the	SAPRC-91	Me	echan	ism	used	to
		Represe	ent the	Reactive	Produ	cts	of	Isoprene	in	the	Pre	elimin	ary
		Detaile	ed Isopr	ene Mechai	nism.								

Name Description

Isoprene Product Species

MVK Methylvinyl ketone

METHACRO Methacrolein

MEFURAN 3-Methyl furan

ISOPROD C_5 Methyl- and hydroxymethyl substituted acroleins assumed to be formed in the OH reaction following O_2 addition to the other allylic resonance form of the OH - isoprene adduct, and 1,5-H shift isomerization of the alkoxy radical(s) subsequently formed. Also used to represent uncharacterized products in the O^3P reaction.

Secondary Product Species

HOACET	Hydroxyacetone
HOCCHO	Glycolaldehyde
MA-PAN	PAN analogue formed from methacrolein
AC-PAN	PAN analogue formed from acrolein and MVK
HO-PAN	PAN analogue formed from glycolaldehyde
IP-PAN	PAN analogue formed from reactions of ISOPROD
HET-UNKN	Photoreactive product(s) formed from furans (see Carter et al., 19??)

Acyl Peroxy Radicals (Listed in order of their corresponding PAN analogue, above.)

MA-RCO3. AC-RCO3. HOCCO-O2. IP-RCO3.

Various Excited "Criegee" biradicals formed in the reaction of O_3 with Isoprene and its Products. (The names give an indication of the structure.)

(HCHO2)	(C:CC(C)O2)	(C:C(C)CHO2)	(C2(.)(O2.)CHO)
(C-CO-CHO2)	(HOCCHO2)	(HCOCHO2)	(HOC2.O2.CH3)

Table 5. Listing of Reactions in the Preliminary Detailed Mechanism for Isoprene.

Rxn.	Kine	tic Paramet	ers [a]	Pongtiong [b]
	k(300)	A	Ea B	
Isopr	ene			
ISOH	1.46E+05	3.73E+04 -	0.81 -1.00	ISOP + HO. = #.58 HCHO + #.34 MVK + #.24 METHACRO + #.05 MEFURAN + #.31 ISOPROD + #.09 R202. + #.94 RO2-R. + #.06 RO2-N. + #1 00 R02
ISO3	2.20E-02	1.81E+01	4.00 -1.00	#1.05 KO2 $\text{ISOP} + \text{O3} = \#.5 \text{ HCHO} + \#.25 \text{ "METHACRO} + \text{MVK"} + \#.5 (\text{HCHO2}) + \\ \# 25 \text{ "(C:CC(C)O2)} + (C:C(C)CHO2) \text{"}$
ZIS1	6.00E+01	(No T Dep	endence)	(C:CC(C)O2) = #.42 "HO. + MA-RCO3. + HCHO + R2O2. + RCO3. + RO2." + #.58 "ISOPROD + #-1 -C"
ZIS2	6.00E+01	(No T Dep	endence)	(C:C(C)CHO2) = #.42 "HO2. + CO + HCHO + HOCCO-O2. + RCO3." + #.58 "ISOPROD + #-1 -C"
ISOA	8.81E+04	8.81E+04	0.00 -1.00	ISOP + O = #.93 ISOPROD + #.07 "AC-RCO3. + RCO3. + HCHO + RO2-R. + RO2."
ISN3	1.62E+03	3.74E+04	1.87 -1.00	ISOP + NO3 = #.4 HCHO + #.3 MVK + #.1 METHACRO + #.4 ISOPROD + #.8 NO2 + #.95 R2O2. + #.2 "RO2-R. + RNO3" + #1.15 RO2.
Metha	crolein [c]		
MA1	4.89E+04	2.73E+04 -	0.35 -1.00	METHACRO + HO. = #.5 "MA-RCO3. + RCO3." + #.42 "HOACET + CO" +
MA2 Z1 MAZ1	1.84E-03 6.00E+01 6.00E+01	8.09E+00 (No T Dep (No T Dep	5.00 -1.00 endence) endence)	<pre>#:00 HOLD + HOLD + HCHO + HCLY + (C2(.)(02.)CHO)" HCHO2) = #.37 O3OL-SB + #.12 "HO2. + CO + HO." + #.88 -C (C2(.)(02.)CHO) = #.435 "O3OL-SB + #3 -C" + #.565 "HO. + HCHO + #2 CO + RO2-R. + RO2."</pre>
MA3 MA5 MAP1 MAP2 MAP3 MAP4 MAP5 MAP6	(Phot 4.26E+00 (Same 8.73E+03 (Same (Same 4.07E-02	. Set = ACR 2.11E+03 k as React 8.73E+03 k as React k as React k as React 9.60E+18 2	OLEIN) 3.70 -1.00 ion B2) 0.00 -4.60 ion B6) ion B9) ion B10) 7.97 0.00	METHACRO + HV + #2.06E-3 = HO2. + CO + HCHO + CCO-O2. + RCO3. METHACRO + NO3 = MA-RCO3. + RCO3. + HNO3 MA-RCO3. + NO = NO2 + CO2 + HCHO + CCO-O2. + RCO3. MA-RCO3. + NO2 = MA-PAN MA-RCO3. + HO2. = -OOH + #2 "HCHO + CO2" MA-RCO3. + RO2. = RO2. + #.5 HO2. + #2 "HCHO + CO2" MA-RCO3. + RCO3. = RCO3. + HO2. + #2 "HCHO + CO2" MA-PAN = MA-RCO3. + NO2 + RCO3.
Methy	lvinyl Keto	one [c]		
MV1	2.74E+04	6.08E+03 -	0.90 -1.00	MVK + HO. = #.7 "HOCCHO + R2O2. + CCO-O2. + RCO3." + #.3 "HCHO +
MV2 MVZ1	7.67E-03 6.00E+01	6.29E+00 (No T Dep	4.00 -1.00 endence)	MGLY + RO2-R." + RO2. MVK + O3 = #.5 "(HCHO2) + HCHO + MGLY + (C-CO-CHO2)" (C-CO-CHO2) = #.74 "O3OL-SB + #3 -C" + #.26 "HO. + HCHO + #2 CO + RO2-R. + RO2."
MV4 ACP1 ACP2 ACP3 ACP4 ACP5 ACP6	(Phot (Same 8.73E+03 (Same (Same 4.07E-02	Set = ACR k as React 8.73E+03 k as React k as React k as React 9.60E+18 2	OLEIN) ion B2) 0.00 -4.60 ion B6) ion B9) ion B10) 7.97 0.00	MVK + HV + #2.1E-3 = HCHO + RO2-R. + RO2. + AC-RCO3. + RCO3. AC-RCO3. + NO = NO2 + CO2 + HCHO + CO + HO2. AC-RCO3. + NO2 = AC-PAN AC-RCO3. + HO2. = -OOH + HCHO + CO + CO2 AC-RCO3. + RO2. = RO2. + #.5 HO2. + HCHO + CO + CO2 AC-RCO3. + RCO3. = RCO3. + HO2. + HCHO + CO + CO2 AC-PAN = AC-RCO3. + NO2 + RCO3.
Hydro	xyacetone			
IP18 IP19	3.38E+03 (Phot	3.38E+03 . Set = ACE	0.00 -1.00 TONE)	HOACET + HO. = MGLY + HO2. HOACET + HV = CCO-O2. + RCO3. + HCHO + HO2.
Glyco	laldehyde			
IP20 IP21 IP22 IP23 IP24 IP25 IP26 IP27 IP28	1.45E+04 (Phot 4.17E+00 (Same (Same (Same (Same (Same (Same (Same	1.45E+04 Set = CCH 2.05E+03 k as React k as React k as React k as React k as React k as React	0.00 -1.00 OR) 3.70 -1.00 ion B2) ion B4) ion B6) ion B9) ion B10) ion C18)	HOCCHO + HO. = #.8 "HOCCO-O2. + H2O + RCO3." + #.2 "GLY + HO2." HOCCHO + HV = CO + HCHO + #2 HO2. HOCCHO + NO3 = HNO3 + HOCCO-O2. + RCO3. HOCCO-O2. + NO = CO2 + NO2 + HCHO + HO2. HOCCO-O2. + NO2 = HO-PAN HOCCO-O2. + HO2. = -OOH + CO2 + HCHO HOCCO-O2. + RO2. = RO2. + #.5 HO2. + CO2 + HCHO HOCCO-O2. + RCO3. = RCO3. + HO2. + CO2 + HCHO HOCCO-O2. + RCO3. = RCO3. + HO2. + CO2 + HCHO HO-PAN = HOCCO-O2. + NO2 + RCO3.
Methy	l furan			
K4 K5 K3	1.38E+05 2.05E+04 (Phot	1.38E+05 2.05E+04 . Set = ACR	0.00 -1.00 0.00 -1.00 OLEIN)	HO. + MEFURAN = #.245 "R2O2. + RO2." + HO2. + #.475 HET-UNKN NO3 + MEFURAN = HO2. + HNO3 HET-UNKN + HV = #2 HO2.
C₅ Met	hyl, Hydro	xymethyl Ad	croleins [d]	
IPOH	5.87E+04	5.87E+04	0.00 -1.00	ISOPROD + HO. = #.4 "IP-RCO3. + RCO3." + #.2 MEK + #.2 GLY + #.2 HOACET + #.1 HOCCHO + #.1 ACET + #.1 "RCHO + -C" + #.3 CO + # 6 "RO2-R + RO2 "
IPP1	(Same	k as React	ion B2)	IP-RC03. + NO = NO2 + CO2 + #.5 "CO + HO2. + CCO-O2. + RC03. + HOCCHO + HOACET"

Table 5 (continued)

Rxn.	Kineti	c Parame	ters [a]	Reactions [b]						
Laber	k(300)	A	Ea	В							
IPP2	8.73E+03 8	.73E+03	0.00	-4.60	IP-RCO3. + NO2 = IP-PAN						
IPP3	(Same k	as Reac	tion B	6)	IP-RC03. + H02. = -OOH + #1.5 C02 + #.5 "CO + HCHO + HOCCHO + HOACET"						
IPP4	(Same k	as Reac	tion B	9)	IP-RC03. + R02. = R02. + #.5 H02. + #.5 "CO + HCHO + HOCCHO + HOACET"						
IPP5	(Same k	as Reac	tion B	10)	IP-RC03. + RC03. = RC03. + H02. + #.5 "C0 + HCH0 + HOCCH0 + HOACET"						
IPP6	4.07E-02 9	.60E+18	27.97	0.00	IP-PAN = IP-RCO3. + NO2 + RCO3.						
IPO3	9.32E-02 8	.07E+00	2.66	-1.00	ISOPROD + 03 = #.25 "HOACET + HOCCHO + ACET + GLY + (HOCCHO2) + (HCOCHO2) + (C2(.)(02.)CHO) + (HOC2.02.CH3)"						
ZAC	6.00E+01	(No T De	penden	.ce)	(HCOCHO2) = #.435 "O3OL-SB + #2 -C" + #.565 "CO2 + #2 HO2. + CO"						
ZIP1	6.00E+01	(No T De	penden	ce)	(HOCCHO2) = #.7 "O3OL-SB + #2 -C" + #.3 HCHO + #.15 CO2 + #.45 HO2. + #.15 "CO + HO."						
ZIP2	6.00E+01	(No T De	penden	.ce)	(HOC2.O2.CH3) = #.8 "MEK + #-1 -C" + #.2 "HO. + MGLY + HO2."						
IPHV	(Phot.	Set = AC	ROLEIN)	ISOPROD + HV + #2.06E-3 = HCHO + #1.5 HO2. + #.5 "ACET + CO + GLY + RCO3." + #.3 HOCCO-02. + #.2 CCO-02.						
IPN3	4.26E+00 2	.11E+03	3.70	-1.00	ISOPROD + NO3 = IP-RCO3. + RCO3. + HNO3						

[a] Except as noted, expression for rate constant is k = A e^{Ea/RT} (T/300)^B. Rate constants and A factor are in ppm, min units. Units of Ea is kcal mole⁻¹. "Phot Set" means this is a photolysis reaction, with the absorption coefficients and quantum yields given in Carter (1990) or in Table ?.

[b] Format of reaction listing same as used in documentation of the detailed mechanism (Carter 1990).
 [c] Overall photolysis quantum yield and radical yield in ozone reaction adjusted to yield best fit of model simulations to results of methacrolein - NO_x - air or methylvinyl ketone - NO_x - air chamber experiments.

[d] Overall photolysis quantum yield and radical yield in ozone reaction assumed to be same as for methacrolein. Rate constant for ozone reaction adjusted to give best fit to model simulations of SAPRC isoprene runs.

represented by a single model species, with product yields being derived based on the distribution of isomers expected to be formed.) The mechanisms for methacrolein and methylvinyl ketone have been adjusted to simulate results of environmental chamber experiments employing those compounds, and the mechanisms for the C_5 hydroxy-substituted acroleins have been adjusted in part to simulate isoprene - NO_x - air runs. The species added to the SAPRC-91 mechanism to represent isoprene and its products are given in Table 4 and 5, respectively. This mechanism performs significantly better than the SAPRC-90 mechanism (e.g., see Carter and Lurmann, 1991) in simulating the results of the isoprene experiments (Carter, unpublished results).

