INVESTIGATION OF THE ATMOSPHERIC REACTIONS OF CHLOROPICRIN

William P. L. Carter, Dongmin Luo and Irina L. Malkina
Revised and Resubmitted to
Atmospheric Environment

August 30, 1996

College of Engineering, Center for Environmental Research and Technology
University of California
Riverside, CA 92521

Abstract

An experimental and modeling study was conducted to assess the atmospheric impacts of chloropicrin emissions. Chloropicrin absorption cross-sections were measured in the $\sim 270-390 \mathrm{~nm}$ wavelength region, and its overall photodecomposition quantum yield under simulated sunlight conditions was found to be 0.87 ± 0.26. In environmental chamber experiments, chloropicrin significantly enhanced rates of NO oxidation, O_{3} formation, and consumptions of alkanes and other organic reactants. This is attributed to the formation of Cl atoms and NO_{x} in its photodecomposition. A previously developed atmospheric chemical mechanism was expanded to include chloropicrin and Cl atom reactions. It gave reasonably good simulations of the chamber experiments. This mechanism predicted that when emitted into polluted urban atmospheres, chloropicrin would have between 0.4 and 1.5 times the ozone impact of the average of emitted VOCs on a mass emitted basis. This value varied depending on environmental conditions and assumptions made concerning the photodecomposition mechanism. The data obtained in this study were inconsistent with a previous study of chloropicrin's photodecomposition in air, probably due to differences in the light sources employed.

Keywords

Chloropicrin, UV Absorption Cross Sections, Photochemical Smog, Ozone, Air Quality, Pesticides, Environmental Chambers.

INTRODUCTION

Chloropicrin $\left(\mathrm{CCl}_{3} \mathrm{NO}_{2}\right)$ is a pesticide which is extensively used in agriculture as a preplant soil fumigant. Although it is injected at a depth of 15 cm or more below the soil surface, it is sufficiently volatile that under normal applications some is expected to be ultimately emitted into the atmosphere. Therefore, if sufficiently reactive, it may contribute to the formation of tropospheric ozone, a major component of photochemical smog in urban and rural areas. Because ground level ozone formation is a serious air quality problem in many areas, pesticides which contribute to ozone formation may be subject to regulation as Volatile Organic Compound (VOC) ozone precursors. However, available information has been inadequate to assess whether this should be the case for chloropicrin.

Organic compounds can react in the atmosphere either with hydroxyl (OH) radicals, with ozone, with NO_{3} radicals, or by direct photolysis (Finlayson-Pitts and Pitts, 1986; Seinfeld, 1986; Atkinson,
1990). Although reaction with OH is the primary (and in many cases the only significant) means of atmospheric reaction of most VOCs, and reactions with ozone or NO_{3} reactions can also be important for certain VOCs under some conditions (Atkinson and Carter, 1984; Atkinson, 1990, 1991), chloropicrin is unusual in that direct photolysis appears to be the only significant atmospheric loss process. The OH radical does not react at a significant rate with fully halogenated compounds (Atkinson, 1989, 1994), and there is no evidence or reasonable expectation for OH radical reaction at the nitro group (Atkinson, 1989, 1994). Based on analogous considerations, reaction with O_{3} (Atkinson and Carter, 1984; Atkinson, 1994) and NO_{3} radicals (Atkinson, 1991, 1994) at atmospherically significant rates is also considered unlikely.

Evidence that chloropicrin will photolyze in the atmosphere comes from the study of Moilanen et al. (1978), who observed a ~ 20 day photodecomposition half life when irradiated with sunlamps in the presence of O_{2}. Oxygen was apparently involved in the photooxidation process in their system, since no chloropicrin decomposition was observed the photolysis was carried out in N_{2}. The data were explained by invoking a trioxalone intermediate, with the net process being

$$
\begin{equation*}
\mathrm{CCl}_{3} \mathrm{NO}_{2}+\mathrm{h} v\left(+\mathrm{O}_{2}\right) \rightarrow \mathrm{Cl}_{2} \mathrm{CO}+\mathrm{ClNO}\left(+\mathrm{O}_{2}\right) \tag{1}
\end{equation*}
$$

This mechanism was supported by their observations that ClNO is formed in near unit yields at low reaction times. These observations tend to rule out the alternative photodecomposition process,

$$
\begin{equation*}
\mathrm{CCl}_{3} \mathrm{NO}_{2}+\mathrm{h} v \rightarrow \mathrm{Cl}_{3} \mathrm{C} \cdot+\mathrm{NO}_{2} \tag{2}
\end{equation*}
$$

which should occur regardless of whether O_{2} is present, and would not be expected to give rise to CINO. Under atmospheric conditions, any ClNO formed will rapidly photolyze

$$
\begin{equation*}
\mathrm{ClNO}+\mathrm{h} v \rightarrow \mathrm{Cl} \cdot+\mathrm{NO} \tag{3}
\end{equation*}
$$

with a calculated half life of only ~3-4 minutes for direct overhead sun (Peterson, 1976; Atkinson et al., 1996).

Although these reactions do not contribute to O_{3} formation directly, the formation of Cl atoms could indirectly cause significant ozone formation. This is because Cl reacts rapidly with other VOCs present, leading to ozone formation, and in most cases generating OH radicals which will further react with VOCs to produce ozone.

However, the data of Moilanen et al. (1978) were not adequate to provide quantitative estimates of chloropicrin's atmospheric photolysis rate and reactivity. The absolute light intensity was not specified, and only qualitative information was given concerning the spectral characteristics of the light source, which is not the same as that of sunlight (Crosby and Moilanen, 1974). In addition, quantitative information concerning chloropicrin's UV absorption cross sections and atmospheric photodecomposition quantum yields could not be found in the literature.

This paper describes an experimental and modeling study carried out to assess the atmospheric ozone formation potential of chloropicrin, and to make quantitative estimates of how its ozone formation potential compares with those of other VOCs. This study involved (a) measurement of the absorption cross sections of chloropicrin in the wavelength region which will affect its atmospheric photolysis, (b) conducting environmental chamber experiments to study how the presence of chloropicrin affects ozone and other components of photochemical smog under atmospheric conditions, (c) developing a chemical mechanism for the atmospheric reactions of chloropicrin which is consistent with these measurements, and (d) using this mechanism to estimate how the atmospheric ozone impacts of chloropicrin compares with those of other VOCs.

EXPERIMENTAL METHODS

Absorption Cross Section Measurement

The absorption cross-sections of chloropicrin vapor were measured using a HP 8452A Diode Array UV-Visible spectrophotometer. This is a single-beam, microprocessor controlled, UV/VIS spectrophotometer with collimating optics. The deuterium lamp light source was turned on at least 10 minutes prior to any measurement. Known pressures of the vapor were prepared in an 11 cm all-glass cell using vacuum techniques and a precision capacitance manometer. The cell was covered with aluminum foil between the time it was filled and the cross-section measurement, which was approximately 30 minutes. Two measurements were carried out using pressure 8.22 and 8.83 torr in the cell, respectively. Photodegradation was checked by leaving the sample in spectrophotometer for over 10 minutes and taking spectrum every 2 minutes. The cross-sections were obtained in computer readable form at wavelengths below 280 nm and up to 500 nm where UV or visible absorption is no longer significant. For comparison with literature data, the same procedure was employed for measuring the spectrum of acetaldehyde.

Environmental Chamber Experiments

The environmental chamber experiments involved the irradiation of chloropicrin in the presence of other atmospheric pollutants at ppm or sub-ppm levels in air. The experiments were carried out in two 4'x4'x8' FEP Teflon reaction bags located adjacent to each other at one end of an $8^{\prime} \times 12$ ' room with reflective aluminum paneling on all surfaces. Four 6.5 kW xenon arc lights were mounted on the wall opposite the reaction bags. The reaction bags were interconnected with ports containing fans to exchange the contents of the bags, and separate fans were employed to mix the contents within each chamber. The ports were closed and the fans were turned off during the irradiations. The light intensity was measured by NO_{2} actinometry using both the quartz tube method of Zafonte et al. (1977), modified as discussed by Carter et al. (1995a,b), and simultaneous measurements of photostationary state concentrations of NO, NO_{2}, and O_{3} in otherwise pure air (unpublished results from this laboratory). The results of the actinometry experiments yielded NO_{2} photolysis rates which declined slowly with time as the lamps aged, with the data being fit by a curve giving NO_{2} photolysis rates of $0.190-0.193 \mathrm{~min}^{-1}$ during the period of this study. The spectrum of the xenon arc light source was measured several times during each experiment using a LiCor LI-1800 spectroradiometer. As discussed elsewhere (Carter et al., 1995a,b), this light source gives the closest approximation available of the ground-level solar spectrum for an indoor chamber. The chamber was very similar to the Statewide Air Pollution Research Center's Xenon arc Teflon Chamber (SAPRC XTC) which is described in detail elsewhere (Carter et al. 1995a,b).

Ozone was monitored using a UV photometric ozone analyzer, NO and " NO_{y} " species which are converted to NO by a heated catalyst (which included chloropicrin) were monitored using a chemiluminescent $\mathrm{NO} / \mathrm{NO}_{\mathrm{x}}$ monitor, and organic reactants were measured using gas chromatography with FID detection (GC-FID), as described elsewhere (Carter et al., 1993a; 1995b, 1996). Chloropicrin was monitored using both GC-FID and GC with electron capture detection, although the FID instrument yielded more precise data and was used for the primary measurements. The Cl_{2} used in some experiments was not monitored, so the amounts initially present were calculated based on the amounts injected, which were measured with a precision manometer in a Pyrex bulb of known volume.

The chambers were flushed with dry air from an AADCO air purification system for 6-9 hours on the night before the experiments. The reactants were injected as described previously (Carter et al., 1995a,b). The chloropicrin used in this study was supplied by Niklor Chemical Co. of Long Beach, CA, and was reported to be 99.9% pure. No measurable impurities were observed by GC. The lights were turned on and allowed to warm up for ~ 30 minutes prior to the irradiation, which was initiated by lifting a panel between them and the reaction bags. The irradiation typically proceeded for 6 hours. After the
run, the contents of the chambers were emptied (by allowing the bag to collapse) and flushed with purified air. Other reactants were obtained from commercial sources as employed in previous studies (Carter et al., 1995c, and references therein).

CHEMICAL MECHANISMS AND MODELING METHODS

General Atmospheric Photooxidation Mechanism

The starting point for the mechanism in this work was the detailed SAPRC mechanism which is described in detail by Carter (1990), updated as described elsewhere (Carter et al., 1993a; Carter, 1995, Carter et al., 1996). This explicitly represents the initial reactions of a large number of different types of organic compounds, but uses a condensed representation for most of their reactive products. The Carter (1990) mechanism was updated to account for new kinetic and mechanistic information for certain classes of compounds as described by Carter et. al. (1993a) and Carter (1995). In addition, modifications were made to the aromatic mechanisms to improve model simulations of experiments carried out using the chamber and light source employed in this study. The previous mechanism tended to underpredict the rates of NO oxidation and O_{3} formation in the aromatic $-\mathrm{NO}_{\mathrm{x}}$ and mixture - NO_{x} experiments carried out in a chamber using the light source employed in this study (Carter et al., 1995a). However, by adjusting the yields of the two species used to represent aromatic fragmentation products (MGLY and AFG2), and by reducing the AFG2 photolysis rate, this problem was corrected without adversely affecting simulations of experiments in other chambers (unpublished results from this laboratory). A complete listing of the updated general atmospheric photooxidation mechanism used in this study is given elsewhere (Carter et al., 1996).

Chloropicrin Photooxidation Mechanism

Table 1 gives a listing of the reactions which were added to the general mechanism to represent the reactions of chloropicrin and of the chlorine-containing radicals and intermediates which it forms. Footnotes to the table document the sources of the mechanisms and rate constants assumed. As discussed above, the only significant atmospheric loss process for chloropicrin is believed to be photolysis, and in particular it is assumed not to react with OH radicals or Cl atoms to any significant extent. The absorption cross-sections and quantum yields for the photodecomposition were determined as part of this study, as discussed below. Although the data of Moilanen et. al. (1978) indicate that in air the dominant process was formation of $\mathrm{Cl}_{2} \mathrm{CO}+\mathrm{ClNO}$ (reaction 1), for evaluation purposes we also considered the effect of assuming that the alternative photodecomposition pathway, formation of $\mathrm{CCl}_{3} \cdot+\mathrm{NO}_{2}$ (reaction
2), was the dominant process. These alternatives are referred to as "Model 1" and "Model 2", respectively, in the subsequent discussion.

Phosgene is assumed to be inert under the conditions of these experiments and its subsequent reactions are ignored. However, the CINO is rapidly photolyzed to NO and chlorine atoms, with the latter undergoing a variety of reactions as discussed in the following section. Reaction 2 also results in the ultimate formation of phosgene and Cl atoms, following the addition of O_{2} to $\mathrm{CCl}_{3} \cdot$ to form $\mathrm{CCl}_{3} \mathrm{O}_{2} \cdot$, which in the presence of NO_{x} primarily reacts with NO to form NO_{2} and $\mathrm{CCl}_{3} \mathrm{O}$: The latter subsequently decomposes to form phosgene and Cl . (The reaction of CCl_{3} with NO_{2} to form $\mathrm{CCl}_{3} \mathrm{OONO}_{2}$ has no significant net effect because the reaction is rapidly reversed by decomposition at ambient temperatures. The reactions of $\mathrm{CCl}_{3} \mathrm{O}_{2} \cdot$ with $\mathrm{HO}_{2}, \mathrm{RO}_{2}$, and RCO_{3} are only important once most of the NO_{x} has been consumed and ozone formation is no longer significant.) The main effective difference between the two models is that Model 2 involves the ultimate formation of NO_{2} rather than NO , and also converts an additional molecule of NO to NO_{2} in the process. Because ozone formation in the lower atmosphere is a result of NO to NO_{2} conversions (Finlayson-Pitts and Pitts, 1986; Seinfeld, 1986; Carter and Atkinson, 1989), this means that Model 2 would predict higher ozone yields than would Model 1.

ClO_{x} Reactions

Prior to this study, the general mechanism did not include provisions for representing compounds such as chloropicrin whose photooxidations introduce chlorine atoms into the system. The reactions which were added to the mechanism to account for the presence of Cl are included in Table 1, and footnotes to Table 1 indicate the sources of the rate constants and mechanisms assumed. Most of the inorganic reactions and reactions of Cl with the simpler organics were taken from the most recent NASA (1994) or IUPAC (Atkinson et al., 1996) evaluations, and are considered to be reasonably well characterized. In addition, except for chloropicrin, all the absorption cross-sections were taken from the IUPAC (Atkinson et al., 1996) tabulations. Some reactions expected or calculated to be of negligible importance in these systems (such as $\mathrm{ClO}+\mathrm{ClO}$ or ClO_{2} reactions) have been omitted to simplify the mechanism. (However, we have not carried out a complete sensitivity study, and it is possible that some reactions included in Table 1 could also be neglected.) The greatest uncertainty concerns the reactions of Cl with some of the higher organics, whose mechanisms and (in some cases) rate constants have not been studied. A rate constant of $1 \times 10^{-10} \mathrm{~cm}^{3}$ molec $^{-1} \mathrm{~s}^{-1}$ is used for organics whose Cl rate constants are unknown, and if the products are unknown they are assumed to be the same as those formed in the corresponding OH reaction, except that HCl is also formed. These assumptions present a source of uncertainty in the model simulations of the reactions of chloropicrin in the presence of mixtures containing these compounds.

Environmental Chamber Simulations

The ability of the chemical mechanisms to appropriately simulate the atmospheric impacts of chloropicrin's reactions was evaluated by conducting model simulations of the environmental chamber experiments from this study. This required including in the model appropriate representations of chamberdependent effects such as wall reactions and characteristics of the light source. The methods used are based on those discussed in detail by Carter and Lurmann (1990, 1991), updated as discussed by Carter et al. (1993a) and Carter (1995). The photolysis rates were derived from results of NO_{2} actinometry experiments and direct measurements of the spectra of the light source, similar to the methods used for a comparable chamber as described by Carter et al. (1995a,b). The thermal rate constants were calculated using the temperatures measured during the experiments, with the small variations of temperature with time during the experiment being taken into account. The computer programs and modeling methods employed are discussed in more detail elsewhere (Carter et al., 1995b). The specific reactions and parameter values used in the chamber model simulations for this report are given elsewhere (Carter et al, 1996).

Atmospheric Reactivity Simulations

To estimate its effects on ozone formation under conditions more representative of polluted urban atmospheres, incremental reactivities, defined as the change in O_{3} caused by adding small amounts of a compound to the emissions, were calculated for chloropicrin for various simulated atmospheric pollution scenarios. Carter (1994) used a series of single-day EKMA box model scenarios (EPA, 1984), derived by the EPA to represent 39 different urban ozone exceedence areas around the United States (Baugues, 1990), to develop various reactivity scales to quantify impacts of VOCs on ozone formation in various environments. It was found that the NO_{x} levels were the most important factors affecting differences in ozone impacts among VOCs, and that the ranges of relative reactivities in the various scales can be reasonably well represented by three "averaged conditions" scenarios representing three different NO_{x} conditions. These scenarios were derived by averaging the inputs to the 39 EPA scenarios, with adjustments to the NO_{x} inputs. In the "maximum reactivity" scenario, the NO_{x} inputs were adjusted such that the final O_{3} level is most sensitive to changes in VOC emissions; in the "maximum ozone" scenario the NO_{x} inputs were adjusted to yield the highest maximum O_{3} concentration; and in the "equal benefit" scenario the NO_{x} inputs were adjusted such that relative changes in VOC and NO_{x} emissions had equal effect on ozone formation. As discussed by Carter (1994), these represent respectively the high, medium and low ranges of NO_{x} conditions which are of relevance when assessing VOC control strategies for reducing ozone.

The chemical mechanisms used for these atmospheric simulations were the same as those used to simulate the chamber experiments, except that they included reactions for the full variety of emitted VOCs (Carter, 1994), and the portion representing chamber wall effects (Carter and Lurmann, 1990, 1991) was removed. A complete listing of the mechanism is given elsewhere (Carter et al., 1996).

RESULTS AND DISCUSSION

Absorption Cross-Section Measurements

Absorption cross sections measurements were obtained for chloropicrin in the 190-800 nm range, though no sigificant absorption was observed at $\lambda>\sim 370 \mathrm{~nm}$. Two absorption maxima were observed in this region, the first was $1.8 \pm 0.1 \times 10^{-18} \mathrm{~cm}^{2}$ (base e) at $216-220 \mathrm{~nm}$, and the second was $1.73 \times 10^{-19} \mathrm{~cm}^{2}$ at 274-276 nm. The two measurements agreed within $\sim 10 \%$ up $\sim 300 \mathrm{~nm}$, but had uncertainties of $\sim 30 \%$ in the $300-330 \mathrm{~nm}$ absorption tail because of baseline uncertainties. No evidence for photodegradation of chloropicrin was observed during 10 minutes period of spectral measurement in the spectrophotometer. The intensity of absorption at the higher wavelength maximum is in reasonable agreement with the $2.0 \times 10^{-}$ ${ }^{19}$ maximum at 278.5 nm reported by Haszeldine (1953) for chloropicrin in petroleum ether solution.