This mechanism is preliminary and still under development, and a more detailed documentation of it is beyond the scope of this report. (In many respects it is similar to the recently published mechanism of Paulson and Seinfeld [1992].) It is presented here to illustrate the degree to which the results of these experiments are consistent with our current and most detailed estimates for the atmospheric reactions of isoprene and its major products. Note that while this mechanism was adjusted to fit isoprene and isoprene product – NO_x – air chamber experiments, the results of these reactivity experiments were not used in its development, so they provide an independent test of this mechanism.

Carbon Bond Mechanism

The Carbon Bond IV mechanism used in the calculations discussed here is based on that documented by Gery et al (1988), but modified as recommended by the EPA (Dodge, personal communication, 1991) The species in this mechanism are the same as given by Gery et. al (1988), and reactions of this version of the mechanism are listed in Table 6. The modifications relative to the documented (Gery et al., 1988) mechanism include adding the XO2 + HO2 reaction as recommended by Dodge (1990), and updating the kinetics for PAN formation and formaldehyde photolysis. Absorption cross section and quantum yield data for this mechanism were supplied by Gery (personal communication), and are listed on Table 7.

Like the unadjusted SAPRC-91 mechanism (Appendix A), the unadjusted Carbon Bond mechanism also significantly underpredicted the rate of ozone formation in the base case experiment. Thus, it had to be adjusted before it could be used to simulate reactivities measured in these experiments. The need for such an adjustment is not surprising in this case, since this mechanism was not designed to simulate aromatic chemistry with a blacklight light source. In this case, the adjustment consisted of increasing the photolysis rates of the two model species used to represent photoreactive aromatic fragmentation products (MGLY and OPEN) by a factor of two.

The Carbon Bond IV mechanism includes a separate representation for the reaction of isoprene, though like the SAPRC-90 mechanism it does not use separate model species to represent the reactions of its products. However, unlike SAPRC-90 which uses a generalized procedure which is applied to all the alkenes to represent the products, the Carbon Bond isoprene mechanism uses a mix of species already in the model to represent the type of reactions the Carbon Bond developers felt the isoprene products might undergo, with adjustments being made to fit results of isoprene-NO_x outdoor chamber experiments (Gery et. al. 1988). For example, ethene is represented among the mix of species isoprene is represented to form, to account for the fact that isoprene is expected to form products which react with ozone.

Chamber Effects Model

The testing of a chemical mechanism against environmental chamber data requires including in the model appropriate representations for chamber-dependent effects such as wall reactions and characteristics of the light source used during the experiments. The methods used to represent them in this study are based on those discussed in detail by Carter and Lurmann (1990, 1991), adapted

Rxn.	Kinet	tic Parameters	[a]	Pactions [b]					
Label	k(300)	A Ea	В	Reactions [b]					
				BASE CASE REACTIONS [c]					
1	(Phot	. Set = NO2CB)	NO2 + HV = NO + O					
2	4.32E+06	8.61E+04 -2.3	3 0.00	0 = 03					
3	2.66E+01	2.56E+03 2.7	2 0.00	O3 + NO = NO2					
4	1.37E+04	(No T Depend	ence)	O + NO2 = NO					
5	2.31E+03 2.44E+03	2.34E+UZ -1.3 2.29E+02 -1.2	/ 0.00	0 + NO2 = NO3 0 + NO = NO3					
7	4.73E-02	1.67E+02 4.8	7 0.00	NO2 + O3 = NO3					
8	(Phot	. Set = 0303PC	в)	O3 + HV = O					
9	(Phot	. Set = 0301DC	в)	O3 + HV = O1D					
10	4.25E+05	1.16E+05 -0.7	8 0.00	O1D = 0					
12	3.26E+00 1 00E+02	2 29F+03 1 8	ence) 7 0 00	$OID + H2O = \pi 2 OH$ O3 + OH - HO2					
13	3.00E+00	2.07E+01 1.1	5 0.00	$O_3 + HO_2 = OH$					
14	(Phot	. Set = NO3CBE	ST)	NO3 + HV = #.89 NO2 + #.89 O + #.11 NO					
15	4.42E+04	1.92E+04 -0.5	0 0.00	NO3 + NO = #2 NO2					
16	5.90E-01	3.56E+01 2.4	4 0.00	NO3 + NO2 = NO + NO2					
18	1.85E+03 1.90F-06	(No T Depend	1 0.00	NO3 + NO2 = N2O5 N2O5 + H2O - #2 HNO3					
19	2.78E+00	1.65E+16 21.6	5 0.00	$N_{205} = N_{03} + N_{02}$					
20	1.54E-04	2.63E-05 -1.0	5 0.00	NO + NO = #2 NO2					
21	1.60E-11	(No T Depend	ence)	NO + NO2 + H2O = #2 HONO					
22	9.80E+03	6.67E+02 -1.6	0 0.00	NO + OH = HONO					
23 25	1 50E-05	(No T Depend) ence)	HONO + HV = NO + OH HONO + HONO = NO + NO2					
26	1.68E+04	1.56E+03 -1.4	2 0.00	NO2 + OH = HNO3					
27	2.18E+02	7.77E+00 -1.9	9 0.00	OH + HNO3 = NO3					
28	1.23E+04	5.51E+03 -0.4	8 0.00	HO2 + NO = OH + NO2					
29	2.02E+03 5 11E+00	1.6/E+U2 -1.4 2 20E+15 20 1	9 0.00	HO2 + NO2 = PNA DNA - HO2 + NO2					
31	6.83E+03	1.92E+03 -0.7	6 0.00	OH + PNA = NO2					
32	4.14E+03	8.97E+01 -2.2	9 0.00	HO2 + HO2 = H2O2					
33	2.18E-01	8.76E-10-11.5	3 0.00	HO2 + HO2 + H2O = H2O2					
34	(Phot	. Set = H2O2CB)	H2O2 + HV = #2 OH					
35	2.52E+03 3.22E+02	4.70±+03 0.3	(0.00)	$OH + H_{2}O_{2} = HO_{2}$					
37	1.50E+04	(No T Depend	ence)	HCHO + OH = HO2 + CO					
38	(Phot	. Set = HCHORM	CB)	HCHO + HV = #2 HO2 + CO					
39	(Phot	. Set = HCHOSM	CB)	HCHO + HV = CO					
40	2.37E+02	4.15E+04 3.0	8 0.00	HCHO + O = OH + HO2 + CO					
42	6.36E+02	1.70E+04 1.9	6 0.00	ALD2 + O = C2O3 + OH					
43	2.40E+04	1.04E+04 -0.5	0 0.00	ALD2 + OH = C2O3					
44	3.70E+00	(No T Depend	ence)	ALD2 + NO3 = C2O3 + HNO3					
45	(Phot	Set = ALD2RC	B)	ALD2 + HV = HCHO + #2 HO2 + CO + XO2					
46 47	2.83E+04 1 36E+04	5.15E+04 0.3 3.84E+03 -0 7	6 0.00 6 0.00	$C_{203} + NO = HCHO + NO2 + HO2 + XO2$ $C_{203} + NO2 = PAN$					
48	3.44E-02	1.20E+18 26.8	3 0.00	PAN = C2O3 + NO2					
49	3.70E+03	(No T Depend	ence)	C2O3 + C2O3 = #2 HCHO + #2 XO2 + #2 HO2					
50	9.60E+03	(No T Depend	ence)	C2O3 + HO2 = #.79 HCHO + #.79 XO2 + #.79 HO2 + #.79 OH					
51	2.10E+01 1 20E+03	0.28E+U3 3.4	0 0.00	OH = HCHO + XOZ + HOZ $PAP + OH - \# 87 YO2 + \# 130 YO2N + \# 11 HO2 + \# 11 ALD2 + \#_0 11 PAP + W_0 $					
52	1.201.05	(no i bepena	ciice,	#.76 ROR					
53	1.37E+05	5.23E+16 15.9	0 0.00	ROR = #.96 XO2 + #1.1 ALD2 + #.94 HO2 + #-2.1 PAR + #.04 XO2N +					
54	9 5/12+0/	(No T Depend	ongo)	#.02 ROR					
55	2.20E+04	(No T Depend	ence)	ROR + NO2 =					
56	5.92E+03	1.74E+04 0.6	4 0.00	O + OLE = #.63 ALD2 + #.38 HO2 + #.28 XO2 + #.30 CO + #.20 HCHO +					
				#.02 XO2N + #.22 PAR + #.2 OH					
57	4.20E+04 1 80E-02	7.83E+03 -1.0 2 01F+01 4 1		OH + OLE = HCHO + ALD2 + # -1.0 PAR + XO2 + HO2 O3 + OLE = # 5 ALD2 + # 740 HCHO + # 220 XO2 + # 10 OH + # 330 CO + 10 OH + # 10 OH + 1					
50	1.001 02	2.015/01 4.1	0 0.00	#.44 HO2 + #-1.0 PAR					
59	1.14E+01	(No T Depend	ence)	NO3 + OLE = #.91 XO2 + HCHO + #.09 XO2N + ALD2 + NO2 + #-1 PAR					
60	1.08E+03	1.51E+04 1.5	7 0.00	O + ETH = HCHO + #1.7 HO2 + CO + #.7 XO2 + #.3 OH					
62	2 70E-03	1 75E+01 5 2	2 0.00	OH + EIH = XOZ + #1.50 HCHO + #.22 ALDZ + HOZO3 + ETH = HCHO + # 42 CO + # 12 HO2					
63	9.15E+03	3.13E+03 -0.6	4 0.00	TOL + OH = $\#.44$ HO2 + $\#.08$ XO2 + $\#.36$ CRES + $\#.56$ TO2					
64	1.20E+04	(No T Depend	ence)	TO2 + NO = #.90 NO2 + #.90 HO2 + #.90 OPEN					
65	2.50E+02	(No T Depend	ence)	TO2 = CRES + HO2					
66 67	6.10E+04	(No T Depend	ence)	OH + CRES = #.40 CRO + #.60 XOZ + #.60 HOZ + #.30 OPEN					
68	3.⊿5≞+U4 2.00E+04	(No T Depend	ence)	CRO + NO2 = CRO + NO2 =					
69	(Phot	. Set = HCHORB	CB)	OPEN + #Fudge + #9.04 + HV = C2O3 + HO2 + CO (see note [d])					
70	4.40E+04	(No T Depend	ence)	OPEN + OH = XO2 + #2 CO + #2 HO2 + C2O3 + HCHO					
71	1.50E-02	7.94E-02 0.9	9 0.00	OPEN + O3 = #.03 ALD2 + #.62 C2O3 + #.70 HCHO + #.03 XO2 + #.69 CO + #.08 OH + #.76 HO2 + #.20 MCLY					
72	3.62E+04	2.46E+04 -0.2	3 0.00	OH + XYL = #.70 HO2 + #.50 XO2 + #.20 CRES + #.8 MGLY + #1.1 PAR +					

Table 6. Listing of The Carbon Bond IV Mechanism as used to Simulate Results of Isoprene Reactivity Experiments.

Table 6 (continued)

ONO2

Rxn. Label	Kine	tic Pa	rameters	[a]	Reactions [b]
Laber	k(300)	A	Ea	В	
73 74 79 80 81 82	2.60E+04 (Phot 1.20E+04 1.00E+03 2.00E+03 8.64E+03	(No . Set (No (No 2.63E 1.13E	T Depender = HCHORBCH T Depender T Depender +01 -2.58 +02 -2.58	nce) 3) nce) nce) 0.00 0.00	<pre>#.30 TO2 OH + MGLY = XO2 + C2O3 MGLY + #Fudge + #9.64 + HV = C2O3 + HO2 + CO (see note [d]) XO2 + NO = NO2 XO2N + NO = XO2 + XO2 = XO2 + HO2 =</pre>
					ISOPRENE REACTIONS
75	2.70E+04	(No	T Depender	nce)	0 + ISOP = #.60 HO2 + #.8 ALD2 + #.55 OLE + #.5 XO2 + #.5 CO +
76	1.42E+05	(No	T Depender	nce)	OH + ISOP = XO2 + HCHO + #.67 HO2 + #.13 XO2N + ETH + #.4 MGLY + # 2 C2O3 + # 2 ALD2 + #R-TSOP TEST BCT
77	1.80E-02	(No	T Depender	nce)	O3 + ISOP = HCHO + #.4 ALD2 + #.55 ETH + #.2 MGLY + #.1 PAR + # 060 CO + # 44 HO2 + # 1 OH + #R-ISOP TEST RCT
78	4.70E+02	(No	T Depender	nce)	NO3 + ISOP = XO2N + #R-ISOP TEST_RCT
					CHAMBER-DEPENDENT REACTIONS
				()	Applicable for these ETC runs only)
O3W N25I N25S NO2W RSI	3.70E-04 2.50E-03 5.00E+08 1.40E-04 (Same	(No (No (No (No k as	T Depender T Depender T Depender T Depender Reaction 1	nce) nce) nce) nce) L)	O3 = N2O5 = #2 NOX-WALL N2O5 + H2O = #2 NOX-WALL NO2 = #.2 HONO + #.8 NOX-WALL HV + #2.E-5 = OH

me	k	as	Reaction	1)	ΗV	+	#2	.E-5 :	= (ЭH				
me	k	ag	Reaction	1)	ΗV	+	±1	1 🖓 🗕 4	=	NO2	+	± – 1	NOX-WAT	۰.