The absorption cross-sections measured for chloropicrin and acetaldehyde in the wavelength region of relevance for the lower atmosphere are shown in Figure 1. Shown also in Figure 1 is the spectrum of sunlight for a zenith angle of 60° as given by Peterson (1976), and the spectrum of the xenon arc light source used in our chambers, both given in arbitrary units normalized to yield the same NO_{2} photolysis rate. Although the $\sim 275 \mathrm{~nm}$ absorption maximum for chloropicrin is at a much lower wavelength region than that reaching the lower atmosphere, Figure 1 shows the overlap between chloropicrin's absorption and the solar and chamber light spectrum in the $\sim 300-360 \mathrm{~nm}$ region. This indicates that chloropicrin could undergo photodissociation if the quantum yields were sufficiently high. Figure 1 also indicates that the ratio of chloropicrin to NO_{2} photolysis rates might be expected to be somewhat lower in our chamber than in the atmosphere, though not to such a large extent that the conditions of our experiments can be considered to be unrepresentative of the range of atmospheric conditions.

Figure 1 also shows the difference between the acetaldehyde absorption cross-sections measured in this work and those recommended for use in atmospheric models (Atkinson et al., 1996). The good agreement supports the reliability of our chloropicrin measurements.

Photolysis Rate Measurements and Atmospheric Lifetime Estimates

Since photodecomposition is believed to be the only important loss for chloropicrin under the conditions of our experiments, any measured change in chloropicrin concentration during the experiments should be due only to photolysis or dilution. Under these assumptions, the concentration of chloropicrin at time t in the experiment is given by

$$
[\text { chloropicrin }]_{\mathrm{t}}=[\text { chloropicrin }]_{0} \times \exp \left[-\left(\mathrm{k}_{\text {phot }}+\mathrm{d}\right) \mathrm{t}\right],
$$

where $\mathrm{k}_{\text {phot }}$ and d are the photolysis and dilution rates, respectively. Thus, plots of \ln ([chloropicrin] $]_{0}[$ [chloropicrin $]_{t}$) against time should be straight lines with slopes of $\mathrm{k}_{\text {phot }}+\mathrm{d}$. Figure 2 shows plots of such data for all the chamber experiments containing chloropicrin, where for each experiment the [chloropicrin] ${ }_{0}$ value was derived to minimize the intercept, and thus place the data for all the different runs on the same basis. The figure shows that the chloropicrin data in all the experiments are well fit by a straight line with a slope of $(6.4 \pm 0.2) \times 10^{-4} \mathrm{~min}^{-1}$. The dilution rates in these experiments are estimated to be $(1.1 \pm 0.5) \times 10^{-5}$ min^{-1}, as derived from rates of CO decay in a $\mathrm{CO}-\mathrm{NO}_{\mathrm{x}}$ - air irradiation, or from rates of n -butane decay in separate n -butane $-\mathrm{NO}_{\mathrm{x}}$ - air experiments, with the loss of n -butane due to reaction with OH radicals being corrected for using OH radical concentrations estimated from rates of propene decay in the absence of O_{3} (see Carter et al., 1995b for a discussion of derivation of dilution rates in our environmental chamber experiments.) This yields a chloropicrin photolysis rate of (6.3 ± 0.2) $10^{-4} \mathrm{~min}^{-1}$ in our experiments, which corresponds to a half life of ~ 18 hours. Note that this is much shorter than the ~ 20 day half life observed in the experiments of Moilanen et al. (1978). This indicates that the light source they employed had a significantly lower intensity in the $\lambda<370 \mathrm{~nm}$ region which affects chloropicrin photolysis.

If unit quantum yields for chloropicrin photodecomposition are assumed, then the calculated chloropicrin photolysis rate in these experiments is $7.2 \times 10^{-4} \mathrm{~min}^{-1}$. This is derived from the chloropicrin cross sections measured in this study, together with the measured NO_{2} photolysis rates and the NO_{2} absorption cross-sections and quantum yields which are used in the current mechanism (NASA, 1987; Carter, 1990). This has an estimated uncertainty of $\sim 30 \%$ because of baseline uncertainties in the absorption cross section measurement. The ratio of the observed photolysis rate to the calculated photolysis rate assuming unit quantum yield thus gives an effective overall photodecomposition quantum yield of 0.87 ± 0.26. Although the uncertainty in this determination does not rule out the possibility of unit photodecomposition quantum yields, for modeling purposes we assume that the overall quantum yield, $\Phi_{1}+\Phi_{2}$, is 0.87 .

This effective quantum yield is essentially a weighted average of the quantum yields over the entire 300-360 nm wavelength region where the chloropicrin absorption overlaps the spectral distribution of the light source. Therefore, it does not provide information on how the actual quantum yields vary with wavelength. However, Figure 1 shows that this overlap region is essentially the same in ground level sunlight as in our chamber, suggesting that it is a reasonable approximation to apply the effective quantum yield derived from the chamber data to atmospheric simulations. If the ground-level actinic fluxes calculated by Peterson (1976) are assumed, then the atmospheric chloropicrin half life is estimated to range from ~ 3.4 hours for direct overhead sun to ~ 7.6 hours for a zenith angle of 60 degrees. This means that on clear summer days somewhat more than half of the emitted chloropicrin would be expected to react within one day. The calculated atmospheric half lives is shorter than the ~ 18 hours in our experiments because of the lower total light intensity in our experiments compared to ambient sunlight, as well as the somewhat lower relative intensity in the $300-350 \mathrm{~nm}$ range (see Figure 1). These differences are taken into account in the chamber and atmospheric model calculations discussed below.

Environmental Chamber Experiments

Four types of environmental chamber experiments were carried out for this program: (1) characterization and control runs for the purpose of establishing or evaluating chamber conditions for modeling; (2) Cl_{2} - n-butane runs to evaluate the mechanism's ability to predict the effects of Cl atoms on alkane oxidation and O_{3} formation independent of uncertainties in chloropicrin's mechanisms; (3) chloropicrin - alkane or chloropicrin - alkane - NO_{x} - air experiments to evaluate chloropicrin's effects on ozone formation in a chemically simple system; and (4) incremental reactivity experiments, to evaluate the ability of the mechanisms to predict the effect of chloropicrin on ozone in systems more representative of atmospheric pollution episodes. Table 2 gives a summary of the conditions and selected results of a representative n-butane - NO_{x} control experiment and all the added Cl_{2} or chloropicrin experiments carried out for this program. Concentration-time plots for selected species in the Cl_{2} or chloropicrin runs are shown on Figures 3 and 4. The figures also show results of the model simulations of the experiments, using, for the runs containing chloropicrin, both models for its photodecomposition reaction. The results of the various types of experiments are summarized below.

Control and Characterization Experiments

Control and characterization experiments were carried out to assure that the model being used to simulate the chloropicrin experiments appropriately represented chamber effects and other experimental conditions (Carter and Lurmann, 1990, 1991, Jeffries et al., 1992, Carter et al., 1995b), and that there were no anomalous conditions which might affect the results. These included actinometry experiments to
measure the light intensity (Zafonte et al., 1977, Carter et al., 1995b), n-butane - NO_{x} to evaluate the chamber radical source (Carter et al., 1982; Carter et al., 1995a,b) and to serve as controls for comparison with the n-butane $-\mathrm{NO}_{\mathrm{x}}$ runs where Cl_{2} or chloropicrin were added, and propene - NO_{x}, formaldehyde NO_{x}, surrogate $-\mathrm{NO}_{x}$, and surrogate + formaldehyde $-\mathrm{NO}_{\mathrm{x}}$ experiments for comparison with previous data in this chamber. The results of these experiments were consistent with results of previous runs in this and similar chambers (Carter et al., 1995a,b, unpublished results from this laboratory) and with predictions using the model employed in this study. Therefore, the chamber effects will not be discussed in detail here. Experiments where the same mixtures were simultaneously irradiated in each of the two reactors yielded essentially equivalent results.

Table 2 includes the results of a n-butane $-\mathrm{NO}_{\mathrm{x}}$ experiment carried out around the time of this study. It is noted that essentially no ozone was formed, and that only a small fraction of the n-butane reacted. This can be compared with the experiments where Cl_{2} or chloropicrin were added to the n -butane - NO_{x} irradiation, as discussed below.

Cl $_{2}$ - Alkane Experiments

Two dual-chamber Cl_{2} - alkane experiments were conducted to assess the ability of the model to predict the effect of Cl formation on alkane oxidation and ozone formation in this system. Both of these runs had equal concentrations of reactants in each of the two simultaneously irradiated reaction chambers, and essentially equivalent results were obtained in each reactor. Run CTC-139 had no added NO_{x}, and as expected no significant ozone formation was observed since NO_{x} is required for O_{3} formation. (The small amount of O_{3} formed could be fit by the model if it was assumed that there was $\sim 1 \mathrm{ppb}$ of NO or NO_{2} present initially. This is not unreasonable given that offgasing of NO_{x} is a known wall effect for this type of chamber [Carter and Lurmann, 1990, 1991]). On the other hand, the Cl_{2} addition caused a significant and rapid consumption of the n-butane present during the first hour of the experiment, which stopped after the initially present Cl_{2} was apparently consumed. Figure 3 shows that the rate and amount of n-butane consumption was well fit by the model, indicating that the model correctly represents both the amount and photolysis rate of Cl_{2} in this chamber, as well as the amount of n -butane consumed. The stoichiometry was approximately two molecules of n-butane per molecule of Cl_{2} added, or one molecule for each Cl atom. The model predicted that all of the n -butane was consumed by reaction with Cl atoms, and consumption by secondarily-formed OH radicals was negligible.

Run CTC-136 was carried out with NO_{x} present as well as Cl_{2} and n-butane. Again, the Cl_{2} caused a significant consumption of n-butane which was reasonably well fit by the model. Although the
model predicted that a non-negligible amount of n-butane was consumed by reaction with OH radicals as well as by reaction with Cl , the amount of n -butane reacted was somewhat less than the absence of NO_{x}, due to the competing reactions of Cl with NO_{x} and O_{3}. The initial NO oxidation rate was extremely rapid, and significant ozone formation was observed. This can be contrasted with run CTC-135 (Table 2), which had ~ 3.5 times more n-butane but no added Cl_{2}. The ozone formed and NO oxidized in this experiment is well fit by model predictions (see Figure 3), suggesting that the model may be appropriately representing the ClO_{x} processes which affect NO oxidation and O_{3} formation.

Chloropicrin - Alkane Experiments

The chloropicrin - alkane and chloropicrin - alkane - NO_{x} experiments were carried out to determine the effect of chloropicrin on alkane consumption rates in a relatively simple system, and for evaluating the model predictions of these effects. The addition of chloropicrin, like Cl_{2}, significantly enhanced the rate and amount of O_{3} formed and the amount of alkane consumed. However, much more chloropicrin had to be added than Cl_{2} to yield a comparable effect, and as shown in Figure 3, the rate of NO consumption and O_{3} formation was slower. This was because the calculated photolysis rate for chloropicrin in these experiments was over 50 times lower than that for Cl_{2}. Unlike Cl_{2}, the addition of chloropicrin in the absence of NO_{x} still resulted in significant O_{3} formation, apparently due to the NO_{x} produced when chloropicrin photolyzed.

Figure 3 shows that the model gives good simulations of the effect of added chloropicrin on the amounts of alkane reacted regardless of which assumptions are made concerning the chloropicrin photolysis reaction. On the other hand, the calculations using Model 1 (i.e., assuming $\Phi_{1} \gg \Phi_{2}$) consistently underpredicted the amount of ozone formed, while Model 2 (assuming $\Phi_{2} \gg \Phi_{1}$) performed much better in simulating the ozone yields and formation rates, though it might have a slight bias towards overprediction. This is inconsistent with the data of Moilanen et al. (1978), which indicate that only Reaction 1 can be significant.

This inconsistency could be due to differences in the light sources employed. The photoreactor employed by Moilanen et al. (1978), as described by Crosby and Moilanen (1974), used an "RS Sunlamp" with a borosilicate glass filter. Although the qualitative spectrum they show for that light source indicated significant intensity in the $300-320 \mathrm{~nm}$ region, the borosilicate filter may have removed much or all of this, especially if its UV transmission had degraded due to aging. A much lower UV intensity in the $\lambda<360 \mathrm{~nm}$ region would explain the much longer lifetime observed by Moilanen et al. (1978), and provide a rationalization for the significant differences in the apparent reaction mechanisms. It may be
that the trioxalone mechanism proposed by Moilanen et al. (1978) (Model 1) is primarily important at the longest wavelength tail of the absorption spectrum, and that the simple C-N scission mechanism (Model 2) may dominate at the shorter wavelengths where most of the photodecomposition is occurring in our system.

Incremental Reactivity Experiments

The incremental reactivity experiments consisted of simultaneous irradiation of a "base case" reactive organic gas (ROG) surrogate $-\mathrm{NO}_{\mathrm{x}}$ mixture, together with irradiations of the same mixture with chloropicrin added. The ROG - NO_{x} mixture is designed to be a simplified model of an urban photochemical smog system. Such experiments provide the most direct test of a chemical mechanisms's ability to predict the effect of the compound on ozone formation in the atmosphere (Carter et al., 1993b, $1995 \mathrm{c}, \mathrm{d})$. Two types of incremental reactivity experiments were conducted, differing in the base ROG mixtures used to represent the reactive organics in the atmosphere. In the "mini-surrogate" experiments, the base ROG consisted only of n-hexane, ethylene and m-xylene. These are useful because they are directly comparable to an extensive series of similar experiments conducted for other compounds (Carter et al., 1993b, 1995c,d), and because we found such experiments tend to be more sensitive to mechanism differences than experiments using more complex and realistic surrogates (Carter et al., 1995c). In the "full surrogate" experiments, the base ROG is an 8 -component mixture of n-butane, n-octane, ethylene, propene, trans-2-butene, toluene, m-xylene, and formaldehyde, whose relative levels were calculated based on analyses of air quality data (Carter et al., 1995c). Calculations indicate that incremental reactivities in such experiments correlate as well with incremental reactivities in the atmosphere as can be obtained with such experiments (Carter et al., 1995c). All these experiments were carried out using the relatively low $\mathrm{ROG} / \mathrm{NO}_{\mathrm{x}}$ "maximum reactivity" conditions where ozone formation is most sensitive to VOC emissions (Carter, 1994).

The effect of a test compound on NO oxidation and O_{3} formation in incremental reactivity experiments is assessed by its effect on $\left.\left.\left\{\left(\left[\mathrm{O}_{3}\right]_{\mathrm{t}}-\left[\mathrm{O}_{3}\right]_{\text {ninit }}\right) \text {-([NO] }\right]_{t}[\mathrm{NO}]_{\text {init }}\right)\right\}$ (Carter et al., 1993b, 1995c,d, Carter, 1995). As discussed elsewhere (Johnson, 1983; Carter and Atkinson, 1987; Carter and Lurmann, 1991), this gives a direct measure of the amount of conversion of NO to NO_{2} by peroxy radicals formed in the photooxidation reactions, which is the process directly responsible for ozone formation in the atmosphere, and is useful for assessing reactivity effects under both high-NO and high- O_{3} conditions. This quantity is referred to as $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ in the subsequent discussion.

Table 2 summarizes the ozone yields and fractions of m-xylene and the least reactive of the ROG surrogate alkane reacted in the base case and in the chloropicrin reactivity experiments. Figure 4 shows concentration time plots of $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ and the alkane in these experiments, together with results of model calculations. The open symbols in Figure 4 show the data in the base case experiment without chloropicrin, and the filled symbols show the effect of the chloropicrin addition. Figure 4 also plots experimental vs calculated chloropicrin incremental reactivity, defined as the change in $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ caused by adding the chloropicrin, divided by the amount added (Carter et al., 1993b, 1995d), for each hour in the experiments.

The results show that chloropicrin addition has a significant effect on ozone formation and ROG reaction rates even at concentrations of $\sim 0.1 \mathrm{ppm}$. The effect of chloropicrin on O_{3} and $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ is somewhat greater in the experiments using the mini-surrogate base ROG than using the full surrogate. This is consistent with results we have observed with other VOCs (Carter et al., 1995c). On the other hand, the effect of adding a given amount of chloropicrin on n-butane consumption appears to be somewhat less dependent on which ROG surrogate is employed. The addition of formaldehyde has about the same effect on $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ in a full surrogate experiment as does the addition of a comparable amount of chloropicrin (compare run CTC-128 with run CTC-124 on Figure 4). This suggests that these two compounds may have similar ozone impacts on a per-mole basis under these experimental conditions. However, formaldehyde had a much smaller effect than chloropicrin on the amount of n-butane reacted. This is consistent with the formation of Cl atoms being the main reason for the relatively large effect of chloropicrin on alkane consumption rates. The addition of chloropicrin also increases the rate of consumption of the more reactive species such as m-xylene (see Table 2), but the relative effect is smaller because more of these compounds react in any case.

As was the case with the chloropicrin - alkane experiments, the models (see Figure 4) gave good predictions of the effects of chloropicrin on amounts of alkane reacted. However, the ability to predict the effect on ozone formation and NO oxidation depend on which photolysis mechanism is assumed. The results are somewhat ambiguous in this regard, with Model 2 giving a much better fit to the mini-surrogate experiment with the highest amount of added chloropicrin, while Model 1 gave somewhat better fits to the mini-surrogate experiments with the lower amounts added. The model simulations of the full surrogate experiments were inconclusive, with Model 1 tending to slightly underpredict reactivity and model 2 tending to slightly overpredict the measured $\mathrm{d}\left(\mathrm{O}_{3}-\mathrm{NO}\right)$ reactivities. However, the fits for Model 2 are slightly better. The overall incremental reactivity data tend to be slightly more consistent with Model 2
than Model 1 since the inconsistencies found with Model 2 are usually not far outside the experimental uncertainty, and the discrepancy in the Model 1 simulation of CTC-112 is significant.