XSHC [a]

[b] [c]

Except as noted, expression for rate constant is $k = A e^{Ea/RT} (T/300)^B$. Rate constants and A factor are in ppm, min units. Units of Ea is kcal mole⁻¹. "Phot Set" means this is a photolysis reaction, with the absorption coefficients and quantum yields given in Table ?. Format of reaction listing same as used in documentation of the detailed mechanism (Carter 1990). Not all reactions in this listing are needed to simulate the experiments discussed here. The entire mechanism is given for completeness. The rates of these photolysis reactions were multiplied by a factor of two relative to the standard mechanism to simulate the base case experiments. "Fudge" is 1 for the standard mechanism, while "Fudge" = 2 was used for simulating these experiments. [d]

Absorption Cross Sections and Quantum Yields for Photolysis Reactions in the Carbon Bond IV Mechanism as Used to Simulate the Table 7. Isoprene Reactivity Experiments.

WL	Abs	QY	WL	Abs	QY	WL	Abs	QY	WL	Abs	QY	WL	Abs	QY
(nm)	(cm ²)		(nm)	(cm ²)		(nm)	(cm ²)		(nm)	(cm ²)		(nm)	(cm ²)	
Photo	lysis File	e = NO2C	в											
280.0	5.54E-20	0.984	281.0	5.58E-20	0.984	282.0	5.36E-20	0.984	283.0	5.36E-20	0.984	284.0	6.25E-20	0.984
285.0	6.99E-20	0.984	286.0	7.29E-20	0.984	287.0	7.37E-20	0.984	288.0	7.66E-20	0.984	289.0	7.89E-20	0.984
290.0	8.18E-20	0.984	291.0	9.90E-20	0.984	292.0	9.37E-20	0.984	293.0	9.75E-20	0.984	294.0	9.48E-20	0.984
295.0	9.68E-20	0.984	296.0	9.30E-20	0.983	297.0	1.22E-19	0.982	298.0	1.17E-19	0.982	299.0	1.26E-19	0.981
300.0	1.17E-19	0.980	301.0	1.23E-19	0.980	302.0	1.39E-19	0.978	303.0	1.59E-19	0.978	304.0	1.60E-19	0.977
305.0	1.66E-19	0.976	306.0	1.58E-19	0.975	307.0	1.63E-19	0.974	308.0	1.62E-19	0.973	309.0	1.84E-19	0.973
310.0	1.76E-19	0.972	311.0	1.88E-19	0.971	312.0	1.96E-19	0.970	313.0	2.04E-19	0.970	314.0	1.94E-19	0.969
315.0	2.25E-19	0.968	316.0	2.13E-19	0.967	317.0	2.33E-19	0.966	318.0	2.48E-19	0.966	319.0	2.31E-19	0.965
320.0	2.54E-19	0.964	321.0	2.65E-19	0.963	322.0	2.65E-19	0.962	323.0	2.77E-19	0.962	324.0	2.67E-19	0.961
325.0	2.79E-19	0.960	326.0	2.88E-19	0.959	327.0	2.91E-19	0.958	328.0	3.08E-19	0.958	329.0	3.00E-19	0.957
330.0	2.99E-19	0.956	331.0	3.05E-19	0.955	332.0	3.01E-19	0.954	333.0	3.73E-19	0.954	334.0	2.98E-19	0.953
335.0	3.45E-19	0.952	336.0	3.51E-19	0.951	337.0	3.46E-19	0.950	338.0	3.48E-19	0.950	339.0	3.99E-19	0.949
340.0	3.88E-19	0.948	341.0	4.17E-19	0.947	342.0	3.83E-19	0.946	343.0	3.54E-19	0.946	344.0	4.02E-19	0.945
345.0	4.07E-19	0.944	346.0	4.29E-19	0.943	347.0	4.28E-19	0.942	348.0	4.82E-19	0.942	349.0	4.61E-19	0.941
350.0	4.10E-19	0.940	351.0	4.52E-19	0.939	352.0	4.44E-19	0.938	353.0	3.99E-19	0.938	354.0	5.04E-19	0.937
355.0	5.13E-19	0.936	356.0	4.60E-19	0.935	357.0	5.58E-19	0.934	358.0	5.04E-19	0.934	359.0	4.55E-19	0.933
360.0	4.51E-19	0.932	361.0	5.39E-19	0.931	362.0	5.04E-19	0.930	363.0	5.12E-19	0.930	364.0	4.87E-19	0.929
365.0	5.78E-19	0.928	366.0	5.40E-19	0.912	367.0	5.19E-19	0.896	368.0	5.34E-19	0.881	369.0	5.18E-19	0.865
370.0	5.42E-19	0.849	371.0	5.21E-19	0.833	372.0	5.98E-19	0.817	373.0	5.50E-19	0.802	374.0	5.21E-19	0.786
375.0	5.35E-19	0.770	376.0	6.24E-19	0.780	377.0	5.67E-19	0.920	378.0	5.17E-19	0.820	379.0	5.47E-19	0.870
380.0	5.99E-19	0.900	381.0	5.66E-19	0.810	382.0	5.64E-19	0.700	383.0	5.37E-19	0.680	384.0	5.97E-19	0.700
385.0	5.94E-19	0.770	386.0	5.32E-19	0.840	387.0	5.60E-19	0.750	388.0	5.98E-19	0.810	389.0	6.02E-19	0.780
390.0	6.00E-19	0.800	391.0	5.83E-19	0.880	392.0	6.05E-19	0.840	393.0	5.45E-19	0.900	394.0	5.54E-19	0.900
395.0	5.89E-19	0.840	396.0	6.15E-19	0.830	397.0	5.67E-19	0.820	398.0	6.41E-19	0.770	399.0	5.60E-19	0.780

Table 7 (continued)

WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY
Photo	lysis File	e = NO2CB	(cont	inued)										
400.0 405.0 410.0 415.0 420.0	6.76E-19 6.32E-19 5.77E-19 6.04E-19 5.77E-19	0.680 0.320 0.150 0.070 0.020	401.0 406.0 411.0 416.0 421.0	6.53E-19 5.39E-19 5.88E-19 4.85E-19 5.80E-19	0.650 0.330 0.100 0.060 0.000	402.0 407.0 412.0 417.0	5.71E-19 4.73E-19 5.36E-19 5.31E-19	0.620 0.250 0.090 0.050	403.0 408.0 413.0 418.0	5.10E-19 6.26E-19 7.00E-19 5.52E-19	0.570 0.200 0.080 0.040	404.0 409.0 414.0 419.0	6.07E-19 5.90E-19 5.94E-19 5.28E-19	0.420 0.190 0.080 0.030
Photo	lysis File	e = 0301D	СВ											
280.0 285.0 290.0 295.0 300.0 305.0 310.0 315.0	3.97E-18 2.44E-18 1.41E-18 7.67E-19 3.92E-19 2.02E-19 1.03E-19 5.22E-20	0.900 0.900 0.900 0.900 0.900 0.884 0.560 0.120	281.0 286.0 291.0 296.0 301.0 306.0 311.0 316.0	$\begin{array}{c} 3.60 \pm -18\\ 2.21 \pm -18\\ 1.26 \pm -18\\ 6.64 \pm -19\\ 3.44 \pm -19\\ 1.80 \pm -19\\ 9.27 \pm -20\\ 4.78 \pm -20\end{array}$	$\begin{array}{c} 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.848\\ 0.450\\ 0.080\\ \end{array}$	282.0 287.0 292.0 297.0 302.0 307.0 312.0 317.0	3.24E-18 2.01E-18 1.10E-18 5.88E-19 3.03E-19 1.56E-19 8.00E-20 4.04E-20	0.900 0.900 0.900 0.900 0.900 0.800 0.340 0.050	283.0 288.0 293.0 298.0 303.0 308.0 313.0 318.0	3.01E-18 1.76E-18 9.89E-19 5.10E-19 2.63E-19 1.36E-19 6.92E-20 3.72E-20	0.900 0.900 0.900 0.900 0.900 0.740 0.250 0.020	284.0 289.0 294.0 304.0 309.0 314.0 319.0	2.73E-18 1.58E-18 8.62E-19 4.52E-19 2.35E-19 1.23E-19 6.29E-20 2.91E-20	0.900 0.900 0.900 0.900 0.900 0.660 0.180 0.000
Photo	lysis File	e = 0303P	CB											
$\begin{array}{c} 280.0\\ 290.0\\ 300.0\\ 310.0\\ 310.0\\ 320.0\\ 330.0\\ 424.0\\ 434.0\\ 454.0\\ 454.0\\ 454.0\\ 454.0\\ 454.0\\ 514.0\\ 554.0\\ 554.0\\ 554.0\\ 554.0\\ 554.0\\ 554.0\\ 554.0\\ 554.0\\ 554.0\\ 664.0\\ 654.0\\ 654.0\\ 654.0\\ 664.0\\ 654.0\\ 654.0\\ 664.0\\ 654.0\\ 664.0\\ 654.0\\ 654.0\\ 714.0\\ 724.0\\ \end{array}$	3.97E-18 1.41E-18 3.92E-10 2.99E-20 5.76E-21 1.21E-21 2.66E-22 5.50E-23 6.00E-23 1.00E-22 4.30E-22 4.30E-22 4.30E-22 1.70E-21 3.58E-21 4.01E-21 2.55E-21 3.68E-21 4.02E-21 3.58E-21 4.02E-21 3.67E-21 3.67E-21 3.67E-21 3.09E-21 2.61E-21 2.27E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.93E-21 1.95E-21 1.95E-21 1.95E-21 1.95E-21 1.95E-21 1.95	0.100 0.100 0.440 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1	$\begin{array}{c} 282.0\\ 292.0\\ 302.0\\ 312.0\\ 322.0\\ 322.0\\ 322.0\\ 322.0\\ 322.0\\ 426.0\\ 426.0\\ 426.0\\ 426.0\\ 426.0\\ 456.0\\ 456.0\\ 516.0\\ 556.0\\ 556.0\\ 556.0\\ 556.0\\ 556.0\\ 556.0\\ 556.0\\ 556.0\\ 556.0\\ 556.0\\ 556.0\\ 556.0\\ 556.0\\ 666.0\\ 626.0\\ 626.0\\ 646.0\\ 656.0\\ 646.0\\ 656.0\\ 666.0\\ 666.0\\ 666.0\\ 676.0\\ 576.0\\ 576.0\\ 596.0\\ 596.0\\ 616.0\\ 626.0\\ 646.0\\ 656.0\\ 666.0\\ 676.0\\ 716.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 726.0\\ 72$	$\begin{array}{c} 3.24E-18\\ 1.10E-18\\ 3.03E-18\\ 3.03E-18\\ 3.03E-20\\ 2.17E-20\\ 4.58E-21\\ 9.60E-22\\ 2.03E-22\\ 2.03E-22\\ 3.00E-23\\ 1.10E-22\\ 3.10E-22\\ 3.10E-22\\ 4.60E-22\\ 3.10E-22\\ 4.60E-22\\ 1.12E-21\\ 2.31E-21\\ 2.11E-21\\ 2.11E-21\\ 2.66E-21\\ 3.68E-21\\ 4.65E-21\\ 3.68E-21\\ 4.65E-21\\ 3.68E-21\\ 4.65E-21\\ 3.55E-21\\ 2.54E-21\\ 2.54E-21\\ 4.10E-21\\ 3.55E-21\\ 2.55E-21\\ 2.55E-21\\ 2.55E-21\\ 2.5E-21\\ 1.23E-21\\ 1.86E-21\\ 1.23E-21\\ 1.86E-21\\ 1.23E-21\\ 1.86E-21\\ 1.23E-21\\ 1.23E-21\\ 1.23E-21\\ 1.23E-21\\ 1.23E-21\\ 1.23E-21\\ 1.00E-22\\ 5.70E-22\\ 5.70E-22\\ \end{array}$	0.100 0.100 0.660 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.0000 1.000 1.0000 1.000 1.000 1.000	$\begin{array}{c} 284.0\\ 294.0\\ 304.0\\ 314.0\\ 314.0\\ 324.0\\ 344.0\\ 354.0\\ 418.0\\ 428.0\\ 448.0\\ 448.0\\ 448.0\\ 458.0\\ 448.0\\ 458.0\\ 458.0\\ 518.0\\ 508.0\\ 518.0\\ 528.0\\ 558.0\\ 558.0\\ 558.0\\ 558.0\\ 558.0\\ 558.0\\ 558.0\\ 568.0\\ 568.0\\ 568.0\\ 668.0\\ 668.0\\ 668.0\\ 668.0\\ 668.0\\ 668.0\\ 668.0\\ 678.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 788.0\\ 78$	$\begin{array}{c} 2.73E-18\\ 8.62E-19\\ 2.35E-19\\ 2.35E-19\\ 2.35E-19\\ 5.02E-21\\ 7.12E-22\\ 1.40E-22\\ 2.00E-22\\ 3.30E-22\\ 2.00E-22\\ 3.30E-22\\ 5.00E-22\\ 9.10E-22\\ 1.17E-21\\ 1.44E-21\\ 1.72E-21\\ 2.22E-21\\ 2.27E-21\\ 3.78E-21\\ 4.5E-21\\ 4.5E-21\\ 4.69E-21\\ 4.69E-21\\ 4.69E-21\\ 4.69E-21\\ 2.47E-21\\ 2.47E-21\\ 2.47E-21\\ 2.47E-21\\ 2.47E-21\\ 2.47E-21\\ 2.47E-21\\ 2.47E-21\\ 2.44E-21\\ 1.9E-21\\ 1.9E-22\\ 3.44E-21\\ 1.9E-22\\ 3.44E-21\\ 1.9E-22\\ 3.44E-21\\ 2.14E-21\\ 1.9E-22\\ 3.44E-21\\ 2.14E-21\\ 1.9E-22\\ 3.44E-21\\ 1.9E-22\\ 3.44E-21\\ 1.9E-22\\ 3.44E-21\\ 1.9E-22\\ 3.44E-21\\ 1.9E-22\\ 3.44E-21\\ 1.9E-22\\ 5.50E-22\\ 5.50E-22\\ \end{array}$	0.100 0.100 0.100 0.820 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1	$\begin{array}{c} 286.0\\ 296.0\\ 306.0\\ 316.0\\ 326.0\\ 346.0\\ 346.0\\ 420.0\\ 440.0\\ 440.0\\ 440.0\\ 450.0\\ 450.0\\ 450.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 500.0\\ 50$	$\begin{array}{c} 2.21E-18\\ 6.64E-19\\ 1.80E-19\\ 4.78E-20\\ 1.16E-20\\ 2.16E-21\\ 5.24E-22\\ 9.80E-23\\ 8.00E-23\\ 1.30E-22\\ 2.40E-22\\ 3.60E-22\\ 5.30E-22\\ 2.40E-22\\ 1.22E-21\\ 1.50E-22\\ 1.22E-21\\ 1.50E-21\\ 1.58E-21\\ 3.88E-21\\ 3.88E-21\\ 4.22E-21\\ 4.72E-21\\ 4.55E-21\\ 4.72E-21\\ 4.72E-21\\ 4.72E-21\\ 4.72E-21\\ 3.8E-21\\ 3.8E$	0.100 0.100 0.152 0.920 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1	$\begin{array}{c} 288.0\\ 298.0\\ 308.0\\ 318.0\\ 318.0\\ 338.0\\ 412.0\\ 442.0\\ 442.0\\ 442.0\\ 442.0\\ 442.0\\ 442.0\\ 442.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 522.0\\ 52$	$\begin{array}{c} 1.76\mathrm{E}{-18}\\ 5.10\mathrm{E}{-19}\\ 1.36\mathrm{E}{-19}\\ 1.36\mathrm{E}{-19}\\ 3.72\mathrm{E}{-20}\\ 1.11\mathrm{E}{-20}\\ 2.29\mathrm{E}{-21}\\ 3.95\mathrm{E}{-22}\\ 7.70\mathrm{E}{-23}\\ 9.00\mathrm{E}{-23}\\ 1.50\mathrm{E}{-22}\\ 2.60\mathrm{E}{-22}\\ 2.60\mathrm{E}{-22}\\ 1.02\mathrm{E}{-21}\\ 1.28\mathrm{E}{-21}\\ 1.28\mathrm{E}{-21}\\ 1.28\mathrm{E}{-21}\\ 1.48\mathrm{E}{-21}\\ 2.98\mathrm{E}{-21}\\ 3.95\mathrm{E}{-21}\\ 4.75\mathrm{E}{-21}\\ 4.75\mathrm{E}{-21}\\ 4.75\mathrm{E}{-21}\\ 3.08\mathrm{E}{-21}\\ 3.78\mathrm{E}{-21}\\ 3.78\mathrm{E}{-21}\\ 3.78\mathrm{E}{-21}\\ 3.78\mathrm{E}{-21}\\ 3.78\mathrm{E}{-21}\\ 3.78\mathrm{E}{-21}\\ 3.78\mathrm{E}{-21}\\ 1.30\mathrm{E}{-21}\\ 3.78\mathrm{E}{-21}\\ 1.30\mathrm{E}{-22}\\ 2.34\mathrm{E}{-21}\\ 2.34\mathrm{E}{-21}\\ 2.34\mathrm{E}{-21}\\ 2.34\mathrm{E}{-21}\\ 2.34\mathrm{E}{-21}\\ 1.32\mathrm{E}{-21}\\ 1.32\mathrm{E}{-21}\\ 1.32\mathrm{E}{-21}\\ 1.32\mathrm{E}{-21}\\ 1.32\mathrm{E}{-21}\\ 2.34\mathrm{E}{-21}\\ 3.34\mathrm{E}{-21}\\ 3.34\mathrm{E}{-21}\\$	0.100 0.100 0.260 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1
Photo	lysis File	e = HONOC	в											
311.0 316.0 321.0 326.0 331.0 336.0 341.0 351.0 351.0 356.0 361.0 366.0 371.0 376.0 371.0 386.0 381.0 381.0 381.0	$\begin{array}{c} U \cdot 00E+00\\ 3 \cdot 00E-21\\ 4 \cdot 27E-20\\ 3 \cdot 13E-20\\ 8 \cdot 70E-20\\ 8 \cdot 70E-20\\ 8 \cdot 32E-20\\ 1 \cdot 74E-19\\ 1 \cdot 19E-19\\ 1 \cdot 19E-19\\ 9 \cdot 46E-20\\ 2 \cdot 13E-19\\ 9 \cdot 46E-20\\ 1 \cdot 90E-20\\ 1 \cdot 90E-20\\ 1 \cdot 90E-20\\ 1 \cdot 90E-21\\ 1 \cdot 90E-21\\ \end{array}$	1.000 1.000	312.0 317.0 322.0 327.0 332.0 342.0 347.0 352.0 352.0 352.0 367.0 362.0 367.0 372.0 377.0 372.0 377.0 382.0 387.0 382.0	$\begin{array}{c} 2.00E-21\\ 4.60E-21\\ 4.01E-20\\ 4.12E-20\\ 1.38E-19\\ 4.58E-20\\ 3.35E-19\\ 8.20E-20\\ 1.14E-19\\ 9.35E-20\\ 3.52E-19\\ 8.85E-20\\ 3.52E-19\\ 8.85E-20\\ 1.40E-19\\ 5.65E-20\\ 0.00E+00\\ \end{array}$	1.000 1.000	313.0 318.0 323.0 328.0 338.0 343.0 343.0 358.0 358.0 363.0 363.0 373.0 378.0 378.0 383.0 388.0	$\begin{array}{c} 4.20E-21\\ 3.60E-20\\ 3.93E-20\\ 7.55E-20\\ 1.91E-19\\ 2.01E-19\\ 2.01E-19\\ 2.01E-19\\ 7.49E-20\\ 3.71E-19\\ 7.49E-20\\ 9.00E-20\\ 4.50E-19\\ 7.44E-20\\ 1.90E-20\\ 1.72E-19\\ 3.20E-20\\ \end{array}$	1.000 1.000	$\begin{array}{c} 314.0\\ 319.0\\ 324.0\\ 329.0\\ 339.0\\ 344.0\\ 349.0\\ 359.0\\ 359.0\\ 364.0\\ 359.0\\ 364.0\\ 379.0\\ 374.0\\ 379.0\\ 384.0\\ 389.0\\ \end{array}$	$\begin{array}{c} 4.60E-21\\ 6.10E-200\\ 4.01E-20\\ 6.64E-20\\ 0.5.91E-20\\ 1.63E-19\\ 1.02E-19\\ 1.02E-19\\ 7.13E-20\\ 4.96E-19\\ 7.29E-20\\ 1.21E-19\\ 2.93E-19\\ 4.77E-20\\ 5.80E-20\\ 1.99E-19\\ 1.90E-20\\ \end{array}$	1.000 1.000	315.0 325.0 325.0 340.0 345.0 355.0 360.0 365.0 375.0 375.0 375.0 380.0 385.0 390.0	$\begin{array}{c} 4.20E-21\\ 2.10E-20\\ 4.04E-20\\ 7.29E-20\\ 6.45E-20\\ 1.05E-19\\ 8.54E-20\\ 2.46E-19\\ 6.83E-20\\ 2.46E-19\\ 1.33E-19\\ 1.19E-19\\ 2.70E-20\\ 1.90E-19\\ 1.20E-20\\ \end{array}$	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 7 (continued)

WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY
Photol	lysis File	= н2020	!В											
280.0 285.0 290.0 295.0 300.0 310.0 310.0 315.0 320.0 325.0 330.0 340.0 345.0 350.0	$\begin{array}{c} 2.09E-20\\ 1.62E-20\\ 1.23E-20\\ 9.33E-21\\ 7.08E-21\\ 3.16E-21\\ 3.16E-21\\ 2.45E-21\\ 1.41E-21\\ 1.41E-21\\ 1.41E-21\\ 1.41E-21\\ 3.30E-22\\ 4.80E-22\\ \end{array}$	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	281.0 296.0 291.0 296.0 301.0 311.0 311.0 326.0 321.0 326.0 341.0 341.0 341.0 341.0	$\begin{array}{c} 2.00E-20\\ 1.54E-20\\ 1.7E-20\\ 8.88E-21\\ 6.74E-21\\ 3.97E-21\\ 2.33E-21\\ 1.77E-21\\ 1.35E-21\\ 1.35E-21\\ 1.05E-21\\ 7.90E-22\\ 6.00E-22\\ 0.00E+00\\ \end{array}$	$\begin{array}{c} 1.000\\ 1.$	$\begin{array}{c} 282.0\\ 287.0\\ 292.0\\ 297.0\\ 307.0\\ 312.0\\ 317.0\\ 322.0\\ 327.0\\ 332.0\\ 337.0\\ 347.0\\ 347.0\\ \end{array}$	$\begin{array}{c} 1 & 90E-20\\ 1 & 46E-20\\ 1 & 11E-20\\ 8 & 43E-21\\ 6 & 40E-21\\ 3 & 77E-21\\ 3 & 77E-21\\ 2 & 28E-21\\ 2 & 21E-21\\ 1 & 68E-21\\ 1 & 29E-21\\ 9 & 90E-22\\ 7 & 50E-22\\ 5 & 70E-22\\ \end{array}$	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	283.0 288.0 293.0 308.0 313.0 318.0 323.0 328.0 333.0 348.0 348.0	$\begin{array}{c} 1.81E-20\\ 1.39E-20\\ 1.05E-20\\ 7.98E-21\\ 6.06E-21\\ 4.65E-21\\ 3.56E-21\\ 2.73E-21\\ 2.10E-21\\ 1.59E-21\\ 1.22E-21\\ 9.40E-22\\ 7.10E-22\\ 5.40E-22\\ \end{array}$	$\begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ \end{array}$	$\begin{array}{c} 284.0\\ 289.0\\ 294.0\\ 309.0\\ 314.0\\ 319.0\\ 324.0\\ 329.0\\ 334.0\\ 334.0\\ 334.0\\ 349.0\\ 349.0\\ \end{array}$	1.71E-20 1.31E-20 9.92E-21 5.72E-21 4.41E-21 3.36E-21 2.59E-21 1.98E-21 1.90E-22 6.70E-22 5.10E-22	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Photol	lysis File	e = NO3CE	BEST											
$\begin{array}{c} 400.0\\ 425.0\\ 450.0\\ 475.0\\ 500.0\\ 525.0\\ 550.0\\ 575.0\\ 600.0\\ 625.0\\ \end{array}$	0.00E+00 1.00E-19 2.80E-19 6.00E-19 1.01E-18 1.48E-18 2.36E-18 2.74E-18 2.83E-18 9.25E-18	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	$\begin{array}{c} 405.0\\ 430.0\\ 455.0\\ 480.0\\ 505.0\\ 530.0\\ 555.0\\ 580.0\\ 605.0\\ 630.0\\ \end{array}$	3.00E-20 1.30E-19 3.30E-19 6.40E-19 1.10E-18 1.94E-18 2.68E-18 3.05E-18 3.45E-18 5.66E-18	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	$\begin{array}{c} 410.0\\ 435.0\\ 460.0\\ 485.0\\ 510.0\\ 535.0\\ 560.0\\ 585.0\\ 610.0\\ 635.0 \end{array}$	$\begin{array}{c} 4.00E-20\\ 1.80E-19\\ 3.70E-19\\ 6.90E-19\\ 1.32E-18\\ 2.04E-18\\ 3.07E-18\\ 2.77E-18\\ 1.45E-18\\ 1.45E-18\\ 1.45E-18\\ \end{array}$	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	$\begin{array}{c} 415.0\\ 440.0\\ 465.0\\ 490.0\\ 515.0\\ 540.0\\ 565.0\\ 590.0\\ 615.0\\ 640.0 \end{array}$	5.00E-20 1.90E-19 4.30E-19 8.80E-19 1.40E-18 1.81E-18 2.53E-18 5.14E-18 1.96E-18 1.11E-18	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	420.0 445.0 470.0 520.0 545.0 570.0 595.0 620.0 645.0	8.00E-20 2.20E-19 5.10E-19 9.50E-19 1.45E-18 1.81E-18 2.54E-18 4.08E-18 3.58E-18 0.00E+00	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Photol	lysis File	= HCHOF	BCB											
$\begin{array}{c} 280.0\\ 285.0\\ 290.0\\ 390.0\\ 305.0\\ 310.0\\ 315.0\\ 320.0\\ 325.0\\ 330.0\\ 335.0\\ 340.0 \end{array}$	$\begin{array}{c} 2.34E-20\\ 3.46E-20\\ 1.43E-20\\ 3.21E-20\\ 7.20E-21\\ 4.94E-20\\ 1.03E-20\\ 2.88E-20\\ 1.71E-20\\ 2.19E-20\\ 2.00E-22\\ 1.07E-20\\ \end{array}$	0.560 0.650 0.720 0.770 0.800 0.790 0.760 0.700 0.610 0.490 0.330 0.130 0.000	281.0 286.0 291.0 296.0 301.0 306.0 311.0 321.0 326.0 331.0 336.0	$\begin{array}{c} 1.65E-20\\ 2.32E-20\\ 1.32E-20\\ 1.59E-20\\ 1.51E-20\\ 3.02E-20\\ 8.10E-21\\ 2.79E-20\\ 1.32E-20\\ 3.44E-20\\ 7.90E-21\\ 1.70E-21\\ \end{array}$	0.580 0.670 0.730 0.780 0.800 0.790 0.750 0.690 0.690 0.460 0.290 0.083	282.0 287.0 292.0 307.0 312.0 317.0 327.0 327.0 332.0 337.0	$\begin{array}{c} 7.60E-21\\ 9.50E-21\\ 6.60E-21\\ 1.96E-20\\ 7.40E-21\\ 1.16E-20\\ 1.49E-20\\ 3.59E-20\\ 4.30E-21\\ 1.75E-20\\ 3.20E-21\\ 3.20E-21\\ \end{array}$	0.600 0.680 0.750 0.790 0.800 0.790 0.740 0.670 0.670 0.430 0.250 0.250 0.038	283.0 288.0 293.0 303.0 313.0 318.0 328.0 333.0 338.0 338.0	4.60E-21 2.32E-20 5.22E-20 3.66E-20 4.35E-20 2.18E-20 1.55E-20 1.65E-20 6.00E-21 1.01E-20 1.50E-21 1.93E-20	0.620 0.700 0.760 0.790 0.800 0.780 0.730 0.650 0.540 0.390 0.210 0.000	284.0 289.0 294.0 309.0 314.0 319.0 324.0 329.0 334.0 339.0	3.93E-20 2.50E-20 4.30E-20 1.55E-20 4.79E-20 2.25E-20 3.99E-20 7.30E-21 7.50E-21 3.03E-20 1.70E-21 2.15E-20	0.630 0.710 0.760 0.800 0.770 0.720 0.630 0.510 0.360 0.170 0.000
Photol	lysis File	= HCHOR	MCB											
$\begin{array}{c} 280.0\\ 285.0\\ 290.0\\ 295.0\\ 300.0\\ 305.0\\ 310.0\\ 315.0\\ 320.0\\ 325.0\\ 330.0\\ 335.0\\ 340.0 \end{array}$	$\begin{array}{c} 2.69E-20\\ 4.10E-20\\ 1.09E-20\\ 5.30E-21\\ 4.40E-20\\ 2.65E-20\\ 4.83E-20\\ 9.90E-21\\ 6.40E-21\\ 4.46E-20\\ 8.00E-22\\ 2.78E-20\\ \end{array}$	0.560 0.650 0.720 0.770 0.800 0.790 0.760 0.700 0.610 0.490 0.490 0.330 0.130 0.000	281.0 286.0 291.0 296.0 301.0 306.0 311.0 321.0 326.0 331.0 336.0	$\begin{array}{c} 1.34E-20\\ 1.95E-20\\ 2.15E-20\\ 1.15E-20\\ 5.01E-20\\ 5.01E-20\\ 8.40E-21\\ 2.65E-20\\ 1.59E-20\\ 3.74E-20\\ 2.53E-20\\ 1.00E-21\\ \end{array}$	0.580 0.670 0.730 0.780 0.800 0.790 0.750 0.690 0.460 0.290 0.083	282.0 287.0 292.0 307.0 312.0 317.0 327.0 327.0 332.0 337.0	9.80E-21 1.01E-20 5.80E-21 1.12E-20 1.24E-20 2.90E-20 8.70E-21 6.15E-20 9.00E-21 5.67E-20 6.60E-21 3.10E-21	0.600 0.680 0.750 0.790 0.800 0.790 0.740 0.670 0.670 0.430 0.250 0.250	283.0 288.0 293.0 303.0 313.0 318.0 328.0 323.0 333.0 338.0	5.80E-21 2.23E-20 1.81E-20 2.41E-20 1.33E-20 1.15E-20 3.62E-20 2.10E-21 3.14E-20 2.20E-21 1.09E-20	0.620 0.700 0.760 0.780 0.780 0.730 0.650 0.540 0.390 0.210 0.000	284.0 289.0 294.0 309.0 314.0 319.0 324.0 329.0 334.0 339.0	2.78E-20 3.20E-20 5.45E-20 7.36E-20 2.53E-20 7.36E-20 2.78E-20 5.07E-20 1.18E-20 6.00E-21 1.06E-20 1.00E-21 4.71E-20	0.630 0.710 0.760 0.800 0.770 0.630 0.510 0.360 0.170 0.000
Photol	lysis File	e = HCHOS	BCB											
280.0 285.0 295.0 300.0 310.0 320.0 325.0 320.0 325.0 335.0 340.0 345.0 355.0 355.0 360.0	$\begin{array}{c} 2.34E-20\\ 3.46E-20\\ 3.21E-20\\ 7.20E-21\\ 4.94E-20\\ 2.88E-20\\ 1.71E-20\\ 2.19E-20\\ 1.96E-20\\ 2.09E-20\\ 1.96E-20\\ 2.00E-22\\ 1.07E-20\\ 1.20E-21\\ 3.00E-22\\ 2.60E-22\\ 2.60E-22\\ 0.00E+00\\ \end{array}$	0.440 0.350 0.280 0.200 0.210 0.240 0.300 0.510 0.590 0.620 0.620 0.600 0.520 0.390 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.250 0.240 0.240 0.510 0.590 0.590 0.620 0.590 0.620 0.590 0.620 0.590 0.620 0.590 0.620 0.590 0.620 0.620 0.590 0.620 0.663	281.0 286.0 291.0 301.0 301.0 311.0 321.0 321.0 321.0 326.0 331.0 336.0 341.0 346.0 351.0 356.0	$\begin{array}{c} 1.65E-20\\ 2.32E-20\\ 1.59E-20\\ 1.59E-20\\ 3.02E-20\\ 3.02E-20\\ 3.02E-20\\ 1.32E-20\\ 3.32E-20\\ 1.32E-20\\ 1.32E-20\\ 1.32E-20\\ 3.44E-20\\ 7.90E-21\\ 1.70E-21\\ 3.10E-21\\ 4.00E-22\\ 9.00E-22\\ 5.00E-22\\ 5.00E-22\\ \end{array}$	0.420 0.330 0.220 0.220 0.210 0.310 0.410 0.540 0.620 0.590 0.360 0.360 0.200	$\begin{array}{c} 282.0\\ 287.0\\ 297.0\\ 302.0\\ 307.0\\ 317.0\\ 327.0\\ 327.0\\ 332.0\\ 337.0\\ 347.0\\ 347.0\\ 357.0\\ \end{array}$	$\begin{array}{c} 7,60E-21\\ 9,50E-21\\ 1,96E-20\\ 7,40E-21\\ 1,16E-20\\ 3,59E-20\\ 4,30E-21\\ 1,75E-20\\ 3,20E-21\\ 3,20E-21\\ 9,40E-21\\ 9,40E-22\\ 9,00E-22\\ 3,00E-22\\ \end{array}$	0.400 0.320 0.210 0.210 0.200 0.210 0.260 0.330 0.430 0.550 0.610 0.620 0.570 0.470 0.330 0.160	283.0 288.0 293.0 298.0 303.0 313.0 318.0 328.0 333.0 338.0 348.0 348.0 353.0 358.0	$\begin{array}{c} 4.60\text{E-21}\\ 2.32\text{E-20}\\ 5.22\text{E-22}\\ 3.66\text{E-20}\\ 4.35\text{E-20}\\ 2.18\text{E-20}\\ 1.55\text{E-20}\\ 6.00\text{E-21}\\ 1.65\text{E-20}\\ 6.00\text{E-21}\\ 1.93\text{E-20}\\ 1.50\text{E-21}\\ 1.93\text{E-20}\\ 1.37\text{E-20}\\ 1.37\text{E-20}\\ 4.00\text{E-22}\\ 1.17\text{E-20}\\ 4.00\text{E-22}\\ \end{array}$	$\begin{array}{c} 0.380\\ 0.300\\ 0.240\\ 0.210\\ 0.220\\ 0.220\\ 0.350\\ 0.460\\ 0.570\\ 0.620\\ 0.610\\ 0.560\\ 0.450\\ 0.300\\ 0.130 \end{array}$	$\begin{array}{c} 284.0\\ 289.0\\ 299.0\\ 304.0\\ 319.0\\ 319.0\\ 329.0\\ 334.0\\ 339.0\\ 334.0\\ 339.0\\ 349.0\\ 349.0\\ 354.0\\ 359.0\\ \end{array}$	$\begin{array}{c} 3.93E-20\\ 2.50E-20\\ 4.30E-20\\ 1.55E-20\\ 2.25E-20\\ 3.99E-20\\ 7.30E-21\\ 7.50E-21\\ 3.03E-20\\ 1.70E-21\\ 2.15E-20\\ 5.70E-21\\ 3.00E-22\\ 7.20E-21\\ 3.00E-22\\ \end{array}$	$\begin{array}{c} 0.370\\ 0.290\\ 0.240\\ 0.210\\ 0.230\\ 0.230\\ 0.370\\ 0.580\\ 0.620\\ 0.610\\ 0.540\\ 0.540\\ 0.260\\ 0.100\\ \end{array}$

Table 7 (continued)

WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY	WL (nm)	Abs (cm ²)	QY
Photo	lysis Fil	е = НСНС	SMCB											
280.0 295.0 295.0 300.0 305.0 315.0 325.0 325.0 335.0 335.0 340.0 345.0 355.0 355.0	2.69E-20 4.10E-20 1.09E-20 5.30E-21 4.40E-20 2.65E-20 4.83E-20 9.90E-21 6.40E-21 6.40E-21 8.00E-22 2.78E-20 8.00E-22 2.78E-20 3.70E-21 0.00E+00 1.33E-20	$\begin{array}{c} 0.440\\ 0.350\\ 0.280\\ 0.200\\ 0.210\\ 0.240\\ 0.300\\ 0.510\\ 0.510\\ 0.620\\ 0.620\\ 0.620\\ 0.620\\ 0.390\\ 0.230\\ 0.230\\ 0.063 \end{array}$	$\begin{array}{c} 281.0\\ 286.0\\ 291.0\\ 301.0\\ 301.0\\ 316.0\\ 321.0\\ 321.0\\ 336.0\\ 334.0\\ 336.0\\ 346.0\\ 351.0\\ 356.0\\ \end{array}$	$\begin{array}{c} 1.34E-20\\ 1.95E-20\\ 1.88E-20\\ 2.15E-20\\ 1.15E-20\\ 5.01E-20\\ 8.40E-21\\ 2.65E-20\\ 1.59E-20\\ 3.74E-20\\ 3.74E-20\\ 2.53E-20\\ 1.00E-21\\ 9.00E-21\\ 9.00E-21\\ 0.00E+22\\ 0.00E+00\\ 3.40E-21 \end{array}$	$\begin{array}{c} 0.420\\ 0.330\\ 0.270\\ 0.220\\ 0.200\\ 0.210\\ 0.310\\ 0.410\\ 0.540\\ 0.600\\ 0.620\\ 0.590\\ 0.500\\ 0.360\\ 0.200 \end{array}$	282.0 287.0 292.0 302.0 307.0 312.0 322.0 327.0 322.0 327.0 342.0 342.0 342.0 357.0	$\begin{array}{c} 9.80E-21\\ 1.01E-20\\ 5.80E-21\\ 1.12E-20\\ 1.24E-20\\ 2.90E-20\\ 6.15E-20\\ 9.00E-21\\ 5.67E-20\\ 9.00E-21\\ 3.10E-21\\ 3.10E-21\\ 3.30E-21\\ 0.00E+00\\ 6.00E-22\\ 8.00E-22\\ \end{array}$	$\begin{array}{c} 0.400\\ 0.320\\ 0.250\\ 0.210\\ 0.200\\ 0.210\\ 0.260\\ 0.330\\ 0.430\\ 0.550\\ 0.610\\ 0.620\\ 0.570\\ 0.470\\ 0.330\\ 0.160\\ \end{array}$	$\begin{array}{c} 283.0\\ 288.0\\ 293.0\\ 303.0\\ 308.0\\ 313.0\\ 318.0\\ 323.0\\ 333.0\\ 333.0\\ 333.0\\ 338.0\\ 348.0\\ 348.0\\ 353.0\\ 358.0\\ \end{array}$	$\begin{array}{c} 5.80\text{E-21}\\ 2.23\text{E-20}\\ 1.81\text{E-20}\\ 2.41\text{E-20}\\ 1.35\text{E-20}\\ 3.62\text{E-20}\\ 2.10\text{E-21}\\ 3.14\text{E-20}\\ 2.20\text{E-21}\\ 1.09\text{E-20}\\ 2.00\text{E-22}\\ 1.57\text{E-20}\\ 2.00\text{E-22}\\ 1.57\text{E-20}\\ 2.00\text{E-22}\\ \end{array}$	$\begin{array}{c} 0.380\\ 0.300\\ 0.240\\ 0.210\\ 0.200\\ 0.220\\ 0.350\\ 0.460\\ 0.570\\ 0.620\\ 0.610\\ 0.560\\ 0.450\\ 0.300\\ 0.130\\ \end{array}$	$\begin{array}{c} 284.0\\ 289.0\\ 299.0\\ 304.0\\ 309.0\\ 319.0\\ 324.0\\ 339.0\\ 339.0\\ 339.0\\ 339.0\\ 344.0\\ 339.0\\ 344.0\\ 354.0\\ 359.0\\ \end{array}$	$\begin{array}{c} 2.78E-20\\ 3.20E-20\\ 5.45E-20\\ 2.53E-20\\ 7.36E-20\\ 2.78E-20\\ 5.07E-20\\ 1.18E-20\\ 6.00E-21\\ 1.06E-20\\ 1.00E-21\\ 4.71E-20\\ 2.00E-22\\ 2.35E-20\\ 0.00E+20\\ \end{array}$	$\begin{array}{c} 0.370\\ 0.290\\ 0.240\\ 0.210\\ 0.200\\ 0.230\\ 0.370\\ 0.490\\ 0.580\\ 0.620\\ 0.610\\ 0.540\\ 0.540\\ 0.540\\ 0.540\\ 0.540\\ 0.100 \end{array}$
Photo	lysis Fil	e = ALD2	RCB											
280.0 285.0 290.0 295.0 300.0 310.0 315.0 320.0 325.0 330.0	$\begin{array}{c} 4.50E-20\\ 4.70E-20\\ 4.90E-20\\ 4.50E-20\\ 4.50E-20\\ 3.40E-20\\ 2.75E-20\\ 2.75E-20\\ 2.10E-20\\ 1.80E-20\\ 1.10E-20\\ 6.90E-21 \end{array}$	0.580 0.555 0.530 0.480 0.370 0.270 0.170 0.100 0.040 0.000	281.0 286.0 291.0 296.0 301.0 306.0 311.0 316.0 321.0 326.0	4.54E-20 4.74E-20 4.82E-20 4.46E-20 3.27E-20 2.62E-20 2.62E-20 1.66E-20 1.18E-20	0.575 0.550 0.470 0.418 0.350 0.250 0.156 0.088 0.032	282.0 287.0 292.0 297.0 302.0 312.0 317.0 322.0 327.0	4.58E-20 4.78E-20 4.74E-20 4.42E-20 3.94E-20 3.14E-20 2.49E-20 1.98E-20 1.52E-20 9.36E-21	0.570 0.545 0.510 0.460 0.330 0.230 0.142 0.076 0.024	283.0 288.0 293.0 298.0 303.0 308.0 313.0 318.0 323.0 328.0	4.62E-20 4.82E-20 4.66E-20 4.38E-20 3.76E-20 3.01E-20 2.36E-20 1.92E-20 1.38E-20 8.54E-21	$\begin{array}{c} 0.565\\ 0.540\\ 0.500\\ 0.450\\ 0.394\\ 0.310\\ 0.210\\ 0.128\\ 0.064\\ 0.016\\ \end{array}$	284.0 289.0 294.0 304.0 309.0 314.0 319.0 324.0 329.0	4.66E-20 4.86E-20 4.58E-20 4.34E-20 3.58E-20 2.88E-20 2.23E-20 1.86E-20 1.24E-20 7.72E-21	0.560 0.535 0.490 0.440 0.382 0.290 0.190 0.114 0.052 0.008

for this specific set of experiments as indicated in Appendix A. Where possible, the parameters were derived based on analysis of results of characterization experiments carried out in conjunction with these runs. In cases where no data are available for this specific chamber, the parameters used by Carter and Lurmann (1991) for model simulations of runs carried out in the SAPRC ITC chamber were used. The SAPRC ITC is similar in construction to the SAPRC ETC used for this study; both are indoor chambers consisting of 2-mil thick FEP Teflon reaction bags with blacklight light source. The specific chamber-dependent parameters used in chamber model simulations for this study, and their derivations are discussed in Appendix A, and included in the reaction listings for the base case mechanisms in Table 2 and 6. The same chamber model was used for both base case mechanisms.

RESULTS AND DISCUSSION

Experimental Results

A total of 4 mini-surrogate- NO_x experiments with added isoprene were carried out, each alternating with a standard (or "base case") mini-surrogate- NO_x experiment which did not have the added isoprene. In addition, since the experiments were carried out in conjunction with similar runs with other VOCs, the relevant base case runs conducted before and after those carried out for this program are also included in the data analysis. This provides the most comprehensive available baseline against which to compare the effects of the added isoprene.

Typical results are shown in Figures 1 and 2. Figure 1 gives concentration-time profiles of species measured during a representative standard run, along with results of model simulations using the adjusted SAPRC-91 discussed in the previous section. Note that the standard run does not form an ozone maximum, since ozone is continuing to form at the end of the experiments. This is characteristic of "maximum reactivity" conditions, where the addition of VOCs has the greatest effect on ozone formation (Carter, 1991). The results of the other standard runs are similar, though there is some variation from run to run because of run to run variations of temperature and (to a lesser extent) other reaction conditions. These variations, and the methods used to take them into account when deriving the measured incremental reactivities, are discussed in Appendix A.

Figure 2 shows concentration-time profiles for selected species measured during a selected added isoprene run, along with profiles for the same species (except for isoprene) measured during the standard run immediately preceding it. The added isoprene can be seen to cause an increase in the rate of NO consumption and the amount of ozone formed during the experiment, and also causes a slight but measurable increase in the rate of m-xylene consumption, relative to the standard run. The results of the other added isoprene experiments are similar.

Table 8 gives a summary of the results of all the added isoprene runs and of the standard runs conducted during the same period, with the runs listed in chronological order. The table gives the average temperatures, the initial reactant concentrations, the $d(O_3-NO)$ (i.e., ozone formed + NO oxidized) results at 2, 4, and 6 hours, the final IntOH results derived as discussed in the previous sections, and the ratio of the final $d(O_3-NO)$ to the final IntOH (designated ConvR on the table, following the terminology in Appendix A).

Figure 1. Concentration-time profiles of species measured during the representative Set 3 standard run ETC-292. Results of model calculations using the adjusted SAPRC-91 mechanism are also shown.

Figure 2. Concentration-time profiles of selected species measured during a selected added isoprene run and during the standard run immediately preceding it.

Table 8. Conditions and Selected Results of the Mini-Surrogate Runs used for Isoprene Reactivity Assessment

Run	Added	Avq.T	T Initial Conc (ppb)					$d(O_3-NO)$ (ppb)			IntOH	ConvR [a]
	(ppm)	(K)	NO	NO2	n-C ₆	Ethe.	m-Xyl	t=2	t=4	t=6	(ppt-min)	(10^3 min^{-1})
270		301.2	382	105	384	681	96.1	163	442	762	22.8 ± 8%	33.5
271	0.157	300.1	377	115	387	674	99.4	303	788	1207	28.6 ± 7%	42.3
272		301.2	376	119	394	665	103.4	163	458	787	23.8 ± 8%	33.0
273	0.139	301.7	389	108	376	653	103.9	334	840	1262	30.3 ± 8%	41.7
274		302.3	397	112	381	659	103.3	159	479	839	23.2 ± 8%	36.2
275	0.109	302.2	392	114	363	647	98.0	297	765	1217	30.8 ± 8%	39.6
276		302.3	382	113	365	648	98.9	163	468	819	25.6 ± 7%	32.0
277	0.076	303.1	390	113	364	645	98.8	268	701	1167	29.9 ± 6%	39.0
278		302.8	394	119	364	635	98.9	153	456	826	23.3 ± 8%	35.4

[a] ConvR is the ratio of the 6-hour d(O_3-NO) to the 6-hour IntOH. It is assumed to have the same relative uncertainty as the IntOH.

The details of the reactivity analyses of each of the added isoprene runs are given on Tables 9-11. Tables 9 and 10 give the results for $d(O_3-NO)$ and IntOH reactivities, respectively, and the data used to derive them. Specifically, for each added isoprene run, these tables give:

- the amount of isoprene added and (for Table 9) its estimated uncertainty;
- the amount of isoprene reacted at each hour of the run and its estimated uncertainty;
- the hourly d(O₃-NO) or IntOH results from the added isoprene run, and (for IntOH) the measurement uncertainties;
- the hourly $d(O_3-NO)$ or IntOH predicted, using a linear least squares regression analysis of the base case results against temperature, etc., to occur in a base case run carried out under the conditions of the added isoprene run, and the uncertainty of the prediction of the regression;
- the change in hourly $d(O_3-NO)$ or IntOH attributed to the addition of the isoprene, i.e., the difference between the hourly $d(O_3-NO)$ or IntOH for the added isoprene run and the corresponding predicted for the base case run, and the estimated uncertainty;
- the hourly $d(O_3-NO)$ or IntOH incremental reactivities, calculated by dividing the change in hourly $d(O_3-NO)$ or IntOH attributed to the added isoprene by the amount of isoprene added, and their uncertainties; and
- the hourly d(O₃-NO) or IntOH mechanistic reactivities, calculated by dividing the change in hourly d(O₃-NO) or IntOH attributed to the addition of the isoprene by the amount of isoprene reacted, and their uncertainties.

Table 11 gives the results for the direct incremental and direct mechanistic (ConvF) reactivities and the data used to derive them. In addition to the amounts of isoprene added and reacted, it gives:

- the final IntOH for the added isoprene run, which is used in Equation (V) to calculate, $d(O_3-NO)^{\text{base ROG (test)}}$, and its measurement uncertainty;
- the $d(O_3-NO)^{\text{base}}/\text{IntOH}^{\text{base}}$ ratio estimated, using a linear least squares regression analysis of this ratio for the base case runs, to correspond to the conditions of the added isoprene experiment, and its estimated uncertainty from the regression;
- the $d(O_3-NO)^{\text{base ROG (test)}}$ value estimated using the above two quantities and Equation (V), and its uncertainty;
- the final $d(O_3-NO)^{test}$ of the added isoprene run;
- the direct incremental reactivity, calculated as indicated on footnote [c] to the table; and
- the ConvF reactivity, calculated from the quantities on the table using Equation (VIII), and its estimated uncertainty.

Run	Added	Time	Reacted	[a] d(O ₃ -NO)			(ppm)	Reactivity	Reactivity (mol/mol)		
	(ppm)	(nr)	(ppm)	Deriv.	Test	Base Fit	Change	Incremental	Mechanistic		
277	0.076 ±0.002	1 2 3 4 5 6	0.016 ±0.002 0.043 ±0.002 0.058 ±0.002 0.075 ±0.002 0.075 ±0.002 0.075 ±0.002	D(d2) D(d2) D(d2) D(d2) D(d2) D(d2) D(d2)	0.079 0.268 0.476 0.701 0.944 1.167	$\begin{array}{c} 0.043 \pm 0.008 \\ 0.163 \pm 0.016 \\ 0.320 \pm 0.023 \\ 0.471 \pm 0.034 \\ 0.639 \pm 0.039 \\ 0.829 \pm 0.047 \end{array}$	$\begin{array}{c} 0.036 \pm 0.012 \\ 0.105 \pm 0.023 \\ 0.156 \pm 0.033 \\ 0.230 \pm 0.048 \\ 0.305 \pm 0.055 \\ 0.338 \pm 0.067 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
275	0.108 ±0.002	1 2 3 4 5 6	0.028 ±0.003 0.064 ±0.002 0.086 ±0.002 0.108 ±0.002 0.108 ±0.002 0.108 ±0.002	D(d2) D(d2) D(d2) D(d2) D(d2) D(d2) D(d2)	0.097 0.297 0.523 0.765 1.010 1.217	$\begin{array}{c} 0.041 \pm 0.008 \\ 0.153 \pm 0.016 \\ 0.301 \pm 0.023 \\ 0.446 \pm 0.034 \\ 0.601 \pm 0.038 \\ 0.776 \pm 0.047 \end{array}$	$\begin{array}{c} 0.056 \pm 0.012 \\ 0.144 \pm 0.023 \\ 0.222 \pm 0.033 \\ 0.319 \pm 0.048 \\ 0.409 \pm 0.054 \\ 0.441 \pm 0.066 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.02 ± 23% 2.24 ± 16% 2.58 ± 15% 2.97 ± 15% 3.80 ± 13% 4.10 ± 15%		
273	0.139 ±0.004	1 2 3 4 5 6	0.035 ±0.006 0.084 ±0.005 0.111 ±0.005 0.138 ±0.004 0.138 ±0.004 0.138 ±0.004	D(d2) D(d2) D(d2) D(d2) D(d2) D(d2) D(d2)	0.103 0.334 0.580 0.840 1.076 1.262	$\begin{array}{c} 0.039 \ \pm 0.008 \\ 0.151 \ \pm 0.016 \\ 0.297 \ \pm 0.023 \\ 0.441 \ \pm 0.033 \\ 0.592 \ \pm 0.038 \\ 0.762 \ \pm 0.047 \end{array}$	$\begin{array}{c} 0.064 \pm 0.012 \\ 0.183 \pm 0.022 \\ 0.283 \pm 0.032 \\ 0.399 \pm 0.047 \\ 0.484 \pm 0.054 \\ 0.500 \pm 0.066 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.83 ± 24% 2.16 ± 14% 2.54 ± 12% 2.89 ± 12% 3.50 ± 12% 3.62 ± 14%		
271	0.157 ±0.007	1 2 3 4 5 6	$\begin{array}{c} 0.039 \pm 0.009 \\ 0.091 \pm 0.008 \\ 0.123 \pm 0.007 \\ 0.139 \pm 0.007 \\ 0.147 \pm 0.007 \\ 0.150 \pm 0.007 \end{array}$	D(d2) D(d2) D(d2) D(d2) D(d2) D(d2) D(d2)	0.101 0.303 0.540 0.788 1.021 1.207	$\begin{array}{c} 0.036 \pm 0.008 \\ 0.133 \pm 0.016 \\ 0.261 \pm 0.023 \\ 0.391 \pm 0.033 \\ 0.519 \pm 0.038 \\ 0.661 \pm 0.047 \end{array}$	$\begin{array}{c} 0.065 \pm 0.012 \\ 0.170 \pm 0.022 \\ 0.279 \pm 0.032 \\ 0.397 \pm 0.047 \\ 0.502 \pm 0.054 \\ 0.546 \pm 0.066 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.66 ± 29% 1.87 ± 16% 2.27 ± 13% 2.85 ± 13% 3.41 ± 12% 3.63 ± 13%		

Table 9. Derivation of Isoprene Reactivities with Respect to Hourly Ozone Formation and NO Oxidation.