Atmospheric Ozone Impact Estimates

Table 3 summarizes the relative ozone impacts calculated for chloropicrin and selected other representative compounds for the averaged conditions scenarios representing the three atmospheric NO_{x} conditions. The tabulated quantities are "relative reactivities" (Carter, 1994), defined as the ratios of calculated incremental reactivities of the compounds, quantified on an ozone per gram basis, divided by the weighed average of the incremental reactivity of all the reactive organic emissions used in the model. Thus if the relative reactivity of a compound is greater than one, controlling emissions of that compound will have a greater impact on O_{3} reduction in that scenario than controlling emissions of all ROGs equally. Note also that the reactivity relative to ethane has been the major criterion that the EPA has used in determining whether a VOC has a sufficiently low ozone impact that it would consider exempting it from regulation as a VOC ozone precursor (Dimitriades, 1994). For example, acetone has recently been exempted from regulation because its range of reactivity under various atmospheric conditions overlaps that of ethane.

Table 3 shows that regardless of which chloropicrin photodecomposition mechanism is assumed, the model predicts that chloropicrin has a significantly greater ozone impact than ethane, and thus is not a reasonable candidate for VOC exemption by the criterion used by the EPA. Its reactivity relative to the average emissions depends on the NO_{x} conditions. Under the relatively high NO_{x} "maximum reactivity" conditions it is about $40-50 \%$ as reactive as the average, while under the lower NO_{x} "equal benefit" conditions it is $\sim 20-50 \%$ more reactive than the average, depending on the mechanism assumed. Under maximum reactivity and maximum ozone conditions (which represent the range most relevant to ozone control strategies because ozone is less sensitive to changes of VOC emissions under lower NO_{x} conditions), the ozone impact of chloropicrin is comparable to or slightly greater than those of the midrange alkanes, and considerably less than those for the olefins, most aromatics, or formaldehyde.

The greater relative reactivity of chloropicrin under low NO_{x} conditions is attributed to the fact that the reaction of chloropicrin introduces NO_{x} into the system, and O_{3} formation under these conditions is extremely sensitive to NO_{x} inputs. Under higher NO_{x} conditions, the reactivity of chloropicrin is influenced primarily by the fact that its photolysis tends to increase the level of radicals in the system, which increases the rate of O_{3} formation from all the VOCs present (Carter, 1994; Carter and Atkinson, 1989). The reactivities calculated using Model 2 are uniformly higher than those calculated using Model

1 because the latter involves two more NO to NO_{2} conversions, the process which is ultimately responsible for O_{3} formation in the overall reaction. However, both models introduce radicals and NO_{x} into the system, and thus predict the same qualitative dependence of chloropicrin reactivity on environmental conditions.

CONCLUSIONS

Chloropicrin has been found to be a relatively reactive compound under simulated atmospheric conditions, and, if emitted in the presence of other reactive organic compounds and NO_{x}, it will have a non-negligible effect on tropospheric ozone formation. Although chloropicrin is unlike most reactive organic compounds in that it does not react to a significant extent with hydroxyl radicals, its photodecomposition is relatively rapid, having a calculated atmospheric half life of somewhat less than a day under clear sky summer conditions. Its absorption spectrum overlaps the spectrum of ground level sunlight in the 300-360 nm region, and it photolyzes relatively efficiently in this region (with an $87 \pm 13 \%$ overall quantum yield) to form both NO_{x} and Cl atoms. The formation of Cl atoms enhances O_{3} formation because Cl reacts rapidly with other organic species present in the atmosphere. This is particularly true for alkanes, which would otherwise react much more slowly, and whose subsequent reactions cause ozone formation. The formation of Cl atoms also enhance the overall levels of radicals in the system. The formation of NO_{x} also gives chloropicrin a relatively high O_{3} impact under low NO_{x} conditions where O_{3} yields are highly sensitive to NO_{x} inputs. On an ozone formed per gram emitted basis, chloropicrin is estimated to have about half to 1.5 times the ozone impact as the average for emitted VOCs, with the relative impact being greater when NO_{x} levels are low.

The results of this study differ from the previous study of chloropicrin's gas-phase photolysis (Moilanen et al., 1978) in several important respects. The chloropicrin photolytic lifetime reported by Moilanen et al. (1978) is at least an order of magnitude longer than we observed. Our environmental chamber data are more consistent with the photodecomposition reaction occurring via simple $\mathrm{C}-\mathrm{N}$ scission, rather than the O_{2}-dependent processes which Moilanen et al. (1978) proposed. The differences may be due to differences in the light sources employed. Uncertainty in the exact chloropicrin photodecomposition mechanism causes us to conclude that there is a $\sim 25-40 \%$ uncertainty in the estimates of the atmospheric ozone impact of chloropicrin, which is not sufficient to affect our overall conclusions about its relative ozone impact compared to other VOCs.

ACKNOWLEDGEMENTS

This work was supported by the Chloropicrin Manufacturers' Task Force. We also acknowledge the National Renewal Energy Laboratory for providing funding for the xenon arc light source which was employed in this study. Additional funding for the chemical mechanism development effort for the $\mathrm{ClO}_{\mathrm{x}}$ reactions was provided by the California Air Resources Board through Contract no. 92-329. The authors also thank Dr. Roger Atkinson for many helpful discussions, Mr. Dennis Fitz, Mr. Kurt Bumiller and Ms. Kathalena Smihula for assistance in carrying out the experiments, and members of the Chloropicrin Manufacturers' Task Force for helpful comments when reviewing the manuscript.

REFERENCES

Atkinson, R. and S. M. Aschmann (1985): Int. J. Chem. Kinet. 17, 33.
Aschmann, S. A. and R. Atkinson (1995): "Rate Constants for the Gas-Phase Reactions of Alkanes with Cl Atmos at 296 ± 2 K," Int. J. Chem. Kinet, 27, 613-622.

Atkinson, R. (1989): "Kinetics and Mechanisms of the Gas-Phase Reactions of the Hydroxyl Radical with Organic Compounds," J. Phys. Chem. Ref. Data, Monograph no 1.

Atkinson, R. (1990): "Gas-Phase Tropospheric Chemistry of Organic Compounds: A Review," Atmos. Environ., 24A, 1-24.

Atkinson, R. (1991a): "Kinetics and Mechanisms of the Gas-Phase Reactions of the NO_{3} Radical with Organic Compounds," J. Phys. Chem. Ref. Data, 20, 459-507.

Atkinson, R. (1994): "Gas-Phase Tropospheric Chemistry of Organic Compounds," J. Phys. Chem. Ref. Data, Monograph No. 2.

Atkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, M. J. Rossi, and J. Troe (1996): "Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V., IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry," J. Phys. Chem. Ref. Data, in press.

Atkinson, R. and W. P. L. Carter (1984): "Kinetics and Mechanisms of the Gas-Phase Reactions of Ozone with Organic Compounds under Atmospheric Conditions," Chem. Rev. 1984, 437-470.

Baugues, K. (1990): "Preliminary Planning Information for Updating the Ozone Regulatory Impact Analysis Version of EKMA," Draft Document, Source Receptor Analysis Branch, Technical Support Division, U. S. Environmental Protection Agency, Research Triangle Park, NC, January.

Carter, W. P. L. (1990): "A Detailed Mechanism for the Gas-Phase Atmospheric Reactions of Organic Compounds," Atm. Environ., 24A, 481-518.

Carter, W. P. L. (1994): "Development of Ozone Reactivity Scales for Volatile Organic Compounds," J. Air and Waste Manage. Assoc., 44, 881-899.

Carter, W. P. L. (1995): "Computer Modeling of Environmental Chamber Measurements of Maximum Incremental Reactivities of Volatile Organic Compounds," Atmos. Environ., 29, 2513-2517.

Carter, W. P. L. and R. Atkinson (1987): "An Experimental Study of Incremental Hydrocarbon Reactivity," Environ. Sci. Technol., 21, 670-679

Carter, W. P. L., R. Atkinson, A. M. Winer, and J. N. Pitts, Jr. (1982): "Experimental Investigation of Chamber-Dependent Radical Sources," Int. J. Chem. Kinet., 14, 1071.

Carter, W. P. L. and R. Atkinson (1989): "A Computer Modeling Study of Incremental Hydrocarbon Reactivity", Environ. Sci. and Technol., 23, 864.

Carter, W. P. L, D. Luo, I. L. Malkina, and J. A. Pierce (1993a): "An Experimental and Modeling Study of the Photochemical Ozone Reactivity of Acetone," Final Report to Chemical Manufacturers Association Contract No. KET-ACE-CRC-2.0. December 10.

Carter, W. P. L., J. A. Pierce, I. L. Malkina, D. Luo and W. D. Long (1993b): "Environmental Chamber Studies of Maximum Incremental Reactivities of Volatile Organic Compounds," Report to Coordinating Research Council, Project No. ME-9, California Air Resources Board Contract No. A032-0692; South Coast Air Quality Management District Contract No. C91323, United States Environmental Protection Agency Cooperative Agreement No. CR-814396-01-0, University Corporation for Atmospheric Research Contract No. 59166, and Dow Corning Corporation. April 1. (This report is available on the Internet by anonymous FTP at cert.ucr.edu, directory pub/carter/pubs.)

Carter, W. P. L., D. Luo, I. L. Malkina, and J. A. Pierce (1995a): "Environmental Chamber Studies of Atmospheric Reactivities of Volatile Organic Compounds. Effects of Varying Chamber and Light Source," Final report to National Renewable Energy Laboratory, Contract XZ-2-12075, Coordinating Research Council, Inc., Project M-9, California Air Resources Board, Contract A0320692, and South Coast Air Quality Management District, Contract C91323, March 26. (This report is available on the Internet by anonymous FTP at cert.ucr.edu, directory pub/carter/pubs.)

Carter, W. P. L., D. Luo, I. L. Malkina, and D. Fitz (1995b): "The University of California, Riverside Environmental Chamber Data Base for Evaluating Oxidant Mechanism. Indoor Chamber Experiments through 1993," Report submitted to the U. S. Environmental Protection Agency, EPA/AREAL, Research Triangle Park, NC., March 20.. (This report and database are available on the Internet by anonymous FTP at cert.ucr.edu, directories pub/carter/pubs and /pub/carter/chdata.)

Carter, W. P. L., D. Luo, I. L. Malkina, and J. A. Pierce (1995c): "Environmental Chamber Studies of Atmospheric Reactivities of Volatile Organic Compounds. Effects of Varying ROG Surrogate and NO_{x}," Draft final report to Coordinating Research Council, Inc., Project ME-9, California Air

Resources Board, Contract A032-0692, and South Coast Air Quality Management District, Contract C91323. March 24. (This report is available on the Internet by anonymous FTP at cert.ucr.edu, directory pub/carter/pubs.)

Carter, W. P. L., D. Luo, and I. L. Malkina (1996): "Investigation of the Atmospheric Reactions of Chloropicrin," final report to the Chloropicrin Manufacturers’ Task Force, Niklor Chemical Co., Long Beach, CA, May, 1996. (This report is available on the Internet by anonymous FTP at cert.ucr.edu, directory pub/carter/pubs.)

Carter, W. P. L., and F. W. Lurmann (1990): "Evaluation of the RADM Gas-Phase Chemical Mechanism," Final Report, EPA-600/3-90-001.

Carter, W. P. L. and F. W. Lurmann (1991): "Evaluation of a Detailed Gas-Phase Atmospheric Reaction Mechanism using Environmental Chamber Data," Atm. Environ. 25A, 2771-2806.

Carter, W. P. L., J. A. Pierce, D. Luo, and I. L. Malkina (1995): "Environmental Chamber Study of Maximum Incremental Reactivities of Volatile Organic Compounds," Atmos. Environ. 29, 24992511.

Crosby, D. G. and K. W. Moilanen (1974): "Vapor-Phase Photodecomposition of Aldrin and Dieldrin," Arch. Environ. Contam. Toxicol. 2, 62-74.

Dimitriades, B. (1994): U. S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, Research Triangle Park, NC, personal communication.

EPA (1984): "Guideline for Using the Carbon Bond Mechanism in City-Specific EKMA," EPA-450/4-84005, February.

Finlayson-Pitts, B. J. and J. N. Pitts, Jr. (1986): "Atmospheric Chemistry: Fundamentals and Experimental Techniques," John Wiley \& Sons, New York.

Haszeldine (1953): "Studies in Spectroscopy, Part IV," J. Chem Soc (London), 1953, 2525-2527.
Jeffries, H. E., M. W. Gery and W. P. L. Carter (1992): "Protocol for Evaluating Oxidant Mechanisms for Urban and Regional Models," Report for U. S. Environmental Protection Agency Cooperative Agreement No. 815779, Atmospheric Research and Exposure Assessment Laboratory, Research Triangle Park, NC.

Johnson, G. M. (1983): "Factors Affecting Oxidant Formation in Sydney Air," in "The Urban Atmosphere -- Sydney, a Case Study." Eds. J. N. Carras and G. M. Johnson (CSIRO, Melbourne), pp. 393-408.

NASA (1987): "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation Number 8", JPL Publication 87-41, Jet Propulsion Laboratory, Pasadena California, September.

NASA (1994): "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 11," JPL Publication 94-26, Jet Propulsion Laboratory, Pasadena, California, December.

Peterson, J. T. (1976): "Calculated Actinic Fluxes (290-700 nm) for Air Pollution Photochemistry Applications", EPA-600/4-76-025, June.

Seinfeld, J. H. (1986): "Atmospheric Chemistry and Physics of Air Pollution," John Wiley \& Sons, New York.

Wallington, T. J., L. M. Skewes, and W. O. Siegl (1988): J. Photochem. Photobiol. A:Chem, 45, 33.

Moilanen, K. W., D. G. Crosby, J. R. Humphrey, and J. W. Giles (1978): "Vapor-Phase Photodecomposition of Chloropicrin (Trichloronitormethane)," Tetrahedron, 34, 2245-3349.

Zafonte, L., P. L. Rieger, and J. R. Holmes (1977): "Nitrogen Dioxide Photolysis in the Los Angeles Atmosphere," Environ. Sci. Technol. 11, 483-487.

Table 1. Listing of the reactions added to the general atmospheric photooxidation mechanism to represent the atmospheric reactions of chloropicerin amd chlorine containing species. ${ }^{[a]}$

Table 1 (continued)

Kinetic Parameters [b]				Notes [d]	Reactions [c]
k (300)	A	Ea	B		
$3.50 \mathrm{E}-12$	(No	T Depend	nce)		$\mathrm{CL} .+\mathrm{ACET}=\mathrm{HCL}+\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{HCHO}+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RCO3} .+\mathrm{RO} 2$.
$1.00 \mathrm{E}-10$	(No	T Depend	nce)	13	```CL. + MEK = HCL + 0.5 {CCHO + HCHO + CCO-O2. + C2CO-02.} + RCO3. + 1.5 {R2O2. + RO2.}```
$1.00 \mathrm{E}-10$	(No	T Depend	nce)	13	```CL. + RNO3 = HCL + NO2 + 0.155 MEK + 1.05 RCHO + 0.48 ССНО + 0.16 HCHO + 0.11 -C + 1.39 {R2O2. + RO2.}```
$1.00 \mathrm{E}-10$	(No	T Depend	nce)	13	```CL. + GLY = HCL + 0.6 HO2. + 1.2 CO + 0.4 {HCOCO-O2. + RCO3.}```
$1.00 \mathrm{E}-10$	(No	T Depend	nce)	13	$\mathrm{CL} .+\mathrm{MGLY}=\mathrm{HCL}+\mathrm{CO}+\mathrm{CCO}-\mathrm{O2} .+\mathrm{RCO3}$.
$1.00 \mathrm{E}-10$	(No	T Depend	nce)		CL. + PHEN $=$ HCL +0.15 RO2-NP. + 0.85 RO2-R. + $0.2 \mathrm{GLY}+$ 4.7 - $\mathrm{C}+\mathrm{RO} 2$.
$1.00 \mathrm{E}-10$	(No	T Depend	nce)	13	```CL. + CRES = HCL + 0.15 RO2-NP. + 0.85 RO2-R. + 0.2 MGLY + 5.5 -C + RO2.```
$1.00 \mathrm{E}-10$	(No	T Depend	nce)	13	$\mathrm{CL} .+\mathrm{BALD}=\mathrm{HCL}+\mathrm{BZ}-\mathrm{CO}-02 .+\mathrm{RCO3}$.
$1.00 \mathrm{E}-10$	(No	T Depend	nce)	13	$\mathrm{CL} .+\mathrm{AFG2}=\mathrm{HCL}+\mathrm{C} 2 \mathrm{CO}-02 .+\mathrm{RCO} 3$.

[a] A listing of the general mechanism to which these reactions were added is given by carter et al. (1996). [b] Except as noted, the expression for rate constant is $k=A e^{E a / R T}(T / 300)^{B}$. Rate constants and A factor are in ppm, min units. Units of Ea is kcal mole ${ }^{-1}$. For falloff kinetics the rate constants are given by $(\mathrm{kO}[\mathrm{M}] \mathrm{kINF}) /(\mathrm{kO}[\mathrm{M}]+\mathrm{kINF}) \quad \mathrm{x} \mathrm{F}^{\mathrm{x}}$, where $\mathrm{X}=1 /\left(1+\log _{10}(\mathrm{k} 0[\mathrm{M}] / \mathrm{kINF})^{2}\right)$. For photolysis reactions, the rate constants are calculated using the absorption cross sections in the associated photolysis files, which are given below or taken from the latest IUPAC evaluation (Atkinson et al, 1996). Unit quantum yields were assumed unless indicated otherwise in the listing.
[c] See Carter (1990) for a description of the species used in the general mechanism.
[d] Documentation notes are as follows. If no documentation notes are given, the kinetic parameters and absorption coefficient and quantum yields are from the latest IUPAC evaluation (Atkinson et al., 1996).

1. The absorption cross sections were obtained in this work as described in the text, and are as follows

270	$1.65 \mathrm{E}-19$	272	$1.70 \mathrm{E}-19$	274	$1.73 \mathrm{E}-19$	276	$1.73 \mathrm{E}-19$	278	$1.71 \mathrm{E}-19$	280	$1.67 \mathrm{E}-19$
282	$1.62 \mathrm{E}-19$	284	$1.54 \mathrm{E}-19$	286	$1.44 \mathrm{E}-19$	288	$1.34 \mathrm{E}-19$	290	$1.23 \mathrm{E}-19$	292	$1.10 \mathrm{E}-19$
294	$9.82 \mathrm{E}-20$	296	$8.71 \mathrm{E}-20$	298	$7.57 \mathrm{E}-20$	300	$6.44 \mathrm{E}-20$	302	$5.47 \mathrm{E}-20$	304	$4.68 \mathrm{E}-20$
306	$3.97 \mathrm{E}-20$	308	$3.33 \mathrm{E}-20$	310	$2.79 \mathrm{E}-20$	312	$2.36 \mathrm{E}-20$	314	$2.03 \mathrm{E}-20$	316	$1.77 \mathrm{E}-20$
318	$1.55 \mathrm{E}-20$	320	$1.38 \mathrm{E}-20$	322	$1.23 \mathrm{E}-20$	324	$1.10 \mathrm{E}-20$	326	$9.94 \mathrm{E}-21$	328	$8.98 \mathrm{E}-21$
330	$8.18 \mathrm{E}-21$	332	$7.54 \mathrm{E}-21$	334	$6.82 \mathrm{E}-21$	336	$6.27 \mathrm{E}-21$	338	$5.69 \mathrm{E}-21$	340	$5.20 \mathrm{E}-21$
342	$4.80 \mathrm{E}-21$	344	$4.36 \mathrm{E}-21$	346	$4.00 \mathrm{E}-21$	348	$3.68 \mathrm{E}-21$	350	$3.34 \mathrm{E}-21$	352	$3.05 \mathrm{E}-21$
354	$2.70 \mathrm{E}-21$	356	$2.51 \mathrm{E}-21$	358	$2.30 \mathrm{E}-21$	360	$1.54 \mathrm{E}-21$	362	$2.13 \mathrm{E}-21$	364	$1.78 \mathrm{E}-21$
366	$1.25 \mathrm{E}-21$	368	$1.28 \mathrm{E}-21$	370	$1.04 \mathrm{E}-21$	372	$1.08 \mathrm{E}-21$	374	$7.13 \mathrm{E}-22$	376	$6.96 \mathrm{E}-22$
378	$5.85 \mathrm{E}-22$	380	$5.57 \mathrm{E}-22$	382	$4.66 \mathrm{E}-22$	384	$4.68 \mathrm{E}-22$	386	$1.70 \mathrm{E}-22$	388	$5.02 \mathrm{E}-22$

The total photodecomposion quantum yield, $\Phi_{1}+\Phi_{2}$, was determined to be 0.87 ± 0.26 (see text). Although the data of Moilnanen et al. (1976) indicate that Φ_{2} is small, the light source they employed may not be representative of that in this work, and two alternative mechanisms, based on differing assumptions concerning the relative importance of the two reaction pathways, are considered.
2. These reaction are only applicable for model 2.
3. Same rate constant as used for other peroxy radical reactions in the general mechanism (Carter, 1990).
4. Calculated using absorption cross sections given in the latest IUPAC tabulation (Atkinson et al., 1996) asuming unit quantum yields.
5. Rate constant from NASA evaluation (NASA, 1994).
6. The kinetic parameters are for the equilibrium constant, which was derived from the low pressure chlorine nitrate decomposition rate constant of Schonle et al. (1979), combined with the low pressure rate constant for the reverse reaction.
7. This reaction is neglected because it is of negligible importance compared with the $\mathrm{ClO}_{\mathrm{l}}+\mathrm{NO}_{x}$ and HO_{2} reactions under the conditions of the simulations discussed here.
8. Rate constants given by Aschmann and Atkinson (1995).
9. Relative rate constant from Atkinson and Aschmann (1985); placed on an absolute basis using the Cl + n-butane rate constant used by Aschmann and Atkinson (1995) for deriving absolute Cl + alkane rate constants. The toluene rate constant is in good agreement with value of Wallington et al. (1988).
10. Abstraction from the methyl group is expected to dominate over addition to the aromatic ring, so the representation of the products formed is modified accordingly.
11. Rate constant from Wallington et al. (1988).
12. Rate constant estimated from Cl + propene rate constant (Atkinson and Aschmann, 1985) and the estimation method derived for $\mathrm{Cl}+$ alkanes (Aschmann and Atkinson, 1995).
13. The rate constants for these organic product + chlorine reaction are unknown and are approximately estimated. They are not expected to be highly important in affecting the results of the simulations because much more of the $C l$ reacts with the alkanes which are present.

Table 2. Summary of conditions and results of the environmental chamber experiments.

Run	Initial Concentrations (ppm)						Selected Results			
	Chloropicrin	NO	NO_{2}	Cl_{2}	Other Reactants Type (ppm)		Time (hrs)	$\begin{gathered} \mathrm{O} 3 \\ (\mathrm{ppm}) \end{gathered}$	Alkane Xylene Reacted ${ }^{[a]}$	
$\underline{\text { n-Butane - } \mathrm{NO}^{\text {(control) }} \text { (}}$										
CTC-135	0	0.20	0.06	0	n-Butane	3.4	5	0.005	2\%	-
Cl_{2} - Alkane										
CTC-139	0	0	0	0.14	n-Butane	0.9	3	0.02	26\%	-
CTC-136	0	0.29	0.11	0.14	n-Butane	0.9	3	0.52	38\%	-
Chloropicrin - Alkane										
CTC-141A	1.9	0	0	0	n-Butane	1.0	5	0.81	40\%	-
CTC-141B	1.9	0	0	0		1.8	5	0.86	25\%	-
CTC-134A	2.0	0.27	0.08	0	Ethane	0.49	5	0.46	46\%	-
CTC-134B	1.9	0.27	0.08	0		0.95	5	0.50	31\%	-
CTC-125A	3.1	0.21	0.05	0	n-Butane	0.9	5	0.69	36\%	-
CTC-125B	3.0	0.21	0.05	0		1.8	5	0.81	23\%	-
Incremental Reactivity ${ }^{[b]}$										
CTC-112	1.9	0.22	0.07	0	Mini-Surrogate $(\mathrm{ppmC})^{[\mathrm{c}]}$	4.8	5	1.01	60\%	81\%
	0	0.21	0.07	0		4.9	5	0.20	12\%	43\%
CTC-119	0.16	0.22	0.08	0		4.9	5	0.38	19\%	55\%
	0	0.23	0.08	0		4.9	5	0.17	10\%	39\%
CTC-121	0.10	0.22	0.08	0		4.8	3	0.09	9\%	32\%
	0	0.23	0.08	0		4.8	3	0.02	4\%	19\%
CTC-126	0.25	0.28	0.10	0	Full Surrogate $(\mathrm{ppmC})^{[\mathrm{d}]}$	5.4	5	0.40	12\%	59\%
	0	0.28	0.10	0		5.4	5	0.27	6\%	52\%
CTC-124	0.15	0.27	0.11	0		5.7	5	0.35	11\%	57\%
	0	0.28	0.11	0		5.5	5	0.28	8\%	54\%

[^0]Table 3. Results of relative atmospheric ozone impact estimates for chloropicrin and other representative VOCs for the three averaged conditions scenarios.

Compound	Relative Reactivity ${ }^{[\text {[a] }}$ (mass basis)		
	Max React	Max O_{3}	Low NO_{x}
Chloropicrin			
Model 1	0.28	0.47	1.14
Model 2	0.41	0.65	1.42
Other VOCs	0.08	0.15	0.19
Ethane	0.32	0.61	0.75
n-Butane	0.22	0.42	0.40
n-Octane	2.1	2.3	2.6
Ethene	2.7	2.9	3.4
Propene	3.3	3.1	3.6
trans-2-butene	1.2	0.77	0.14
Toluene	3.6	2.8	2.4
M-Xylene	1.7	1.16	1.03
Formaldehyde	0.12	0.13	0.14
Acetone			

[a] Incremental reactivity of the compound divided by the emissionsweighted average incremental reactivity of all reactive organic gas emissions.

Figure 1. Absorption cross sections for chloropicrin and acetaldehyde and relative light intensities for ground level sunlight and for the chamber light source. The "x"'s show the differences between the acetaldehyde absorption cross sections measured in this work and the IUPAC (1996) recommended values. The light intensities are in arbitrary units normalized so that each yields the same NO_{2} photolysis rate.

Figure 2. Plots of $\ln \left([\text { Chloropicrin }]_{0} /[\text { Chloropicrin }]_{t}\right)$ vs time for all the environmental chamber experiments.

Figure 3. Selected experimental and calculated results from the Cl_{2} - alkane and chloropicrin - alkane chamber experiments.

Figure 4. Selected experimental and calculated results for the incremental reactivity experiments. Results of a comparable formaldehyde reactivity experiment are also shown.

APPENDIX A LISTING OF THE GENERAL ATMOSPHERIC PHOTOOXIDATION MECHANISM

This Appendix contains a complete listing of the chemical mechanism used in the environmental chamber and atmospheric reactivity simulations discussed in this report, except for the reactions of chlorpicrin, Cl atoms, and other chlorine-containing products, which are given in Table 1 of the main report. Table A-1 lists the species used in the general mechanism, and Table A-2 lists the reactions and the rate constants. Footnotes to Table A-2 indicate the nomenclature used. Table A-3 lists the absorption cross sections and quantum yields for the photolysis reactions in the general mechanism, and Table A-4 lists the values for the chamber-dependent parameters used in the model simulations of the environmental chamber experiments, and gives brief explanations of the values used.

Table A-1. List of species in the chemical mechanism used in the model simulations for this study.
Name Description

Constant	Species.
O 2	Oxygen
M	Air
H 2 O	Water

Active Inorganic Species.

O3	Ozone
NO	Nitric Oxide
NO2	Nitrogen Dioxide
NO3	Nitrate Radical
N2O5	Nitrogen Pentoxide
HONO	Nitrous Acid
HNO3	Nitric Acid
HNO4	Peroxynitric Acid
HO2H	Hydrogen Peroxide

Active Radical Species and Operators.

HO2. Hydroperoxide Radicals
RO2. Operator to Calculate Total Organic Peroxy Radicals
RCO3. Operator to Calculate Total Acetyl Peroxy Radicals

Table A-1 (continued)
Name Description

Active Reactive Organic Product Species.

CO	Carbon Monoxide
HCHO	Formaldehyde
CCHO	Acetaldehyde
RCHO	Lumped C3+ Aldehydes
ACET	Acetone
MEK	Lumped Ketones
PHEN	Phenol
CRES	Cresols
BALD	Aromatic aldehydes (e.g., benzaldehyde)
GLY	Glyoxal
MGLY	Methyl Glyoxal
AFG1	Reactive Aromatic Fragmentation Products from benzene and naphthalene
AFG2	Other Reactive Aromatic Fragmentation Products
AFG3	Aromatic Fragmentation Products used in adjusted m-xylene mechanism
RNO3	Organic Nitrates
NPHE	Nitrophenols
ISOPROD	Lumped isoprene product species
PAN	Peroxy Acetyl Nitrate
PPN	Peroxy Propionyl Nitrate
GPAN	PAN Analogue formed from Glyoxal
PBZN	PAN Analogues formed from Aromatic Aldehydes
-OOH	Operator Representing Hydroperoxy Groups

Non-Reacting Species

CO2	Carbon Dioxide
-C	"Lost Carbon"
-N	"Lost Nitrogen"
H2	Hydrogen

Steady State Species and Operators.

HO. Hydroxyl Radicals
O Ground State Oxygen Atoms
O*1D2 Excited Oxygen Atoms
RO2-R. Peroxy Radical Operator representing NO to NO_{2} conversion with HO_{2} formation.
RO2-N. Peroxy Radical Operator representing NO consumption with organic nitrate formation.
RO2-NP. Peroxy Radical Operator representing NO consumption with nitrophenol formation
R2O2. Peroxy Radical Operator representing NO to NO_{2} conversion.
CCO-O2. Peroxy Acetyl Radicals
C2CO-O2. Peroxy Propionyl Radicals
HCOCO-O2. Peroxyacyl Radical formed from Glyoxal
BZ-CO-O2. Peroxyacyl Radical formed from Aromatic Aldehydes
HOCOO. Intermediate formed in Formaldehyde $+\mathrm{HO}_{2}$ reaction

Table A-1 (continued)

Name	Description
BZ-O.	Phenoxy Radicals
BZ(NO2)-O.	Nitratophenoxy Radicals
HOCOO.	Radical Intermediate formed in the $\mathrm{HO}_{2}+\mathrm{Formaldehyde} \mathrm{system.}_{\text {(HCHO2) }}$
Excited Criegee biradicals formed from $=\mathrm{CH}_{2}$ groups	
(CCHO2)	Excited Criegee biradicals formed from $=\mathrm{CHCH}_{3}$ groups
(RCHO2)	Excited Criegee biradicals formed from $=\mathrm{CHR}^{\text {groups, where } \mathrm{R} \text { not } \mathrm{CH}_{3}}$
(C(C)CO2)	Excited Criegee biradicals formed from $=\mathrm{C}_{3}\left(\mathrm{CH}_{3}\right)_{2}$ groups
(C(R)CO2)	Excited Criegee biradicals formed from $={\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{R} \text { or } \mathrm{CR}_{2} \text { groups }}_{\text {(BZCHO2) }}$Excited Criegee biradicals formed from styrenes
Hydrocarbon species represented explicitly	
CH4	Methane (EKMA simulations only)
ETHANE	Ethane (Ethane reactivity simulations only)
N-C4	n-Butane (Chamber simulations only)
N-C6	n-Hexane (Chamber simulations only)
N-C8	n-Octane (Chamber simulations only)
ETHE	Ethene
ISOP	Isoprene (EKMA Simulations only)
APIN	α-Pinene (EKMA Simulations only)
UNKN	Unknown biogenics. (EKMA Simulations only)
PROPENE	Propene (Chamber simulations only)
T-2-BUTE	trans-2-Butene (Chamber simulations only)
TOLUENE	Toluene (Chamber simulations only)
M-XYLENE	m-Xylene (Chamber simulations only)

Lumped species used to represent the Base ROG mixture in the EKMA model simulations.
ALK1 Alkanes and other saturated compounds with $\mathrm{k}_{\mathrm{OH}}<10^{4} \mathrm{ppm}^{-1} \mathrm{~min}^{-1}$.
ALK2 Alkanes and other saturated compounds with $\mathrm{k}_{\mathrm{OH}} \geq 10^{4} \mathrm{ppm}^{-1} \mathrm{~min}^{-1}$.
ARO1 Aromatics with $\mathrm{k}_{\mathrm{OH}}<2 \times 10^{4} \mathrm{ppm}^{-1} \mathrm{~min}^{-1}$.
ARO2 Aromatics with $\mathrm{k}_{\mathrm{OH}} \geq 2 \times 10^{4} \mathrm{ppm}^{-1} \mathrm{~min}^{-1}$.
OLE2 Alkenes (other than ethene) with $\mathrm{k}_{\mathrm{OH}}<7 \times 10^{4} \mathrm{ppm}^{-1} \mathrm{~min}^{-1}$.
OLE3 Alkenes with $\mathrm{k}_{\mathrm{OH}} \geq 7 \times 10^{4} \mathrm{ppm}^{-1} \mathrm{~min}^{-1}$.

Table A-2. List of reactions in the geneneral chemical mechanism used in the model simulations for this study. [a]