[a] Codes for methods for deriving amounts reacted are as follows: "IntOH" = derived using IntOH and the OH radical rate constant for the VOC; "D(tn)" or "D(dn)" = amounts reacted determined directly from the measured data for the VOC, where the data was smoothed by fitting to linear (n=2) or quadratic (n=3) functions of time "(tn)" or d(O3-NO) "(dn)".

Table 10.	Derivation	of	Reac	tivi	ties	with	Respect	to	Hourly	Integrated	OH
	Radical Lev	els	for	All	Test	VOC	Experimen	ts.	_		

Run	Added	Time	Reacted	II	ntOH (ppt-min	ı)	Reactivity (ppt-min/ppm)		
	(ppm)	(nr)	(ppm)	Test Run	Base Fit	Change	Incremental	Mechanistic	
277	0.076	1 2 3 4 5 6	$\begin{array}{c} 0.016 \ \pm 0.002 \\ 0.043 \ \pm 0.002 \\ 0.058 \ \pm 0.002 \\ 0.075 \ \pm 0.002 \\ 0.075 \ \pm 0.002 \\ 0.075 \ \pm 0.002 \end{array}$	1.0 ±0.8 3.7 ±0.9 7.9 ±1.2 13.7 ±1.4 21.0 ±1.6 30.0 ±1.9	1.3 ±0.6 4.4 ±0.9 8.6 ±1.2 13.1 ±1.4 18.5 ±1.6 24.8 ±1.9	$\begin{array}{c} -0.2 \pm 1.0 \\ -0.7 \pm 1.3 \\ -0.7 \pm 1.6 \\ 0.6 \pm 2.0 \\ 2.6 \pm 2.2 \\ 5.1 \pm 2.7 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-14. ± 63.) -16. ± 30.) -12. ± 28.) 8. ± 26.) 34. ± 87% 68. ± 53%	
275	0.108	1 2 3 4 5 6	0.028 ±0.003 0.064 ±0.002 0.086 ±0.002 0.108 ±0.002 0.108 ±0.002 0.108 ±0.002	$\begin{array}{c} 0.2 \ \pm 2.3 \\ 2.0 \ \pm 2.4 \\ 5.9 \ \pm 2.6 \\ 12.4 \ \pm 2.7 \\ 21.4 \ \pm 2.6 \\ 30.8 \ \pm 2.6 \end{array}$	$\begin{array}{c} 1.2 \pm 0.6 \\ 4.1 \pm 0.9 \\ 8.1 \pm 1.1 \\ 12.4 \pm 1.4 \\ 17.4 \pm 1.6 \\ 23.3 \pm 1.9 \end{array}$	$\begin{array}{c} -1.0 \pm 2.3 \\ -2.1 \pm 2.6 \\ -2.1 \pm 2.9 \\ 0.0 \pm 3.0 \\ 4.0 \pm 3.0 \\ 7.4 \pm 3.2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-36. ± 84.) -33. ± 41.) -25. ± 33.) 0. ± 28.) 37. ± 76% 69. ± 43%	
273	0.139	1 2 3 4 5 6	$\begin{array}{c} 0.035 \pm 0.006 \\ 0.084 \pm 0.005 \\ 0.111 \pm 0.005 \\ 0.138 \pm 0.004 \\ 0.138 \pm 0.004 \\ 0.138 \pm 0.004 \end{array}$	$\begin{array}{r} 1.3 & \pm 2.1 \\ 4.1 & \pm 2.2 \\ 8.4 & \pm 2.3 \\ 14.2 & \pm 2.4 \\ 21.5 & \pm 2.3 \\ 30.3 & \pm 2.3 \end{array}$	$\begin{array}{c} 1.3 \pm 0.6 \\ 4.2 \pm 0.9 \\ 8.1 \pm 1.1 \\ 12.4 \pm 1.4 \\ 17.3 \pm 1.6 \\ 23.1 \pm 1.9 \end{array}$	$\begin{array}{c} 0.0 \pm 2.2 \\ -0.1 \pm 2.4 \\ 0.3 \pm 2.6 \\ 1.9 \pm 2.7 \\ 4.2 \pm 2.8 \\ 7.2 \pm 3.0 \end{array}$	$ \begin{pmatrix} 0.2 & \pm 15. \\ (& -0.4 & \pm 17. \\ (& 2. & \pm 19. \\ (& 13. & \pm 20. \\) & (& 30. & \pm 66\% \\ & 52. & \pm 42\% \end{pmatrix} $	1. ± 62.) -1. ± 29.) 3. ± 23.) 13. ± 20.) 30. ± 66% 52. ± 42%	
271	0.157	1 2 3 4 5 6	$\begin{array}{c} 0.039 \pm 0.009 \\ 0.091 \pm 0.008 \\ 0.123 \pm 0.007 \\ 0.139 \pm 0.007 \\ 0.147 \pm 0.007 \\ 0.150 \pm 0.007 \end{array}$	1.3 ±1.5 4.0 ±1.6 8.1 ±1.6 13.6 ±1.7 20.4 ±1.6 28.6 ±1.9	$\begin{array}{c} 1.0 \ \pm 0.6 \\ 3.5 \ \pm 0.9 \\ 7.0 \ \pm 1.2 \\ 11.0 \ \pm 1.4 \\ 15.3 \ \pm 1.6 \\ 20.4 \ \pm 1.9 \end{array}$	0.3 ±1.6 0.5 ±1.8 1.1 ±2.0 2.6 ±2.2 5.0 ±2.3 8.1 ±2.7	$(2. \pm 10.) ($ $(3. \pm 12.) ($ $(7. \pm 13.) ($ $16.4 \pm 84 $ $32. \pm 45 $ $52. \pm 33 $	$7. \pm 40.) 5. \pm 20.) 9. \pm 16.) 18. \pm 84% 34. \pm 45% 54. \pm 34%$	

Run	Added (ppm)	Reacted (ppm)	IntOH (ppt-min)	Base ROG ConvR [a] (10 ³ min-1)	—— d(0 Total	D ₃ -NO) (ppm) — From Base ROG [b]	-Direct d(O ₃ -NO) Incremental (mol/mol) [c]	Reactivity- Mechanistic (ConvF)
277	0.076	0.075± 2%	30.0±1.9	33.2±3.0	1.167	0.993±0.110	2.3 ± 63%	2.3 ±63%
275	0.108	0.108± 2%	30.8±2.6	33.2±3.0	1.217	1.021±0.126	1.81 ± 64%	1.8 ±64%
273	0.139	0.138± 3%	30.3±2.3	33.1±3.0	1.262	1.004±0.119	1.85 ± 46%	1.9 ±46%
271	0.157	0.150± 5%	28.6±1.9	32.9±3.0	1.207	0.941±0.106	1.70 ± 40%	1.8 ±40%

Table 11. Derivation of Conversion Factors for the Isoprene Experiments.

Conversion ratio from base case runs for the conditions of this experiment. Estimated from ConvR^{base} x IntOH^{test} as discussed in the text. $IR[d(O_3-NO)]^{direct} = [d(O_3-NO)^{test}-d(O_3-NO)^{from base ROG}]/[VOC]_0.$ [a]

[b]

[c]

The details of how the quantities on Tables 9-11 are derived, and the methods used to estimate their uncertainties, are discussed in Appendix A.

Representative plots of the mechanistic reactivity results are given in Figures 3-5. The two-hour and final $d(O_3-NO)$ incremental reactivities and the final IntOH and direct incremental reactivities are plotted against amounts of isoprene added in Figure 3, and figures 4 and 5 show plots of the hourly $d(O_3 -$ NO), IntOH and direct mechanistic reactivities against time for each of the added isoprene runs. Results of model calculations using the SAPRC-91 mechanism (see above) are also shown.

A summary of the incremental and mechanistic reactivity results for isoprene is given on Table 12, where they can be compared with similar results for other selected VOCs. (A complete tabulation of comparable results of all VOCs studied using this approach is given in Appendix A.) It can be seen that isoprene is like the other alkenes studied in that it has a positive effect on NO oxidation, ozone formation and on OH radical levels, but that isoprene has a higher conversion factor than the other alkenes. Isoprene and the other alkenes differ from the alkanes in that they have positive effects on radical levels, yet the alkenes have smaller effects on radical levels than the alkylbenzenes. Isoprene has a comparable effect on radical levels as ethene and isobutene, and a smaller effect on radicals than trans-2-butene. However, because of its higher conversion factor (greater amounts of NO oxidized and ozone formed from the direct reactions of isoprene and its products) relative to the other alkenes, isoprene has a higher 6-hour $d(O_3-NO)$ reactivity than does ethene or isobutene, and has almost as high a $d(O_3-NO)$ reactivity as trans-2-butene.

Results of Model Calculations

The results of the model simulations of the isoprene reactivity measurements are shown on Figures 3-5, where they can be compared with the experimental As discussed above, model simulations were carried out using three data.

Figure 3. Plots of representative mechanistic reactivity results for isoprene against amounts of isoprene added.

isoprene mechanisms: the SAPRC-90 mechanism as documented by Carter (1990), the Carbon Bond IV isoprene mechanism (Gery et al., 1988), and a preliminary detailed isoprene mechanism we are developing for another program. The following results can be noted:

The <u>SAPRC-90</u> isoprene mechanism predicts that the IntOH (i.e., the indirect) reactivities decline slightly with time, in contrast with the experimental results, where this increases with time. In particular, the IntOH reactivities are overpredicted early in the run, but are reasonably well predicted by the end of the run. The SAPRC-90 isoprene mechanism also systematically underpredicts the direct reactivities at all times in the runs. Since the $d(O_3-NO)$ reactivities are the sum of the indirect (IntOH) and direct reactivities

Figure 4. Plots of $d(O_3-NO)$ and IntOH mechanistic reactivity results against time measured in the added isoprene runs ETC-277 and ETC-275.

Figure 5. Plots of $d(O_3-NO)$ and IntOH mechanistic reactivity results against time measured in the added isoprene runs ETC-271 and ETC-273.

				Roactiv	· • + • • ·		
Run	Added	Reacted	Incremental	Mechanistic	(mol O ₃ -NO/mol	reacted)	
	(מולק)	(ppiii)	mol added)	d(0 ₃ -NO)	IntOH [a]	ConvF	
			Isopr	ene			
277 275 273 271	0.076 0.108 0.139 0.157	0.075 (2%) 0.108 (2%) 0.138 (3%) 0.150 (5%)	4.44 (20%) 4.06 (15%) 3.59 (14%) 3.49 (13%)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 2.2 \ \pm \ 1.2 \\ 2.3 \ \pm \ 1.0 \\ 1.7 \ \pm \ 0.7 \\ 1.8 \ \pm \ 0.6 \end{array}$	$2.3 \pm 1.5 \\ 1.8 \pm 1.2 \\ 1.9 \pm 0.9 \\ 1.8 \pm 0.7$	
			Ethe	ne			
203 199	0.217 0.386	0.086 (29%) 0.172 (20%)	0.912 (35%) 1.14 (17%)	2.3 ± 1.0 2.5 ± 0.6	2.0 ± 1.2 1.9 ± 0.8	$0.3 \pm 1.2 \\ 0.7 \pm 0.8$	
			Isobut	tene			
257 255 253	0.108 0.195 0.207	0.104 (2%) 0.192 (12%) 0.205 (7%)	2.73 (23%) 2.27 (19%) 2.46 (15%)	2.8 ± 0.6 2.3 ± 0.4 2.5 ± 0.4	2.4 ± 0.9 2.6 ± 0.6 2.4 ± 0.5	$\begin{array}{c} 0.4 \pm 1.0 \\ -0.3 \pm 0.7 \\ 0.0 \pm 0.6 \end{array}$	
			trans-2-	Butene			
309 307	0.069 0.087	0.068 (11%) 0.086 (35%)	5.47 (21%) 5.09 (38%)	5.5 ± 1.2 5.1 ± 1.9	4.2 ± 1.5 4.5 ± 2.0	1.3 ± 1.6 0.5 ± 1.5	
			Etha	ne			
235	43.7	0.306 (6%)	0.0058 (26%)	0.8 ± 0.2	-0.6 ± 0.3	1.4 ± 0.3	
			n-Oct	ane			
239 237	1.55 1.66	0.064 (28%) 0.098 (19%)	-0.243 (18%) -0.235 (17%)	-5.9 ± 2.0 -4.0 ± 1.0	-9.7 ± 3.2 -5.9 ± 1.5	3.5 ± 1.4 1.9 ± 0.8	
			p-Xyl	ene			
348 346	0.075 0.080	0.036 (3%) 0.039 (3%)	2.63 (35%) 2.93 (31%)	5.5 ± 1.9 6.0 ± 1.9	5.1 ± 2.6 4.9 ± 2.4	$0.4 \pm 3.2 \\ 1.7 \pm 3.0$	
			135-trimeth	yl-Benzene			
251 249	0.045 0.047	0.042 (7%) 0.045 (11%)	9.78 (17%) 12.8 (16%)	10.4 ± 1.8 13.3 ± 2.1	11.6 ± 2.6 14.0 ± 3.0	-1.7 ± 2.8 -1.1 ± 3.3	

Table 12. Summary of Reactivity Results For Isoprene and Other Selected VOCs. (Quantities in parentheses are uncertainty estimates.)