Rxn.	Kinetic Parameters [b]			
Label	$\mathrm{k}(300)$	A	Ea	B

Inorganic Reactions

1	(Phot.	. File $=$ NO2	$\mathrm{NO} 2+\mathrm{HV}=\mathrm{NO}+\mathrm{O}$
2	$6.00 \mathrm{E}-34$	$6.00 \mathrm{E}-34 \quad 0.00-2.30$	$\mathrm{O}+\mathrm{O} 2+\mathrm{M}=\mathrm{O} 3+\mathrm{M}$
3A	$9.69 \mathrm{E}-12$	$6.50 \mathrm{E}-12-0.24-0.00$	$\mathrm{O}+\mathrm{NO} 2=\mathrm{NO}+\mathrm{O} 2$
3B	8.98E-26	(Falloff Kinetics)	$\mathrm{O}+\mathrm{NO} 2=\mathrm{NO} 3+\mathrm{M}$
	k0	$9.00 \mathrm{E}-32 \quad 0.00-2.00$	
	$\mathrm{kINF}=$	$2.20 \mathrm{E}-11 \quad 0.00 \quad 0.00$	
		$\mathrm{F}=0.60 \mathrm{n}=1.00$	
4	1.88E-14	$2.00 \mathrm{E}-12 \quad 2.78 \quad 0.00$	$\mathrm{O} 3+\mathrm{NO}=\mathrm{NO} 2+\mathrm{O} 2$
5	$3.36 \mathrm{E}-17$	$1.40 \mathrm{E}-13 \quad 4.97 \quad 0.00$	$\mathrm{O} 3+\mathrm{NO} 2=\mathrm{O} 2+\mathrm{NO} 3$
6	$2.80 \mathrm{E}-11$	$1.70 \mathrm{E}-11-0.30 \quad 0.00$	$\mathrm{NO}+\mathrm{NO} 3=2 \mathrm{NO} 2$
7	$1.92 \mathrm{E}-38$	$3.30 \mathrm{E}-39-1.050 .00$	$\mathrm{NO}+\mathrm{NO}+\mathrm{O} 2=2 \mathrm{NO} 2$
8	$2.19 \mathrm{E}-24$	(Falloff Kinetics)	$\mathrm{NO} 2+\mathrm{NO} 3=\mathrm{N} 2 \mathrm{O} 5$
	$\mathrm{k} 0=$	$2.20 \mathrm{E}-30 \quad 0.00-4.30$	
	kINF $=$	$1.50 \mathrm{E}-120.00-0.50$	
		$\mathrm{F}=0.60 \mathrm{n}=1.00$	
9	$5.53 \mathrm{E}+10$	$9.09 \mathrm{E}+2622.26 \quad 0.00$	$\mathrm{N} 2 \mathrm{O} 5+$ \#RCON8 $=$ NO2 + NO3
10	$1.00 \mathrm{E}-21$	(No T Dependence)	$\mathrm{N} 2 \mathrm{O} 5+\mathrm{H} 2 \mathrm{O}=2 \mathrm{HNO} 3$
11	4.17E-16	$2.50 \mathrm{E}-14 \quad 2.44 \quad 0.00$	$\mathrm{NO} 2+\mathrm{NO} 3=\mathrm{NO}+\mathrm{NO} 2+\mathrm{O} 2$
12A	(Phot.	. File $=$ NO3NO)	$\mathrm{NO} 3+\mathrm{HV}=\mathrm{NO}+\mathrm{O} 2$
12B	(Phot.	. File $=$ NO3NO2)	NO3 + HV $=$ NO2 + O
13A	(Phot.	. File $=0303 \mathrm{P}$)	$\mathrm{O} 3+\mathrm{HV}=\mathrm{O}+\mathrm{O} 2$
13B	(Phot.	File $=0301 \mathrm{D}$	$\mathrm{O} 3+\mathrm{HV}=\mathrm{O} * 1 \mathrm{D} 2+\mathrm{O} 2$
14	$2.20 \mathrm{E}-10$	(No T Dependence)	$\mathrm{O} 1 \mathrm{D} 2+\mathrm{H} 2 \mathrm{O}=2 \mathrm{HO}$.
15	2.92E-11	$1.92 \mathrm{E}-11-0.250 .00$	O (1D2 + M $=0+\mathrm{M}$
16	$6.98 \mathrm{E}-25$	(Falloff Kinetics)	HO. + NO $=$ HONO
		$7.00 \mathrm{E}-31 \quad 0.00-2.60$	
	kINF =	$1.50 \mathrm{E}-11 \quad 0.00-0.50$	
		$\mathrm{F}=0.60 \mathrm{n}=1.00$	
17	(Phot.	. File = HONO)	HONO + HV = HO. + NO
18	$2.59 \mathrm{E}-24$	(Falloff Kinetics)	HO. + NO2 = HNO3
	k0	$2.60 \mathrm{E}-30 \quad 0.00-3.20$	
	$\mathrm{kINF}=$	$2.40 \mathrm{E}-11 \quad 0.00-1.30$	
		$\mathrm{F}=0.60 \mathrm{n}=1.00$	
19	$1.03 \mathrm{E}-13$	$6.45 \mathrm{E}-15-1.650 .00$	HO. + HNO3 $=\mathrm{H} 2 \mathrm{O}+\mathrm{NO} 3$
21	$2.40 \mathrm{E}-13$	(No T Dependence)	$\mathrm{HO} .+\mathrm{CO}=\mathrm{HO} 2 .+\mathrm{CO} 2$
22	$6.95 \mathrm{E}-14$	$1.60 \mathrm{E}-12 \quad 1.87 \quad 0.00$	HO. + O3 = HO2. + O2
23	8.28E-12	$3.70 \mathrm{E}-12-0.480 .00$	HO2. + NO $=$ HO. + NO2
24	1.79E-25	(Falloff Kinetics)	HO2. + NO2 = HNO4
	k0	$1.80 \mathrm{E}-31 \quad 0.00-3.20$	
	$\mathrm{kINF}=$	$4.70 \mathrm{E}-12 \quad 0.00-1.40$	
		$\mathrm{F}=0.60 \mathrm{n}=1.00$	
25	$7.92 \mathrm{E}+10$	$4.76 \mathrm{E}+26 \quad 21.66 \quad 0.00$	HNO4 + \#RCON24 = HO2. + NO2
27	$4.61 \mathrm{E}-12$	$1.30 \mathrm{E}-12-0.75 \quad 0.00$	HNO4 + HO. $=\mathrm{H} 2 \mathrm{O}+\mathrm{NO} 2+\mathrm{O} 2$
28	$2.08 \mathrm{E}-15$	$1.10 \mathrm{E}-14 \quad 0.99 \quad 0.00$	$\mathrm{HO} 2 .+\mathrm{O} 3=\mathrm{HO} .+2 \mathrm{O} 2$
29A	$1.73 \mathrm{E}-12$	$2.20 \mathrm{E}-13-1.23-0.00$	$\mathrm{HO2} 2+\mathrm{HO} 2 .=\mathrm{HO} 2 \mathrm{H}+\mathrm{O} 2$
29B	$5.00 \mathrm{E}-32$	$1.90 \mathrm{E}-33-1.950 .00$	$\mathrm{HO} 2 .+\mathrm{HO} 2 .+\mathrm{M}=\mathrm{HO} 2 \mathrm{H}+\mathrm{O} 2$
29C	$3.72 \mathrm{E}-30$	$3.10 \mathrm{E}-34-5.60 \quad 0.00$	$\mathrm{HO} 2 .+\mathrm{HO} 2 .+\mathrm{H} 2 \mathrm{O}=\mathrm{HO} 2 \mathrm{H}+\mathrm{O} 2+\mathrm{H} 2 \mathrm{O}$
29D	$2.65 \mathrm{E}-30$	$6.60 \mathrm{E}-35-6.32 \quad 0.00$	HO2. + HO2. + H2O $=$ HO2H + O2 + H2O
30A	$1.73 \mathrm{E}-12$	$2.20 \mathrm{E}-13-1.23-0.00$	$\mathrm{NO} 3+\mathrm{HO} 2 .=\mathrm{HNO} 3+\mathrm{O} 2$
30B	$5.00 \mathrm{E}-32$	$1.90 \mathrm{E}-33-1.950 .00$	NO3 + HO2. + M $=$ HNO3 + O2
30C	$3.72 \mathrm{E}-30$	$3.10 \mathrm{E}-34-5.60 \quad 0.00$	$\mathrm{NO} 3+\mathrm{HO2} .+\mathrm{H} 2 \mathrm{O}=\mathrm{HNO} 3+\mathrm{O} 2+\mathrm{H} 2 \mathrm{O}$
30D	$2.65 \mathrm{E}-30$	$6.60 \mathrm{E}-35-6.320 .00$	$\mathrm{NO} 3+\mathrm{HO2} .+\mathrm{H} 2 \mathrm{O}=\mathrm{HNO} 3+\mathrm{O} 2+\mathrm{H} 2 \mathrm{O}$
31	(Phot.	. File $=\mathrm{H} 2 \mathrm{O} 2$)	$\mathrm{HO} 2 \mathrm{H}+\mathrm{HV}=2 \mathrm{HO}$.
32	$1.70 \mathrm{E}-12$	$3.30 \mathrm{E}-12 \quad 0.40 \quad 0.00$	$\mathrm{HO} 2 \mathrm{H}+\mathrm{HO}$. $=\mathrm{HO} 2 .+\mathrm{H} 2 \mathrm{O}$
33	9.90E-11	$4.60 \mathrm{E}-11-0.460 .00$	$\mathrm{HO} .+\mathrm{HO} 2 .=\mathrm{H} 2 \mathrm{O}+\mathrm{O} 2$
Peroxy Radical Operators			
B1	$7.68 \mathrm{E}-12$	$4.20 \mathrm{E}-12-0.36 \quad 0.00$	RO2. + NO $=$ NO
B2	$5.59 \mathrm{E}-22$	(Falloff Kinetics)	RCO3. $+\mathrm{NO}=\mathrm{NO}$
		$5.65 \mathrm{E}-28 \quad 0.00-7.10$	
	$\mathrm{kINF}=$	$2.64 \mathrm{E}-11 \quad 0.00-0.90$	
		$\mathrm{F}=0.27 \mathrm{n}=1.00$	
B4	$2.54 \mathrm{E}-22$	(Falloff Kinetics)	RCO3. $+\mathrm{NO} 2=\mathrm{NO} 2$
	$\mathrm{k} 0=$	$2.57 \mathrm{E}-28 \quad 0.00-7.10$	
	$\mathrm{kINF}=$	$1.20 \mathrm{E}-11 \quad 0.00-0.90$	
		$\mathrm{F}=0.30 \mathrm{n}=1.00$	
B5	$4.90 \mathrm{E}-12$	$3.40 \mathrm{E}-13-1.590 .00$	RO2. + HO2. = HO2. + RO2-HO2-PROD
B6	$4.90 \mathrm{E}-12$	$3.40 \mathrm{E}-13-1.590 .00$	RCO3. + HO2. = HO2. + RO2-HO2-PROD

Table A-2 (continued)

Excited Criegee Biradicals

RZ1	(fast)	$\begin{aligned} & (\mathrm{HCHO} 2) \\ & \mathrm{CO2"} \end{aligned}=0.7 \mathrm{HCOOH}+0.12 \text { "HO. }+\mathrm{HO} 2 .+\mathrm{CO}+0.18 \mathrm{H} 2+$
RZ2	(fast)	$\begin{gathered} (\mathrm{CCHO2})=0.25 \mathrm{CCOOH}+0.15 \mathrm{CH} 4+\mathrm{CO} 2++0.6 \mathrm{HO} .+ \\ 0.3 \text { "CCO-O2. }+ \text { RCO3." }+0.3 \text { "RO2-R. }+\mathrm{HCHO}+\mathrm{CO}+\mathrm{RO} 2 . " \end{gathered}$
RZ3	(fast)	$\begin{aligned} & (\mathrm{RCHO} 2)=0.25 \mathrm{CCOOH}+0.15 \mathrm{CO} 2+0.6 \mathrm{HO} .+0.3 \text { "C2CO-O2. + } \\ & \text { RCO3." }+0.3 \text { "RO2-R. }+\mathrm{CCHO}+\mathrm{CO}+\mathrm{RO} 2 . "+0.55-\mathrm{C} \end{aligned}$
RZ4	(fast)	$(\mathrm{C}(\mathrm{C}) \mathrm{CO} 2)=\mathrm{HO} .+\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{HCHO}+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{RCO3} .+\mathrm{RO} 2$.
RZ5	(fast)	$(\mathrm{C}(\mathrm{R}) \mathrm{CO} 2)=\mathrm{HO} .+\mathrm{CCO}-\mathrm{O} 2 .+\mathrm{CCHO}+\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{RCO3} .+\mathrm{RO} 2$.
RZ6	(fast)	```(CYCCO2) = 0.3 "HO. + C2CO-O2. + R2O2. + RCO3. + RO2." + 0.3 RCHO + 4.2 -C```
RZ8	(fast)	$(\mathrm{BZCHO} 2)=0.5$ "BZ-O. $+\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{CO}+\mathrm{HO} . "$
ISZ1	(fast)	$(\mathrm{C}: \mathrm{CC}(\mathrm{C}) \mathrm{O} 2)=\mathrm{HO} .+\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{HCHO}+\mathrm{C} 2 \mathrm{CO}-\mathrm{O} 2 .+\mathrm{RO} 2 .+\mathrm{RCO} 3$.
ISZ2	(fast)	$(\mathrm{C}: \mathrm{C}(\mathrm{C}) \mathrm{CHO} 2)=0.75 \mathrm{RCHO}+0.25$ ISOPROD $+0.5-\mathrm{C}$
MAZ1	(fast)	$(\mathrm{C} 2(\mathrm{O} 2) \mathrm{CHO})=\mathrm{HO} .+\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{HCHO}+\mathrm{HCOCO}-\mathrm{O} 2 .+\mathrm{RO} 2 .+\mathrm{RCO} 3$.
M1Z1	(fast)	$\begin{aligned} & (\mathrm{HOCCHO})=0.6 \mathrm{HO} .+0.3 \text { "CCO-O2. + RCO3." }+0.3 \text { "RO2-R. + } \\ & \text { HCHO }+\mathrm{CO}+\mathrm{RO} 2 . "+0.8-\mathrm{C} \end{aligned}$
M2Z1	(fast)	$\begin{aligned} &(\mathrm{HCOCHO} 2)=0.12 \text { "HO2. }+2 \mathrm{CO}+\mathrm{HO} . "+0.74-\mathrm{C}+ \\ & 0.51 \text { "CO2 }+ \text { HCHO" } \end{aligned}$
M2 Z2	(fast)	$(\mathrm{C} 2(\mathrm{O} 2) \mathrm{COH})=\mathrm{HO} .+\mathrm{MGLY}+\mathrm{HO} 2 .+\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{RO} 2$.

Organic Product Species

B7	(Phot	File $=\mathrm{CO} 2 \mathrm{H}$)
B7A	$1.81 \mathrm{E}-12$	$1.18 \mathrm{E}-12-0.25$	0.00
B7B	$3.71 \mathrm{E}-12$	$1.79 \mathrm{E}-12-0.44$	0.00
C1	(Phot. File $=$ HCHONEWR)		
C2	(Phot. File = HCHONEWM)		
C3	$9.76 \mathrm{E}-12$	$1.13 \mathrm{E}-12-1.29$	2.00
C4	$7.79 \mathrm{E}-14$	$9.70 \mathrm{E}-15-1.24$	0.00
C4A	$1.77 \mathrm{E}+02$	$2.40 \mathrm{E}+1213.91$	0.00
C4B	(Same	k as for RO2.)
C9	$6.38 \mathrm{E}-16$	$2.80 \mathrm{E}-12 \quad 5.00$	0.00
C10	$1.57 \mathrm{E}-11$	$5.55 \mathrm{E}-12-0.62$	0.00
C11A	(Phot.	File $=$ CCHOR)
C12	$2.84 \mathrm{E}-15$	$1.40 \mathrm{E}-12 \quad 3.70$	0.00
C25	$1.97 \mathrm{E}-11$	8.50E-12-0.50	0.00
C26	(Phot.	File $=$ RCHO)
C27	$2.84 \mathrm{E}-15$	$1.40 \mathrm{E}-12 \quad 3.70$	0.00

```
-OOH + HV = HO2. + HO.
HO. + -OOH = HO.
HO. + -OOH = RO2-R. + RO2.
HCHO + HV = 2 HO2. + CO
HCHO + HV = H2 + CO
HCHO + HO. = HO2. + CO + H2O
HCHO + HO2. = HOCOO.
HOCOO. = HO2. + HCHO
HOCOO. + NO = -C + NO2 + HO2.
HCHO + NO3 = HNO3 + HO2. + CO
CCHO + HO. = CCO-O2. + H2O + RCO3.
CCHO + HV = CO + HO2. + HCHO + RO2-R. + RO2.
CCHO + NO3 = HNO3 + CCO-O2. + RCO3.
RCHO + HO. = C2CO-O2 . + RCO3.
RCHO + HV = CCHO + RO2-R. + RO2. + CO + HO2.
NO3 + RCHO = HNO3 + C2CO-O2. + RCO3.
```

Table A-2 (continued)

Table A-2 (continued)

Hydrocarbon Species Represented Explicitly

$2.56 \mathrm{E}-12$	$1.36 \mathrm{E}-12-0.38$	2.00	$\begin{aligned} & \mathrm{N}-\mathrm{C} 4+\mathrm{HO}=0.076 \mathrm{RO} 2-\mathrm{N} .+0.924 \mathrm{RO} 2-\mathrm{R} .+0.397 \mathrm{R} 2 \mathrm{O} .+ \\ & 0.001 \mathrm{HCHO}+0.571 \mathrm{CCHO}+0.14 \mathrm{RCHO}+0.533 \mathrm{MEK}+ \\ & -0.076-\mathrm{C}+1.397 \mathrm{RO} 2 . \end{aligned}$
$5.63 \mathrm{E}-12$	$1.35 \mathrm{E}-11 \quad 0.52$	0.00	$\begin{aligned} & \mathrm{N}-\mathrm{C} 6+\mathrm{HO}=0.185 \mathrm{RO} 2-\mathrm{N} .+0.815 \mathrm{RO} 2-\mathrm{R} .+0.738 \mathrm{R} 2 \mathrm{O} .+ \\ & 0.02 \mathrm{CCHO}+0.105 \mathrm{RCHO}+1.134 \mathrm{MEK}+0.186-\mathrm{C}+ \\ & 1.738 \mathrm{RO} 2 . \end{aligned}$
$8.76 \mathrm{E}-12$	$3.15 \mathrm{E}-110.76$	0.00	$\begin{aligned} \mathrm{N}-\mathrm{C} 8+\mathrm{HO} . & =0.333 \mathrm{RO} 2-\mathrm{N} .+0.667 \mathrm{RO} 2-\mathrm{R} .+0.706 \mathrm{R} 2 \mathrm{O} 2 .+ \\ 0.002 \mathrm{RCHO} & +1.333 \mathrm{MEK}+0.998-\mathrm{C}+1.706 \mathrm{RO} 2 . \end{aligned}$
$8.43 \mathrm{E}-12$	$1.96 \mathrm{E}-12-0.87$	0.00	ETHENE + HO. $=$ RO2-R. + RO2. + 1.56 HCHO + 0.22 CCHO
$1.68 \mathrm{E}-18$	$9.14 \mathrm{E}-15 \quad 5.13$	0.00	ETHENE $+\mathrm{O} 3=\mathrm{HCHO}+(\mathrm{HCHO} 2)$
$2.18 \mathrm{E}-16$	$4.39 \mathrm{E}-134.53$	2.00	ETHENE + NO3 = R2O2. + RO2. + 2 HCHO + NO2
7.42E-13	$1.04 \mathrm{E}-11 \quad 1.57$	0.00	ETHENE + O $=$ RO2-R. + HO2 . + RO2. + HCHO + CO
$2.60 \mathrm{E}-11$	$4.85 \mathrm{E}-12-1.00$	0.00	PROPENE + HO. = RO2-R. + RO2. + HCHO + ССНО
$1.05 \mathrm{E}-17$	$5.51 \mathrm{E}-15 \quad 3.73$	0.00	```PROPENE + O3 = 0.6 HCHO + 0.4 CCHO + 0.4 (HCHO2) + 0.6 (CCHO2)```
$9.74 \mathrm{E}-15$	$4.59 \mathrm{E}-132.30$	0.00	PROPENE + NO3 = R2O2. + RO2. + HCHO + CCHO + NO2
$4.01 \mathrm{E}-12$	$1.18 \mathrm{E}-11 \quad 0.64$	0.00	PROPENE $+\mathrm{O}=0.4 \mathrm{HO2} .+0.5 \mathrm{RCHO}+0.5 \mathrm{MEK}+-0.5-\mathrm{C}$
$6.30 \mathrm{E}-11$	$1.01 \mathrm{E}-11-1.09$	0.00	T-2-BUTE + HO. = RO2-R. + RO2. + 2 CCHO
$1.95 \mathrm{E}-16$	$6.64 \mathrm{E}-15 \quad 2.10$	0.00	$\mathrm{T}-2-\mathrm{BUTE}+\mathrm{O} 3=\mathrm{CCHO}+(\mathrm{CCHO} 2)$
$3.92 \mathrm{E}-13$	$1.10 \mathrm{E}-13-0.76$	2.00	$\mathrm{T}-2$-BUTE $+\mathrm{NO} 3=\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{RO} 2 .+2 \mathrm{CCHO}+\mathrm{NO} 2$
$2.34 \mathrm{E}-11$	$2.26 \mathrm{E}-11-0.02$	0.00	T-2-BUTE $+\mathrm{O}=0.4 \mathrm{HO2} .+0.5 \mathrm{RCHO}+0.5 \mathrm{MEK}+0.5-\mathrm{C}$
9.88E-11	$2.54 \mathrm{E}-11-0.81$	0.00	$\text { ISOP + HO. }=0.088 \text { RO2-N. }+0.912 \text { RO2-R. }+0.629 \text { нCHO }+$ $\text { 0.912 ISOPROD }+0.079 \text { R2O2. }+1.079 \mathrm{RO} 2 .+0.283-\mathrm{C}$
$1.34 \mathrm{E}-17$	$7.86 \mathrm{E}-15 \quad 3.80$	0.00	$\begin{aligned} & \text { ISOP }+ \text { O3 }=0.4 \text { HCHO }+0.6 \text { ISOPROD }+0.55(\mathrm{HCHO})+ \\ & 0.2(\mathrm{C}: \mathrm{CC}(\mathrm{C}) \mathrm{O} 2)+0.2(\mathrm{C}: \mathrm{C}(\mathrm{C}) \mathrm{CHO} 2)+0.05-\mathrm{C} \end{aligned}$
$3.60 \mathrm{E}-11$	(No T Dependen		$\begin{aligned} \text { ISOP }+O & =0.75 \text { "ISOPROD }+-\mathrm{C} "+0.25 \text { "C2CO-O2. }+\mathrm{RCO} .+ \\ 2 \text { HCHO } & + \text { RO2-R. }+ \text { RO2." } \end{aligned}$
$6.81 \mathrm{E}-13$	$3.03 \mathrm{E}-12 \quad 0.89$	0.00	$\begin{aligned} & \text { ISOP }+ \text { NO3 }=0.8 \text { "RCHO }+ \text { RNO3 }+ \text { RO2-R." }+0.2 \text { "ISOPROD }+ \\ & \text { R2O2. }+ \text { NO2" }+ \text { RO2. }+-2.2-C \end{aligned}$
$1.50 \mathrm{E}-19$	(No T Dependenc		$\begin{aligned} & \text { ISOP + NO2 }=0.8 \text { "RCHO + RNO3 + RO2-R." + 0.2 "ISOPROD + } \\ & \text { R2O2. + NO" }+ \text { RO2. }+-2.2-\mathrm{C} \end{aligned}$
$5.31 \mathrm{E}-11$	$1.21 \mathrm{E}-11-0.88$	0.00	APIN + HO. = RO2-R. + RCHO + RO2. + 7 - C
$1.00 \mathrm{E}-16$	9.90E-16 1.37	0.00	```APIN + O3 = 0.05 HCHO + 0.2 CCHO + 0.5 RCHO + 0.61 MEK + 0.075 CO + 0.05 CCO-O2. + 0.05 C2CO-O2. + 0.1 RCO3. + 0.105 HO2. + 0.16 HO. + 0.135 RO2-R. + 0.15 R2O2. + 0.285 RO2. + 5.285 -C```
$6.10 \mathrm{E}-12$	$1.19 \mathrm{E}-12-0.97$	0.00	APIN + NO3 = NO2 + R2O2. + RCHO + RO2. + 7 -C
$3.00 \mathrm{E}-11$	(No T Dependen		APIN $+0=0.4 \mathrm{HO} 2 .+0.5 \mathrm{MEK}+0.5 \mathrm{RCHO}+6.5-\mathrm{C}$
$6.57 \mathrm{E}-11$	(No T Dependence)		UNKN + HO. $=$ RO2-R. + RO2. + 0.5 HCHO + RCHO + $6.5-\mathrm{C}$
$5.85 \mathrm{E}-17$	(No T Dependence)		```UNKN + O3 = 0.135 RO2-R. + 0.135 HO2. + 0.075 R2O2. + 0.21 RO2. + 0.025 CCO-02. + 0.025 C2CO-O2. + 0.05 RCO3. + 0.275 HCHO + 0.175 ССНО + 0.5 RCHO + 0.41 МЕK + 0.185 CO + 5.925 -С + 0.11 нO.```

Table A-2 (continued)

Rxn. Label	Kinetic Parameters [b]			Reactions [c]
	k (300)	A Ea	B	
	$4.30 \mathrm{E}-12$	(No T Dependen		UNKN + NO3 $=$ R2O2. $+\mathrm{RO} 2 .+0.5$ HCHO $+\mathrm{RCHO}+6.5-\mathrm{C}+\mathrm{NO} 2$
	2.90E-11	(No T Dependen		UNKN $+\mathrm{O}=0.4 \mathrm{HO2}+0.5 \mathrm{RCHO}+0.5 \mathrm{MEK}+6.5-\mathrm{C}$
	$5.91 \mathrm{E}-12$	$1.81 \mathrm{E}-12-0.70$	0.00	$\begin{aligned} & \text { TOLUENE }+\mathrm{HO} .=0.085 \mathrm{BALD}+0.26 \mathrm{CRES}+0.118 \mathrm{GLY}+ \\ & 0.847 \mathrm{MGLY}+0.276 \mathrm{AFG} 2+0.74 \mathrm{RO} 2-\mathrm{R} .+0.26 \mathrm{HO} 2 .+ \\ & 0.981 \mathrm{C}+0.74 \mathrm{RO} 2 . \end{aligned}$
	$2.36 \mathrm{E}-11$	(No T Dependen		$\begin{aligned} & \text { M-XYLENE }+\mathrm{HO} .=0.04 \mathrm{BALD}+0.18 \mathrm{CRES}+0.108 \mathrm{GLY}+ \\ & 1.554 \mathrm{MGLY}+0.505 \mathrm{AFG} 2+0.82 \mathrm{RO} 2-\mathrm{R} .+0.18 \mathrm{HO} .+ \\ & 0.068-\mathrm{C}+0.82 \mathrm{RO} 2 . \end{aligned}$
Lumped Species used in EKMA Simulations [d]				
A 10 H	$5.11 \mathrm{E}+03$	$3.78 \mathrm{E}+03-0.18$	0.00	```ALK1 + HO. = 0.911 RO2-R. + 0.074 RO2-N. + 0.005 RO2-XN. + 0.011 HO2. + 0.575 R2O2. + 1.564 RO2. + 0.065 HCHO + 0.339 ССНO + 0.196 RCHO + 0.322 ACET + 0.448 MEK + 0.024 CO + 0.025 GLY + 0.051 -C```
A1CL	$2.00 \mathrm{E}-10$	(No T Dependen		```ALK1 + CL. = 0.911 RO2-R. + 0.074 RO2-N. + 0.005 RO2-XN. + 0.011 HO2. + 0.575 R2O2. + 1.564 RO2. + 0.065 HCHO + 0.339 ССНO + 0.196 RCHO + 0.322 ACET + 0.448 MEK + 0.024 CO + 0.025 GLY + 0.051 -C + HCL```
A20H	$1.35 \mathrm{E}+04$	$7.57 \mathrm{E}+03-0.35$	0.00	```ALK2 + HO. = 0.749 RO2-R. + 0.249 RO2-N. + 0.002 RO2-XN. + 0.891 R2O2. + 1.891 RO2. + 0.029 нCHO + 0.048 ССНO + 0.288 RCHO + 0.028 ACET + 1.105 MEK + 0.043 CO + 0.018 CO2 + 1.268 -C```
A 2 CL	$4.00 \mathrm{E}-10$	(No T Dependen		$\begin{aligned} & \mathrm{ALK2}+\mathrm{CL} .=0.749 \mathrm{RO} 2-\mathrm{R} .+0.249 \mathrm{RO} 2-\mathrm{N} .+0.002 \mathrm{RO} 2-\mathrm{XN} .+ \\ & 0.891 \mathrm{R} 2 \mathrm{O} 2 .+1.891 \mathrm{RO} 2 .+0.029 \mathrm{HCHO}+0.048 \mathrm{CCHO}+ \\ & 0.288 \mathrm{RCHO}+0.028 \mathrm{ACET}+1.105 \mathrm{MEK}+0.043 \mathrm{CO}+ \\ & 0.018 \mathrm{CO} 2+1.268-\mathrm{C}+\mathrm{HCL} \end{aligned}$
$\mathrm{B1OH}$	$8.67 \mathrm{E}+03$	(No T Dependen		$\begin{aligned} & \text { ARO1 }+\mathrm{HO} .=0.742 \mathrm{RO} 2-\mathrm{R} .+0.258 \mathrm{HO} 2 .+0.742 \mathrm{RO} 2 .+ \\ & 0.015 \mathrm{PHEN}+0.244 \mathrm{CRES}+0.08 \mathrm{BALD}+0.124 \mathrm{GLY}+ \\ & 0.681 \mathrm{MGLY}+0.11 \mathrm{AFG} 1+0.244 \mathrm{AFG} 2+1.857 \mathrm{C} \end{aligned}$
B1CL	$6.00 \mathrm{E}-12$	(No T Dependen		ARO1 + CL. = HCL + RO2-R. + BALD + RO2.
B2OH	$4.76 \mathrm{E}+04$	$1.77 \mathrm{E}+04-0.59$	0.00	$\begin{aligned} & \mathrm{ARO} 2+\mathrm{HO} .=0.82 \mathrm{RO} 2-\mathrm{R} .+0.18 \mathrm{HO} 2 .+0.82 \mathrm{RO} 2 .+ \\ & 0.18 \mathrm{CRES}+0.036 \mathrm{BALD}+0.068 \mathrm{GLY}+1.02 \mathrm{MGLY}+ \\ & 0.532 \mathrm{AFG} 2+2.588 \mathrm{C} \end{aligned}$
B2CL	1.20E-10	(No T Dependen		ARO2 + CL. $=$ HCL + RO2-R. + BALD + RO2.
O 2 OH	$4.69 \mathrm{E}+04$	$3.28 \mathrm{E}+03-1.59$	0.00	$\begin{aligned} & \mathrm{OLE} 2+\mathrm{HO}=0.858 \mathrm{RO} 2-\mathrm{R} .+0.142 \mathrm{RO} 2-\mathrm{N} .+\mathrm{RO} 2 .+ \\ & 0.858 \text { HCHO }+0.252 \text { CCHO }+0.606 \mathrm{RCHO}+1.267 \text { - } \end{aligned}$
0203	$1.59 \mathrm{E}-02$	$2.10 \mathrm{E}+002.91$	0.00	$\begin{aligned} & \text { OLE } 2+\mathrm{O}=0.6 \text { HCHO }+0.635 \mathrm{RCHO}+0.981-\mathrm{C}+0.4 \text { (HCHO2) + } \\ & 0.529(\mathrm{CCHO} 2)+0.071(\mathrm{RCHO} 2) \end{aligned}$
O2N3	1.72E+01	$2.94 \mathrm{E}+021.69$	0.00	$\begin{aligned} \mathrm{OLE} 2+\mathrm{NO} 3 & =\mathrm{R} 2 \mathrm{O} 2 .+\mathrm{RO} 2 .+\mathrm{HCHO}+0.294 \mathrm{CCHO}+0.706 \mathrm{RCHO}+ \\ 1.451-\mathrm{C} & +\mathrm{NO} 2 \end{aligned}$
O20A	$6.07 \mathrm{E}+03$	$6.67 \mathrm{E}+030.06$	0.00	OLE2 + O $=0.4$ HO2 +0.5 RCHO $+0.5 \mathrm{MEK}+1.657-\mathrm{C}$
O2CL	$2.41 \mathrm{E}-10$	(No T Dependen		OLE2 + CL. $=0.4$ HO2. $+0.5 \mathrm{RCHO}+0.5 \mathrm{MEK}+1.657-\mathrm{C}+\mathrm{HCL}$
O 3 OH	$9.21 \mathrm{E}+04$	$6.71 \mathrm{E}+03-1.56$	0.00	$\begin{aligned} & \text { OLE3 }+\mathrm{HO}=0.861 \mathrm{RO} 2-\mathrm{R} .+0.139 \mathrm{RO} 2-\mathrm{N} .+\mathrm{RO} 2 .+ \\ & 0.24 \mathrm{HCHO}+0.661 \mathrm{CCHO}+0.506 \mathrm{RCHO}+0.113 \mathrm{ACET}+ \\ & 0.086 \mathrm{MEK}+0.057 \mathrm{BALD}+0.848-\mathrm{C} \end{aligned}$
0303	$2.51 \mathrm{E}-01$	$2.61 \mathrm{E}+001.40$	0.00	```OLE3 + O3 = 0.203 HCHO + 0.358 СCHO + 0.309 RCHO + 0.061 MEK + 0.027 BALD + 0.976 - C + 0.076 (HCHO2) + 0.409 (CCHO2) + 0.279 (RCHO2) + 0.158 (C (C) CO2 + 0.039 (C (R)CO2 + 0.04 (BZCHO2)```
O3N3	$1.58 \mathrm{E}+03$	$4.71 \mathrm{E}+02-0.72$	0.00	OLE3 + NO3 $=$ R2O2. + RO2. + 0.278 нCHO + 0.767 ССНО + 0.588 RCHO +0.131 ACET +0.1 MEK +0.066 BALD + 0.871 -C + NO2
O30A	$3.72 \mathrm{E}+04$	$1.28 \mathrm{E}+04-0.64$	0.00	OLE3 $+\mathrm{O}=0.4 \mathrm{HO2} .+0.5 \mathrm{RCHO}+0.5 \mathrm{MEK}+2.205-\mathrm{C}$
O3CL	$2.70 \mathrm{E}-10$	(No T Dependen)	OLE6 + CL. $=0.4$ HO2. + 0.5 RCHO + 0.5 MEK + 2.205 -C + HCL

Table A-2 (continued)

Reactions used to Represent Chamber-Dependent Processes [e]

O3W	(varied)	(No T Dependence)	$03=$
N25I	(varied)	(No T Dependence)	$\mathrm{N} 2 \mathrm{O} 5=2$ NOX-WALL
N25S	(varied)	(No T Dependence)	$\mathrm{N} 2 \mathrm{O} 5+\mathrm{H} 2 \mathrm{O}=2$ NOX-WALL
NO2W	(varied)	(No T Dependence)	NO2 $=(y H O N O)$ HONO $+(1-y H O N O) ~ N O X-W A L L ~$
XSHC	(varied)	(No T Dependence)	$\mathrm{HO} .=\mathrm{HO} 2$.
RSI	(Phot	File $=$ NO2)	$\mathrm{HV}+\# \mathrm{RS} / \mathrm{K} 1=\mathrm{HO}$.
ONO2	(Phot	File $=$ NO2)	$\mathrm{HV}+\# \mathrm{E}-\mathrm{NO} 2 / \mathrm{K} 1=\mathrm{NO} 2+\#-1$ NOX-WALL

[a] See Table 1 in the main body of the report for the reactions added to the general mechanism to represent chloropicrin and the Cl-containing species it forms.
[b] Except as noted, expression for rate constant is $k=A e^{E a / R T}$ (T/300) ${ }^{B}$. Rate constants and A factor are in ppm, min units. Units of Ea is kcal mole ${ }^{-1}$. For falloff kinetics the rate constants are given by (k0[M]kINF)/(k0[M]+kINF) $x \mathrm{~F}^{\mathrm{x}}$, where $\mathrm{X}=1 /\left(1+\log _{10}(\mathrm{k} 0[\mathrm{M}] / \mathrm{kINF})^{2}\right)$. For photolysis reactions, the rate constants are calculated using the absorption cross sections in the associated "photolysis files", which are given in given in Table A-3. In addition, if "\# (number)" or "\# (parameter)" is given as a reactant, then the value of that number or parameter is multiplied by the result in the "rate constant expression" columns to obtain the rate constant used. Furthermore, "\#RCONnn" as a reactant means that the rate constant for the reaction is obtained by multiplying the rate constant given by that for reaction "nn". Thus, the rate constant given is actually an equilibrium constant.
[c] The format of the reaction listing is the same as that used in documentation of the detailed mechanism (Carter 1990).
[d] Rate constants and product yield parameters are based on the mixture of species in the base RoG mixture which are being represented. Cl atom reactions are only applicable for reactivity simulations of chlorine-containing species, and are in addition to the reactions given on Table 1.
[e] See Table A-4 for the values of the parameters used for the specific chamber modeled in this study.

Table A-3. Absorption cross sections and quantum yields for photolysis reactions in the general

$\begin{aligned} & \mathrm{WL} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \mathrm{Abs} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \mathrm{Abs} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY

Photolysis File $=$ NO2			
250.0 2.83E-20 1.000	255.0	$1.45 \mathrm{E}-20$	1.000
$275.04 .02 \mathrm{E}-201.000$	280.0	$5.54 \mathrm{E}-20$	1.000
$300.01 .17 \mathrm{E}-190.997$	305.0	$1.66 \mathrm{E}-19$	0.996
$325.02 .79 \mathrm{E}-190.992$	330.0	$2.99 \mathrm{E}-19$	0.991
$350.04 .10 \mathrm{E}-190.987$	355.0	5.13E-19	0.986
$375.05 .35 \mathrm{E}-190.979$	380.0	$5.99 \mathrm{E}-19$	0.975
$384.05 .95 \mathrm{E}-190.971$	385.0	$5.94 \mathrm{E}-19$	0.969
$389.05 .99 \mathrm{E}-190.962$	390.0	6.00E-19	0.960
$394.05 .91 \mathrm{E}-190.950$	395.0	$5.89 \mathrm{E}-19$	0.942
$399.06 .59 \mathrm{E}-190.760$	400.0	6.76E-19	0.695
$404.06 .41 \mathrm{E}-190.425$	405.0	6.32E-19	0.350
$409.05 .88 \mathrm{E}-190.153$	410.0	5.77E-19	0.130
$414.06 .19 \mathrm{E}-190.070$	415.0	6.30E-19	0.059
$419.06 .24 \mathrm{E}-190.023$	420.0	6.23E-19	0.018
$424.06 .05 \mathrm{E}-190.000$	425.0	$6.00 \mathrm{E}-19$	0.000
Photolysis File $=$ NO3NO			
$585.02 .77 \mathrm{E}-180.000$	590.0	$5.14 \mathrm{E}-18$	0.250
$610.01 .48 \mathrm{E}-180.200$	615.0	$1.96 \mathrm{E}-18$	0.100
$635.01 .45 \mathrm{E}-18 \quad 0.030$	640.0	$1.11 \mathrm{E}-18$	0.000

Photolysis File $=$ NO3NO2

400.0 0.00E +001.000 $425.01 .00 \mathrm{E}-191.000$ $450.02 .80 \mathrm{E}-191.000$ $475.0 \quad 6.00 \mathrm{E}-191.000$ $500.0 \quad 1.01 \mathrm{E}-18 \quad 1.000$ $525.0 \quad 1.48 \mathrm{E}-181.000$ $550.02 .36 \mathrm{E}-181.000$ $575.02 .74 \mathrm{E}-181.000$ $600.0 \quad 2.83 \mathrm{E}-18 \quad 0.550$ $625.0 \quad 9.25 \mathrm{E}-18 \quad 0.150$