[a] IntOH reactivities are expressed in terms of moles NO oxidized and ozone formed resulting from the change in IntOH caused by the addition of the VOC. The change in NO oxidized + ozone formed resulting from a given change in IntOH is estimated from the ratio $d(O_3-NO)^{base}$.

ties, these two factors together results in the $d(O_3-NO)$ reactivities being overpredicted early in the run, and being underpredicted by the end of the run.

The <u>Carbon Bond</u> isoprene mechanism consistently overpredicts the IntOH reactivities throughout the runs, but also tends to underpredict the direct reactivities. However, it has less of a tendency to underpredict the direct reactivity early in the run. Because of these two factors, this mechanism significantly overpredicts the $d(O_3-NO)$ reactivity early in the run, but by the end of the run the errors in the indirect (i.e., IntOH) and direct reactivity predictions tend to cancel out, and the mechanism only slightly overpredicts the final $d(O_3-NO)$ reactivities.

The <u>detailed</u> isoprene mechanism performs significantly better than the other two mechanisms in the simulations of the effects of isoprene on radical levels, fitting the IntOH reactivities to within the experimental uncertainties throughout all four runs. However, it has a tendency to overpredict the initial IntOH reactivities and underpredict the final values, though to a far lesser extent than is the case for the SAPRC-90 mechanism. More significantly, the detailed mechanism performs no better than the SAPRC-90 mechanism, and slightly worse than the Carbon Bond mechanism, in fitting the direct reactivities, underpredicting them throughout the runs, except perhaps at the beginning of the runs. These factors result in the detailed mechanism simulating the d(O_3 -NO) reactivities reasonably well initially, but significantly underpredicting them at the end of the run.

Thus, none of the three isoprene mechanisms we have considered are completely consistent with these data. The Carbon Bond mechanism appears to perform the best in simulating the effects of isoprene on the final ozone yield at the end of the run, but this is because of compensating errors in the predictions of direct and indirect reactivity. The SAPRC-90 mechanism, which represents isoprene in a manner similar to the RADM-II mechanism, is even less satisfactory than the Carbon Bond version, since it's errors in the direct and indirect components do not tend to compensate. The detailed mechanism is perhaps the least unsatisfactory, since at least it predicts, to within the experimental uncertainty, the effect of isorpene's reactions on OH radical levels. However, it is no better than the other mechanisms in predicting the relatively high direct reactivities of isoprene. As shown on Table 12, these data show that isoprene has a relatively high direct reactivity compared to the other alkenes, and none of the present mechanisms, even the most detailed, adequately explain this observation.

CONCLUSIONS

This study was successful in its objective of providing data concerning the amount of additional ozone formation resulting when isoprene is added to the emissions in already polluted atmospheres under conditions where ozone formation is most sensitive to VOCs. Information was also obtained concerning how much of that additional ozone was directly due to the reactions of isoprene and its products, and how much was due to the effect of the added isoprene on the amount of ozone formed from the reactions of the other VOCs which were present. Under the conditions of these experiments, isoprene was found to form approximately four molecules of ozone for each molecule of isoprene emitted and reacting in six hours, with approximately half of these being due directly to the reactions of isoprene and its reaction products, and the other half being due to the fact that the reactions of isoprene cause increased OH radical levels, resulting in more of the other VOCs present reacting to form ozone.

These experiments were carried out in conjunction with a much larger study where similar data was obtained concerning other VOCs, allowing the reactivity characteristics of isoprene to be compared with those for other VOCs. Isoprene is like the other alkenes in having positive effects on radical levels, giving it relatively high ozone reactivities under conditions where ozone is sensitive to VOCs, especially when compared to alkanes and other types of VOCs which have low mechanistic reactivities because their reactions suppress radical levels. The effect of isoprene on radical levels is comparable to ethene, propene (see Appendix A), and isobutene, and approximately half that of trans-2-butene. Thus, it is similar to other terminal alkenes in that respect. However, the direct reactivity of isoprene, i.e., the amount of NO oxidized and ozone formed directly from the reactions of isoprene and its products, is significantly higher than observed for the other alkenes studied. This results in isoprene having a comparable total reactivity under the conditions of these experiments to trans-2butene, despite isoprene's lower reactivity relative to effects on radical levels. Thus, isoprene clearly has different reactivity characteristics from the other alkenes, at least in some respects.

The ultimate practical benefit of these data will come when the chemical mechanisms used in the airshed models are updated to take these results into account. These data were found to be inconsistent in a number of respects with predictions of the two isoprene mechanisms which represent the current state of the art for the airshed models which are presently in use. Perhaps the most widely used mechanism is Carbon Bond IV, which is implemented in the Urban Airshed Model (UAM) and the EPA's Regional Oxidant Model (ROM). Although this

mechanism was found to give the best prediction of the three studied on the effects of isoprene on the 6-hour ozone in these experiments, this was found to be due to compensation of errors, since this mechanism underpredicted isoprene's direct reactivity and overpredicted its effect on radical levels. The SAPRC-90 isoprene mechanism, which is being implemented into a version of the UAM (Lurmann et al, 1991), and is very similar to the isoprene used in the RADM-II model (Carter and Lurmann, 1990; Stockwell et al., 1990), is even less satisfactory than the Carbon Bond version, significantly underpredicting both the direct and the overall reactivity of isoprene. Thus, the isoprene mechanisms in the currently used models clearly need to be updated.

Although the relatively poor performance of the Carbon Bond IV and SAPRC-90 isoprene mechanisms in simulating these data is of obvious concern to the users of the models incorporating them, it is perhaps not surprising given the approximations in these condensed mechanisms. Of greater concern from a standpoint of developing improved isoprene mechanisms for future models is the performance of a preliminary detailed isoprene mechanism we are in the process of developing. Although this detailed mechanism employs relatively few condensations, and attempts to explicitly represent the reactions of isoprene's major primary and secondary products, and although it simulates the available isoprene- NO_x and isoprene produce- NO_x chamber experiments significantly better than the other mechanisms we have tested, it was also found to be not completely consistent with the results of these reactivity experiments. In particular, although it - unlike the more condensed mechanisms - can simulate the effect of isoprene on radical levels within the uncertainty of the experimental measurements, it does not successfully simulate the relatively high direct reactivity observed for isoprene. Since this discrepancy in this mechanism's predictions of incremental reactivity tend to increase with reaction time, we suspect that this is likely due to problems with the representation of isoprene's major reactive products. However, this is still under investigation. The only definitive conclusion we can draw at the present time is that our current and most detailed theories about how isoprene reacts in the atmosphere cannot explain the isoprene reactivity data. More work in this area is clearly needed.

It is also important to recognize that this study does not provide all the data needed to adequately evaluate the reactivities of biogenic VOC emissions. In the first place, isoprene is not the only biogenic compound emitted in significant quantities, and comparable experiments are needed to test the mechanisms for the monoterpenes, which are even more uncertain. In addition, the present experiments are suitable only for testing the effects of isoprene on ozone formation under the relatively high NO_x conditions where VOCs have their greatest effects on ozone formation. While this is obviously important, it is also important that the ability of the mechanisms to predict reactivity be tested under conditions where NO_x is more limited. This is particularly true for

biogenic VOCs, since their emissions tend to dominate in remote locations where NO_x is depleted or absent. Although the existing body of isoprene - NO_x - air experiments can provide useful data in this regard, experiments with the compound reacting in the absence of other VOCs do not always give a complete indication of the effect of a compound on ozone formation in an environment containing other reacting organic pollutants, as is usually the case in ambient atmospheres.

REFERENCES

- Carter, W. P. L. and R. Atkinson (1987): "An Experimental Study of Incremental Hydrocarbon Reactivity," Environ. Sci. Technol., <u>21</u>, 670-679
- Carter, W. P. L. and R. Atkinson (1989): "A Computer Modeling Study of Incremental Hydrocarbon Reactivity", Environ. Sci. and Technol., <u>23</u>, 864.
- Carter, W. P. L. (1990): "A Detailed Mechanism for the Gas-Phase Atmospheric Reactions of Organic Compounds," Atm. Environ., 24A, 481-518.
- Carter, W. P. L., and F. W. Lurmann (1990): "Evaluation of the RADM Gas-Phase Chemical Mechanism," Final Report, EPA-600/3-90-001.
- Carter, W. P. L. (1991): "Development of Ozone Reactivity Scales for Volatile Organic Compounds", EPA-600/3-91/050, August.
- Carter, W. P. L. and F. W. Lurmann (1991): "Evaluation of a Detailed Gas-Phase Atmospheric Reaction Mechanism using Environmental Chamber Data," Atm. Environ. <u>25A</u>, 2771-2806.
- Chang, T. Y. and S. J. Rudy (1990): "Ozone-Forming Potential of Organic Emissions from Alternative-Fueled Vehicles," Atmos. Environ., 24A, 2421-2430.
- Dodge, M. C. (1984): "Combined Effects of Organic Reactivity and NMHC/NO_x Ratio on Photochemical Oxidant Formation -- A Modeling Study," Atmos. Environ., <u>18</u>, 1657.
- Dodge, M.C. (1990): "A Comparison of Three Photochemical Reaction Mechanisms," J. Geophys. Res. <u>94</u>, 5121-5136.
- Gery, M. W., G. Z. Whitten, and J. P. Killus (1988): "Development and Testing of the CBM-IV For Urban and Regional Modeling,", EPA-600/ 3-88-012, January.
- Jeffries H. E., K. G. Sexton, J. R. Arnold, and T. L. Kale (1989): "Validation Testing of New Mechanisms with Outdoor Chamber Data. Volume 2: Analysis of VOC Data for the CB4 and CAL Photochemical Mechanisms," Final Report, EPA-600/3-89-010b.
- Johnson, G. M. (1983): "Factors Affecting Oxidant Formation in Sydney Air," in "The Urban Atmosphere -- Sydney, a Case Study." Eds. J. N. Carras and G. M. Johnson (CSIRO, Melbourne), pp. 393-408.
- Paulson, S. E. and J. H. Seinfeld (1992): "Development and Evaluation of a Photooxidation Mechanism for Isoprene," J. Geophys. Res. <u>97</u>, 20,703-20,715.
- Lurmann, F. W., M. Gery, and W. P. L. Carter (1991): "Implementation of the 1990 SAPRC Chemical Mechanism in the Urban Airshed Model," Final Report to the South Coast Air Quality Management District, Sonoma Technology, Inc., Report STI-99290-1164-FR, Santa Rosa, California.
- Stockwell, W. R., P. Middleton, J. S. Chang, and X. Tang (1990): "The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling," J. Geophys. Res. <u>95</u>, 16343- 16376.

APPENDIX A

REPORT ENTITLED:

"ENVIRONMENTAL CHAMBER STUDIES OF MAXIMUM INCREMENTAL REACTIVITIES OF VOLATILE ORGANIC COMPOUNDS"

by

William P. L. Carter, John A. Pierce, Irina L. Malkina, Dongmin Luo, and William D. Long

This report is now finalized and available as a separate volume. The full reference citation is given below. The report is available from the Coordinating Research Council in Atlanta GA, or can be downloaded by anonymous FTP from cert.ucr.edu, directory /pub/carter/pubs, file RCTRPT-1.PDF. (June 1, 1995.)

Carter, W. P. L., J. A. Pierce, I. L. Malkina, D. Luo and W. D. Long (1993): "Environmental Chamber Studies of Maximum Incremental Reactivities of Volatile Organic Compounds," Report to Coordinating Research Council, Project No. ME-9, California Air Resources Board Contract No. A032-0692; South Coast Air Quality Management District Contract No. C91323, United States Environmental Protection Agency Cooperative Agreement No. CR-814396-01-0, University Corporation for Atmospheric Research Contract No. 59166, and Dow Corning Corporation. April 1.