Photolysis File $=0303 \mathrm{P}$

$280.0 \quad 3.97 \mathrm{E}-18 \quad 0.100$ $285.0 \quad 2.44 \mathrm{E}-18 \quad 0.100$ $290.0 \quad 1.41 \mathrm{E}-18 \quad 0.100$ 295.0 7.70E-19 0.100 $300.0 \quad 3.92 \mathrm{E}-19 \quad 0.100$ $305.0 \quad 2.01 \mathrm{E}-19 \quad 0.112$ $310.0 \quad 1.02 \mathrm{E}-19 \quad 0.437$ $315.0 \quad 5.10 \mathrm{E}-20 \quad 0.872$ $320.0 \quad 3.23 \mathrm{E}-201.000$ $400.0 \quad 0.00 \mathrm{E}+001.000$ $650.02 .45 \mathrm{E}-211.000$
$405.0 \quad 3.00 \mathrm{E}-20 \quad 1.000$ $430.0 \quad 1.30 \mathrm{E}-191.000$ $455.0 \quad 3.30 \mathrm{E}-19 \quad 1.000$ $480.0 \quad 6.40 \mathrm{E}-19 \quad 1.000$ $505.0 \quad 1.10 \mathrm{E}-18 \quad 1.000$ $530.0 \quad 1.94 \mathrm{E}-18 \quad 1.000$ $555.0 \quad 2.68 \mathrm{E}-181.000$ $580.0 \quad 3.05 \mathrm{E}-18 \quad 1.000$ $605.03 .45 \mathrm{E}-18 \quad 0.400$ $630.0 \quad 5.66 \mathrm{E}-18 \quad 0.050$
$260.0 \quad 1.90 \mathrm{E}-20 \quad 1.000$ $285.06 .99 \mathrm{E}-201.000$ $310.01 .76 \mathrm{E}-190.995$ $335.03 .45 \mathrm{E}-190.990$ $360.0 \quad 4.51 \mathrm{E}-19 \quad 0.984$ $381.0 \quad 5.98 \mathrm{E}-19 \quad 0.974$ $386.05 .95 \mathrm{E}-19 \quad 0.967$ $391.05 .98 \mathrm{E}-190.959$ $\begin{array}{lll}391.0 & 6.98 \mathrm{E}-19 & 0.922\end{array}$ $\begin{array}{lll}396.0 & 6.06 \mathrm{E}-19 & 0.922 \\ 401.0 & 6.67 \mathrm{E}-19 & 0.635\end{array}$ $\begin{array}{lll}401.0 & 6.67 \mathrm{E}-19 & 0.635 \\ 406.0 & 6.21 \mathrm{E}-19 & 0.290\end{array}$ $\begin{array}{lll}406.0 & 6.21 \mathrm{E}-19 & 0.290 \\ 411.0 & 5.88 \mathrm{E}-19 & 0.110\end{array}$ $\begin{array}{lll}411.0 & 5.88 \mathrm{E}-19 & 0.110 \\ 416.0 & 6.29 \mathrm{E}-19 & 0.048\end{array}$ $421.0 \quad 6.18 \mathrm{E}-19 \quad 0.012$
$595.0 \quad 4.08 \mathrm{E}-18 \quad 0.400$ $620.0 \quad 3.58 \mathrm{E}-18 \quad 0.100$
$265.0 \quad 2.05 \mathrm{E}-20 \quad 1.000$ $290.0 \quad 8.18 \mathrm{E}-20 \quad 0.999$ $315.02 .25 \mathrm{E}-19 \quad 0.994$ $340.0 \quad 3.88 \mathrm{E}-19 \quad 0.989$ $365.05 .78 \mathrm{E}-19 \quad 0.983$ $382.0 \quad 5.97 \mathrm{E}-19 \quad 0.973$ $387.0 \quad 5.96 \mathrm{E}-19 \quad 0.966$ $392.056 \mathrm{E}-190.957$ $392.05 .96 \mathrm{E}-190.957$ $397.06 .24 \mathrm{E}-190.870$ $402.06 .58 \mathrm{E}-190.560$ $407.0 \quad 6.10 \mathrm{E}-19 \quad 0.225$ $412.0 \quad 5.98 \mathrm{E}-19 \quad 0.094$ $417.0 \quad 6.27 \mathrm{E}-19 \quad 0.039$ $422.06 .14 \mathrm{E}-19 \quad 0.008$
$600.0 \quad 2.83 \mathrm{E}-18 \quad 0.250$ 625.0 9.25E-18 0.050
$415.0 \quad 5.00 \mathrm{E}-20 \quad 1.000$ $440.0 \quad 1.90 \mathrm{E}-191.000$ $465.04 .30 \mathrm{E}-191.000$ $490.08 .80 \mathrm{E}-191.000$ $515.0 \quad 1.40 \mathrm{E}-18 \quad 1.000$ $540.0 \quad 1.81 \mathrm{E}-181.000$ $565.0 \quad 2.53 \mathrm{E}-18 \quad 1.000$ $590.0 \quad 5.14 \mathrm{E}-18 \quad 0.750$ $615.01 .96 \mathrm{E}-18 \quad 0.250$
$283.0 \quad 3.01 \mathrm{E}-18 \quad 0.100$ $288.0 \quad 1.76 \mathrm{E}-18 \quad 0.100$ 293.0 9.89E-19 0.100 $298.0 \quad 5.07 \mathrm{E}-19 \quad 0.100$ $303.0 \quad 2.60 \mathrm{E}-19 \quad 0.100$ $308.0 \quad 1.38 \mathrm{E}-19 \quad 0.259$ $313.0 \quad 6.77 \mathrm{E}-20 \quad 0.743$ $318.0 \quad 3.72 \mathrm{E}-20 \quad 0.976$ $350.04 .00 \mathrm{E}-221.000$ $550.03 .32 \mathrm{E}-211.000$ 800.0 1.60E-22 1.000
$284.0 \quad 2.73 \mathrm{E}-18 \quad 0.100$ $289.01 .58 \mathrm{E}-180.100$ $294.0 \begin{array}{lll}8.59 \mathrm{E}-19 & 0.100\end{array}$ $299.0 \quad 4.52 \mathrm{E}-19 \quad 0.100$ $304.0 \quad 2.37 \mathrm{E}-19 \quad 0.100$ $309.0 \quad 1.25 \mathrm{E}-19 \quad 0.339$ $314.0 \quad 6.35 \mathrm{E}-20 \quad 0.816$ $319.0 \quad 2.69 \mathrm{E}-20 \quad 0.997$ $355.0 \quad 0.00 \mathrm{E}+001.000$ $600.05 .06 \mathrm{E}-211.000$ $900.0 \quad 0.00 \mathrm{E}+001.000$
$283.0 \quad 3.01 \mathrm{E}-18 \quad 0.900$ $288.0 \quad 1.76 \mathrm{E}-18 \quad 0.900$ 293.0 9.89E-19 0.900 $298.05 .07 \mathrm{E}-19 \quad 0.900$ $303.0 \quad 2.60 \mathrm{E}-19 \quad 0.900$ $308.0 \quad 1.38 \mathrm{E}-19 \quad 0.741$ $313.0 \quad 6.77 \mathrm{E}-20 \quad 0.257$ $318.03 .72 \mathrm{E}-20 \quad 0.024$
$314.04 .60 \mathrm{E}-211.000$ $319.0 \quad 6.10 \mathrm{E}-201.000$ $324.0 \quad 4.01 \mathrm{E}-20 \quad 1.000$ $329.0 \quad 6.64 \mathrm{E}-20 \quad 1.000$ $334.0 \quad 5.91 \mathrm{E}-20 \quad 1.000$ $\begin{array}{lll}334.0 & 5.91 \mathrm{E}-20 & 1.000 \\ 339.0 & 1.63 \mathrm{E}-19 & 1.000\end{array}$ $\begin{array}{lll}339.0 & 1.63 \mathrm{E}-19 & 1.000 \\ 344.0 & 1.02 \mathrm{E}-19 & 1.000\end{array}$ $\begin{array}{lll}344.0 & 1.02 \mathrm{E}-19 & 1.000 \\ 349.0 & 7.13 \mathrm{E}-20 & 1.000\end{array}$ $\begin{array}{lll}349.0 & 7.13 \mathrm{E}-20 & 1.000 \\ 354.0 & 4.96 \mathrm{E}-19 & 1.000\end{array}$ $\begin{array}{lll}354.0 & 4.96 \mathrm{E}-19 & 1.000 \\ 359.0 & 7.29 \mathrm{E}-20 & 1.000\end{array}$ $359.0 \quad 7.29 \mathrm{E}-201.000$ $364.01 .21 \mathrm{E}-191.000$ $374.0 \quad 4.77 \mathrm{E}-20 \quad 1.000$ $379.05 .80 \mathrm{E}-201.000$ $384.01 .99 \mathrm{E}-191.000$
389.0 1.90E-20 1.000
$284.0 \quad 2.73 \mathrm{E}-18 \quad 0.900$ $289.01 .58 \mathrm{E}-180.900$ $294.0 \quad 8.59 \mathrm{E}-19 \quad 0.900$ $299.0 \quad 4.52 \mathrm{E}-19 \quad 0.900$ $304.02 .37 \mathrm{E}-19 \quad 0.900$ $309.0 \quad 1.25 \mathrm{E}-19 \quad 0.661$ $314.06 .35 \mathrm{E}-20 \quad 0.184$ $319.02 .69 \mathrm{E}-20 \quad 0.003$
$315.04 .20 \mathrm{E}-211.000$ $320.0 \quad 2.10 \mathrm{E}-20 \quad 1.000$ $325.0 \quad 4.04 \mathrm{E}-20 \quad 1.000$ $330.07 .29 \mathrm{E}-201.000$ $335.0 \quad 6.45 \mathrm{E}-20 \quad 1.000$ $340.01 .05 \mathrm{E}-191.000$ $345.0 \quad 8.54 \mathrm{E}-20 \quad 1.000$ $350.0 \quad 6.83 \mathrm{E}-201.000$ $355.02 .46 \mathrm{E}-191.000$ $360.0 \quad 6.83 \mathrm{E}-20 \quad 1.000$ $365.01 .33 \mathrm{E}-191.000$ $370.01 .19 \mathrm{E}-191.000$ $375.0 \quad 2.70 \mathrm{E}-20 \quad 1.000$ $380.0 \quad 7.78 \mathrm{E}-20 \quad 1.000$ $385.0 \quad 1.90 \mathrm{E}-191.000$ $390.01 .20 \mathrm{E}-201.000$

[^1]$630.0 \quad 5.66 \mathrm{E}-18 \quad 0.050$
$420.0 \quad 8.00 \mathrm{E}-20 \quad 1.000$ $445.02 .20 \mathrm{E}-191.000$ $470.0 \quad 5.10 \mathrm{E}-191.000$ $495.0 \quad 9.50 \mathrm{E}-19 \quad 1.000$ $520.0 \quad 1.45 \mathrm{E}-18 \quad 1.000$ $545.0 \quad 1.81 \mathrm{E}-18 \quad 1.000$ $570.0 \quad 2.54 \mathrm{E}-18 \quad 1.000$ $595.04 .08 \mathrm{E}-18 \quad 0.600$ $620.03 .58 \mathrm{E}-18 \quad 0.200$
$270.0 \quad 3.13 \mathrm{E}-20 \quad 1.000$ $295.0 \quad 9.67 \mathrm{E}-20 \quad 0.998$ $320.02 .54 \mathrm{E}-19 \quad 0.993$ $345.04 .07 \mathrm{E}-190.988$ $370.0 \quad 5.42 \mathrm{E}-19 \quad 0.981$ $383.0 \quad 5.96 \mathrm{E}-19 \quad 0.972$ $388.0 \quad 5.98 \mathrm{E}-19 \quad 0.964$ $393.05 .93 \mathrm{E}-19 \quad 0.953$ $398.0 \quad 6.41 \mathrm{E}-19 \quad 0.820$ $403.0 \quad 6.50 \mathrm{E}-19 \quad 0.485$ $408.0 \quad 5.99 \mathrm{E}-19 \quad 0.185$ $413.0 \quad 6.09 \mathrm{E}-19 \quad 0.083$ $418.0 \quad 6.26 \mathrm{E}-19 \quad 0.030$ $423.06 .09 \mathrm{E}-19 \quad 0.004$
389.0 1.90E-20 1.000
$270.0 \quad 3.20 \mathrm{E}-20 \quad 1.000$ $295.08 .70 \mathrm{E}-211.000$ $320.02 .00 \mathrm{E}-211.000$ $345.05 .00 \mathrm{E}-221.000$

Photolysis File $=$ HONO 316.0 3.00E+00 1.000 $316.03 .00 \mathrm{E}-211.000$ $321.04 .27 \mathrm{E}-201.000$ $\begin{array}{lll}326.0 & 3.13 \mathrm{E}-20 & 1.000 \\ 331.0 & 8.70 \mathrm{E}-20 & 1.000\end{array}$ $336.05 .91 \mathrm{E}-20 \quad 1.000$ $341.0 \quad 8.70 \mathrm{E}-20 \quad 1.000$ $346.08 .32 \mathrm{E}-201.000$ $351.0 \quad 1.74 \mathrm{E}-191.000$ $356.01 .19 \mathrm{E}-191.000$ $361.06 .90 \mathrm{E}-201.000$ $366.02 .13 \mathrm{E}-191.000$ $371.0 \quad 9.46 \mathrm{E}-201.000$ $376.01 .90 \mathrm{E}-201.000$ $381.01 .14 \mathrm{E}-191.000$ 386.0 1.19E-19 1.000 $391.05 .00 \mathrm{E}-211.000$

Photolysis File $=\mathbf{H 2 O 2}$

 $250.08 .30 \mathrm{E}-20 \quad 1.000$ $275.0 \quad 2.50 \mathrm{E}-20 \quad 1.000$ $300.0 \quad 6.60 \mathrm{E}-211.000$ $325.01 .50 \mathrm{E}-211.000$ $350.03 .00 \mathrm{E}-221.000$$312.02 .00 \mathrm{E}-211.000$ $317.04 .60 \mathrm{E}-211.000$ $322.0 \quad 4.01 \mathrm{E}-20 \quad 1.000$ $327.04 .12 \mathrm{E}-20 \quad 1.000$ $332.0 \quad 1.38 \mathrm{E}-191.000$ $337.0 \quad 4.58 \mathrm{E}-20 \quad 1.000$ $342.0 \quad 3.35 \mathrm{E}-19 \quad 1.000$ $347.08 .20 \mathrm{E}-20 \quad 1.000$ $352.0 \quad 1.14 \mathrm{E}-191.000$ $357.0 \quad 9.35 \mathrm{E}-20 \quad 1.000$ $362.07 .32 \mathrm{E}-201.000$ $367.03 .52 \mathrm{E}-191.000$ $372.0 \quad 8.85 \mathrm{E}-20 \quad 1.000$ $377.0 \quad 1.50 \mathrm{E}-201.000$ $382.0 \quad 1.40 \mathrm{E}-19 \quad 1.000$ $392.0 \quad 0.00 \mathrm{E}+001.000$
$255.0 \quad 6.70 \mathrm{E}-20 \quad 1.000$ $280.02 .00 \mathrm{E}-201.000$ $305.04 .90 \mathrm{E}-211.000$ $330.01 .20 \mathrm{E}-211.000$ $355.0 \quad 0.00 \mathrm{E}+001.000$
$260.0 \quad 5.20 \mathrm{E}-20 \quad 1.000$ $285.01 .50 \mathrm{E}-201.000$ $310.03 .70 \mathrm{E}-211.000$ $335.09 .00 \mathrm{E}-221.000$
$313.04 .20 \mathrm{E}-211.000$ $318.0 \quad 3.60 \mathrm{E}-201.000$ $323.0 \quad 3.93 \mathrm{E}-201.000$ $328.0 \quad 7.55 \mathrm{E}-201.000$ $333.0 \quad 5.91 \mathrm{E}-20 \quad 1.000$ $338.01 .91 \mathrm{E}-191.000$ $343.0 \quad 2.01 \mathrm{E}-191.000$ $348.07 .49 \mathrm{E}-201.000$ $353.0 \quad 3.71 \mathrm{E}-19 \quad 1.000$ $358.0 \quad 7.78 \mathrm{E}-201.000$ $363.09 .00 \mathrm{E}-201.000$ $368.04 .50 \mathrm{E}-191.000$ $373.0 \quad 7.44 \mathrm{E}-201.000$ $378.01 .90 \mathrm{E}-201.000$ 383.0 1.72E-19 1.000 $388.0 .20 \mathrm{E}-201.000$

$410.0 \quad 4.00 \mathrm{E}-20 \quad 1.000$ $435.0 \quad 1.80 \mathrm{E}-191.000$ $460.0 \quad 3.70 \mathrm{E}-191.000$ $485.06 .90 \mathrm{E}-19 \quad 1.000$ $510.0 \quad 1.32 \mathrm{E}-18 \quad 1.000$ $535.02 .04 \mathrm{E}-18 \quad 1.000$ $560.0 \quad 3.07 \mathrm{E}-18 \quad 1.000$ $585.0 \quad 2.77 \mathrm{E}-18 \quad 1.000$ $635.01 .45 \mathrm{E}-18 \quad 0.000$
$282.0 \quad 3.24 \mathrm{E}-18 \quad 0.100$ $287.0 \quad 2.01 \mathrm{E}-18 \quad 0.100$ $292.01 .10 \mathrm{E}-180.100$ $297.05 .84 \mathrm{E}-190.100$ $302.0 \quad 3.06 \mathrm{E}-19 \quad 0.100$ $307.01 .56 \mathrm{E}-19 \quad 0.197$ $312.0 \quad 7.88 \mathrm{E}-20 \quad 0.652$ $317.04 .17 \mathrm{E}-20 \quad 0.949$ $340.01 .70 \mathrm{E}-211.000$ $500.01 .34 \mathrm{E}-21.000$
$282.0 \quad 3.24 \mathrm{E}-18 \quad 0.900$ $287.02 .01 \mathrm{E}-18 \quad 0.900$ $292.0 \quad 1.10 \mathrm{E}-18 \quad 0.900$ $297.05 .84 \mathrm{E}-19 \quad 0.900$ $302.0 \quad 3.06 \mathrm{E}-19 \quad 0.900$ $307.01 .56 \mathrm{E}-190.803$ $312.0 \quad 7.88 \mathrm{E}-20 \quad 0.348$ $317.04 .17 \mathrm{E}-200.051$

Table 3. (continued)

$W L$	$A b s$	$Q Y$	$W L$	$A b s$	$Q Y$	$W L$	$A b s$	$Q Y$	$W L$	$A b s$	$Q Y$	WL
(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)	Abs $\left(\mathrm{cm}^{2}\right)$		(nm)	Abs $\left(\mathrm{cm}^{2}\right)$		(nm)	$\left(\mathrm{cm}^{2}\right)$		(nm)

Photolysis File $=\mathbf{C O 2 H}$
$210.03 .75 \mathrm{E}-191.000$
$\begin{array}{lll}210.0 & 3.75 \mathrm{E}-19 & 1.000 \\ 260.0 & 3.80 \mathrm{E}-20 & 1.000\end{array}$ $310.0 \quad 3.40 \mathrm{E}-211.000$ $360.0 \quad 0.00 \mathrm{E}+001.000$

Photolysis File $=$ HCHONEWR

	$2.49 \mathrm{E}-20$	0.590	280.5	$1.42 \mathrm{E}-20$	0. 596
282.5	$6.76 \mathrm{E}-21$	0.620	283.0	$5.82 \mathrm{E}-21$	0.626
285.0	$3.95 \mathrm{E}-20$	0.650	285.5	$2.87 \mathrm{E}-20$	0.656
287.5	$1.10 \mathrm{E}-20$	0.680	288.0	$2.62 \mathrm{E}-20$	0.686
290.0	$1.07 \mathrm{E}-20$	0.710	290.5	$1.35 \mathrm{E}-20$	0.713
292.5	5.90E-21	0.727	293.0	$1.11 \mathrm{E}-20$	0.731
295.0	$4.17 \mathrm{E}-20$	0.745	295.5	$3.51 \mathrm{E}-20$	0.749
297.5	$1.51 \mathrm{E}-20$	0.763	298.0	$3.69 \mathrm{E}-20$	0.766
300.0	$1.06 \mathrm{E}-20$	0.780	300.4	$7.01 \mathrm{E}-21$	0.780
301.2	$2.17 \mathrm{E}-20$	0.779	301.4	$1.96 \mathrm{E}-20$	0.779
302.2	8.53E-21	0.778	302.4	$7.13 \mathrm{E}-21$	0.778
303.2	$3.81 \mathrm{E}-20$	0.777	303.4	$5.57 \mathrm{E}-20$	0.777
304.2	$5.79 \mathrm{E}-20$	0.776	304.4	$5.24 \mathrm{E}-20$	0.776
305.2	$5.12 \mathrm{E}-20$	0.775	305.4	$4.77 \mathrm{E}-20$	0.775
306.2	$3.28 \mathrm{E}-20$	0.774	306.4	$2.66 \mathrm{E}-20$	0.774
307.2	$1.37 \mathrm{E}-20$	0.773	307.4	$1.19 \mathrm{E}-20$	0.773
308.2	$2.08 \mathrm{E}-20$	0.772	308.4	$2.39 \mathrm{E}-20$	0.772
309.2	$3.06 \mathrm{E}-20$	0.771	309.4	$2.84 \mathrm{E}-20$	0.771
310.2	$1.26 \mathrm{E}-20$	0.767	310.4	$9.26 \mathrm{E}-21$	0.764
311.2	$4.82 \mathrm{E}-21$	0.752	311.4	$4.54 \mathrm{E}-21$	0.749
312.2	$1.47 \mathrm{E}-20$	0.737	312.4	$1.35 \mathrm{E}-20$	0.734
313.2	$6.48 \mathrm{E}-21$	0.722	313.4	$1.07 \mathrm{E}-20$	0.719
314.2	$6.14 \mathrm{E}-20$	0.707	314.4	$7.45 \mathrm{E}-20$	0.704
315.2	$4.37 \mathrm{E}-20$	0.692	315.4	3.92E-20	0.689
316.2	$1.66 \mathrm{E}-20$	0.677	316.4	$2.05 \mathrm{E}-20$	0.674
317.2	$5.07 \mathrm{E}-20$	0.662	317.4	4.33E-20	0.659
318.2	$2.24 \mathrm{E}-20$	0.647	318.4	1.70E-20	0.644
319.2	$6.36 \mathrm{E}-21$	0.632	319.4	$5.36 \mathrm{E}-21$	0.629
320.2	$1.47 \mathrm{E}-20$	0.614	320.4	$1.36 \mathrm{E}-20$	0.608
321.2	$1.17 \mathrm{E}-20$	0.583	321.4	$1.15 \mathrm{E}-20$	0.577
322.2	$4.13 \mathrm{E}-21$	0.552	322.4	$3.36 \mathrm{E}-21$	0.546
323.2	$2.82 \mathrm{E}-21$	0.521	323.4	$4.65 \mathrm{E}-21$	0.515
324.2	$6.59 \mathrm{E}-21$	0.490	324.4	$5.60 \mathrm{E}-21$	0.484
325.2	$2.15 \mathrm{E}-20$	0.459	325.4	$3.75 \mathrm{E}-20$	0.453
326.2	$6.51 \mathrm{E}-20$	0.428	326.4	$5.53 \mathrm{E}-20$	0.422
327.2	$3.22 \mathrm{E}-20$	0.397	327.4	$2.13 \mathrm{E}-20$	0.391
328.2	$6.79 \mathrm{E}-21$	0.366	328.4	$4.99 \mathrm{E}-21$	0.360
329.2	$3.99 \mathrm{E}-20$	0.335	329.4	$5.13 \mathrm{E}-20$	0.329
330.2	$3.08 \mathrm{E}-20$	0.304	330.4	$2.16 \mathrm{E}-20$	0.298
331.2	7.76E-21	0.273	331.4	$6.16 \mathrm{E}-21$	0.267
332.2	$1.74 \mathrm{E}-21$	0.242	332.4	$1.33 \mathrm{E}-21$	0.236
333.2	9.84E-22	0.211	333.4	8.52E-22	0.205
334.2	$1.80 \mathrm{E}-21$	0.180	334.4	$1.43 \mathrm{E}-21$	0.174
335.2	$2.73 \mathrm{E}-22$	0.149	335.4	$1.34 \mathrm{E}-22$	0.143
336.2	$1.23 \mathrm{E}-21$	0.118	336.4	$2.02 \mathrm{E}-21$	0.112
337.2	$2.29 \mathrm{E}-21$	0.087	337.4	$2.46 \mathrm{E}-21$	0.081
338.2	$3.10 \mathrm{E}-20$	0.056	338.4	$3.24 \mathrm{E}-20$	0.050
339.2	$4.33 \mathrm{E}-20$	0.025	339.4	$4.20 \mathrm{E}-20$	0.019

$230.0 \quad 1.38 \mathrm{E}-19 \quad 1.000$ $280.01 .50 \mathrm{E}-201.000$ $330.01 .10 \mathrm{E}-211.000$
$240.0 \quad 8.80 \mathrm{E}-20 \quad 1.000$ $290.0 \quad 9.00 \mathrm{E}-21 \quad 1.000$ $340.0 \quad 6.00 \mathrm{E}-221.000$
$250.0 \quad 5.80 \mathrm{E}-20 \quad 1.000$ $300.0 \quad 5.80 \mathrm{E}-211.000$ $350.0 \quad 4.00 \mathrm{E}-22 \quad 1.000$
$281.0 \quad 1.51 \mathrm{E}-20 \quad 0.602$ $283.5 \quad 9.10 \mathrm{E}-21 \quad 0.632$ $286.0 \quad 2.24 \mathrm{E}-20 \quad 0.662$ $288.5 \quad 4.00 \mathrm{E}-20 \quad 0.692$ $291.01 .99 \mathrm{E}-20 \quad 0.717$ $\begin{array}{lll}291.0 & 1.99 \mathrm{E}-20 & 0.717 \\ 293.5 & 6.26 \mathrm{E}-20 & 0.735\end{array}$ $296.02 .70 \mathrm{E}-200.752$ $\begin{array}{lll}296.0 & 2.70 \mathrm{E}-20 & 0.752 \\ 298.5 & 4.40 \mathrm{E}-20 & 0.769\end{array}$ $\begin{array}{lll}298.5 & 4.40 \mathrm{E}-20 & 0.769 \\ 300.6 & 8.63 \mathrm{E}-21 & 0.779\end{array}$ $\begin{array}{lll}300.6 & 8.63 \mathrm{E}-21 & 0.779 \\ 301.6 & 1.54 \mathrm{E}-20 & 0.778\end{array}$ $302.6 \quad 6.61 \mathrm{E}-21 \quad 0.777$ $303.6 \quad 6.91 \mathrm{E}-20 \quad 0.776$ $304.64 .30 \mathrm{E}-20 \quad 0.775$ $305.64 .43 \mathrm{E}-20 \quad 0.774$ $306.62 .42 \mathrm{E}-200.773$ $307.6 \quad 1.01 \mathrm{E}-20 \quad 0.772$ $308.6 \quad 3.08 \mathrm{E}-20 \quad 0.771$ $309.6 \quad 2.46 \mathrm{E}-20 \quad 0.770$ $\begin{array}{lll}309.6 & 2.46 \mathrm{E}-20 & 0.77 \\ 310.6 & 7.71 \mathrm{E}-21 & 0.761\end{array}$ $\begin{array}{lll}310.6 & .71 \mathrm{E}-21 & 0.761 \\ 311.6 & 6.81 \mathrm{E}-21 & 0.746\end{array}$ $\begin{array}{lll}311.6 & 6.81 \mathrm{E}-21 & 0.746 \\ 312.6 & 1.13 \mathrm{E}-20 & 0.731\end{array}$ $\begin{array}{lll}312.6 & 1.13 \mathrm{E}-20 & 0.731 \\ 313.6 & 2.39 \mathrm{E}-20 & 0.716\end{array}$ $\begin{array}{lll}313.6 & 2.39 \mathrm{E}-20 & 0.716 \\ 314.6 & 5.78 \mathrm{E}-20 & 0.701\end{array}$ $315.62 .89 \mathrm{E}-200.686$ $316.64 .38 \mathrm{E}-20 \quad 0.671$ $317.64 .17 \mathrm{E}-20 \quad 0.656$ $318.61 .24 \mathrm{E}-20 \quad 0.641$ $319.6 \quad 4.79 \mathrm{E}-21 \quad 0.626$ $320.6 \quad 1.69 \mathrm{E}-20 \quad 0.601$ $321.6 \quad 9.64 \mathrm{E}-21 \quad 0.570$ $322.6 \quad 2.39 \mathrm{E}-21 \quad 0.539$ $323.67 .00 \mathrm{E}-21 \quad 0.508$ $\begin{array}{lll}323.6 & .00 \mathrm{E}-21 & 0.477\end{array}$ $\begin{array}{lll}324.6 & 4.66 \mathrm{E}-21 & 0.477 \\ 325.6 & 4.10 \mathrm{E}-20 & 0.446\end{array}$ $\begin{array}{lll}325.6 & 4.10 \mathrm{E}-20 & 0.446 \\ 326.6 & 5.76 \mathrm{E}-20 & 0.415\end{array}$ $\begin{array}{lll}326.6 & 5.76 \mathrm{E}-20 & 0.415 \\ 327.6 & 1.91 \mathrm{E}-20 & 0.384\end{array}$ $\begin{array}{lll}327.6 & 1.91 \mathrm{E}-20 & 0.384 \\ 328.6 & 4.77 \mathrm{E}-21 & 0.353\end{array}$ 329.6 4.00E-20 0.322 $330.6 \quad 2.09 \mathrm{E}-20 \quad 0.291$ $331.6 \quad 4.06 \mathrm{E}-21 \quad 0.260$ $\begin{array}{lll}332.6 & 2.70 \mathrm{E}-21 & 0.229\end{array}$ $333.6 \quad 6.32 \mathrm{E}-22 \quad 0.198$ $334.6 \quad 1.03 \mathrm{E}-21 \quad 0.167$ $335.6-1.62 \mathrm{E}-22 \quad 0.136$ $336.6 \quad 3.00 \mathrm{E}-21 \quad 0.105$ $\begin{array}{lll}336.6 & 3.00 \mathrm{E}-21 & 0.105 \\ 337.6 & 2.92 \mathrm{E}-21 & 0.074\end{array}$ $\begin{array}{lll}337.6 & 2.92 \mathrm{E}-21 & 0.074 \\ 338.6 & 4.79 \mathrm{E}-20 & 0.043\end{array}$ $\begin{array}{lll}338.6 & 4.79 \mathrm{E}-20 & 0.043 \\ 339.6 & 3.99 \mathrm{E}-20 & 0.012\end{array}$
$281.51 .32 \mathrm{E}-20 \quad 0.608$ $284.0 \quad 3.71 \mathrm{E}-20 \quad 0.638$ $286.51 .74 \mathrm{E}-20 \quad 0.668$ $289.0 \quad 3.55 \mathrm{E}-20 \quad 0.698$ $291.51 .56 \mathrm{E}-20 \quad 0.721$ $294.0 \quad 7.40 \mathrm{E}-200.738$ $296.5 \quad 1.75 \mathrm{E}-200.755$ $\begin{array}{lll}299.0 & 3.44 \mathrm{E}-20 & 0.773 \\ 300.8 & 1.47 \mathrm{E}-20 & 0.779\end{array}$ $\begin{array}{lll}300.8 & 1.47 \mathrm{E}-20 & 0.779 \\ 301.8 & 1.26 \mathrm{E}-20 & 0.778\end{array}$ $\begin{array}{lll}301.8 & 1.26 \mathrm{E}-20 & 0.778 \\ 302.8 & 1.44 \mathrm{E}-20 & 0.777\end{array}$ $303.8 \quad 6.58 \mathrm{E}-20 \quad 0.776$ $304.8 \quad 3.28 \mathrm{E}-20 \quad 0.775$ $305.8 \quad 4.60 \mathrm{E}-20 \quad 0.774$ $306.8 \quad 1.95 \mathrm{E}-200.773$ $307.8 \quad 9.01 \mathrm{E}-21 \quad 0.772$ $308.8 \quad 3.39 \mathrm{E}-20 \quad 0.771$ $309.8 \quad 1.95 \mathrm{E}-200.770$ $310.8 \quad 6.05 \mathrm{E}-21 \quad 0.758$ $\begin{array}{lll}311.8 & 1.04 \mathrm{E}-20 & 0.743 \\ 312.8 & 9.86 \mathrm{E}-21 & 0.728\end{array}$ $\begin{array}{lll}312.8 & 9.86 \mathrm{E}-21 & 0.728 \\ 313.8 & 3.80 \mathrm{E}-20 & 0.713\end{array}$ $\begin{array}{lll}313.8 & 3.80 \mathrm{E}-20 & 0.713 \\ 314.8 & 5.59 \mathrm{E}-20 & 0.698\end{array}$ $315.8 \quad 2.82 \mathrm{E}-20 \quad 0.683$ $316.8 \quad 5.86 \mathrm{E}-20 \quad 0.668$ $317.8 \quad 3.11 \mathrm{E}-20 \quad 0.653$ $318.8 \quad 1.11 \mathrm{E}-20 \quad 0.638$ $319.8 \quad 6.48 \mathrm{E}-21 \quad 0.623$ $320.8 \quad 1.32 \mathrm{E}-20 \quad 0.595$ $321.8 \quad 7.26 \mathrm{E}-21 \quad 0.564$ $322.8 \quad 2.01 \mathrm{E}-21 \quad 0.533$ $\begin{array}{lll}323.8 & 7.80 \mathrm{E}-21 & 0.502 \\ 324.8 & 4.21 \mathrm{E}-21 & 0.471\end{array}$ $\begin{array}{lll}324.8 & 4.21 \mathrm{E}-21 & 0.471 \\ 325.8 & 6.47 \mathrm{E}-20 & 0.440\end{array}$ $\begin{array}{lll}325.8 & 6.47 \mathrm{E}-20 & 0.440 \\ 326.8 & 4.43 \mathrm{E}-20 & 0.409\end{array}$ $327.8 \quad 1.42 \mathrm{E}-20 \quad 0.378$ $328.8 \quad 1.75 \mathrm{E}-20 \quad 0.347$ $329.8 \quad 3.61 \mathrm{E}-20 \quad 0.316$ $330.8 \quad 1.41 \mathrm{E}-20 \quad 0.285$ $331.8 \quad 3.03 \mathrm{E}-21 \quad 0.254$ $332.8 \quad 1.65 \mathrm{E}-21 \quad 0.223$ $333.8 \quad 5.21 \mathrm{E}-22 \quad 0.192$ $334.8 \quad 7.19 \mathrm{E}-22 \quad 0.161$ $335.81 .25 \mathrm{E}-220.130$ $336.8 \quad 2.40 \mathrm{E}-21 \quad 0.099$ $337.8 \quad 8.10 \mathrm{E}-21 \quad 0.068$ $338.8 \quad 5.25 \mathrm{E}-20 \quad 0.037$ $339.8 \quad 3.11 \mathrm{E}-20 \quad 0.006$
282.0 9.73E-21 0.61 $284.5 \quad 4.81 \mathrm{E}-20 \quad 0.644$ $287.0 \quad 1.13 \mathrm{E}-20 \quad 0.674$ $289.5 \quad 2.12 \mathrm{E}-20 \quad 0.704$ $292.0 \quad 8.65 \mathrm{E}-21 \quad 0.724$ $292.08 .65 \mathrm{E}-210.724$ $294.55 .36 \mathrm{E}-200.741$ $297.0 \quad 1.16 \mathrm{E}-20 \quad 0.759$ $\begin{array}{lll}299.5 & 2.02 \mathrm{E}-20 & 0.776 \\ 301.0 & 2.01 \mathrm{E}-20 & 0.779\end{array}$ $\begin{array}{lll}301.0 & 2.01 \mathrm{E}-20 & 0.779 \\ 302.0 & 1.03 \mathrm{E}-20 & 0.778\end{array}$ $\begin{array}{lll}302.0 & 1.03 \mathrm{E}-20 & 0.778 \\ 303.0 & 3.18 \mathrm{E}-20 & 0.77\end{array}$ $304.0 \quad 6.96 \mathrm{E}-20 \quad 0.776$ $305.0 \quad 3.60 \mathrm{E}-20 \quad 0.775$ $306.04 .01 \mathrm{E}-20 \quad 0.774$ $307.0 \quad 1.58 \mathrm{E}-20 \quad 0.773$ $308.0 \quad 8.84 \mathrm{E}-21 \quad 0.772$ $309.0 \quad 3.18 \mathrm{E}-20 \quad 0.771$ $310.0 \quad 1.57 \mathrm{E}-20 \quad 0.770$ $311.0 \quad 5.13 \mathrm{E}-21 \quad 0.755$ $312.0 \quad 1.43 \mathrm{E}-20 \quad 0.740$ $313.0 \quad 7.82 \mathrm{E}-21 \quad 0.725$ $314.0 \quad 5.76 \mathrm{E}-20 \quad 0.710$ $315.0 \quad 4.91 \mathrm{E}-20 \quad 0.695$ $316.0 \quad 2.10 \mathrm{E}-20 \quad 0.680$ $317.0 \quad 6.28 \mathrm{E}-20 \quad 0.665$ $318.0 \quad 2.64 \mathrm{E}-20 \quad 0.650$ $319.0 \quad 7.70 \mathrm{E}-21 \quad 0.635$ $320.0 \quad 1.48 \mathrm{E}-20 \quad 0.620$ $321.0 \quad 1.49 \mathrm{E}-20 \quad 0.589$ $322.0 \quad 5.94 \mathrm{E}-21 \quad 0.558$ $323.0 \quad 1.76 \mathrm{E}-21 \quad 0.527$ $324.0 \quad 7.87 \mathrm{E}-21 \quad 0.496$ $325.0 \quad 7.77 \mathrm{E}-21 \quad 0.465$ $326.0 \quad 7.59 \mathrm{E}-20 \quad 0.434$ $327.0 \quad 3.44 \mathrm{E}-20 \quad 0.403$ $328.0 \quad 9.15 \mathrm{E}-21 \quad 0.372$ $329.0 \quad 3.27 \mathrm{E}-20 \quad 0.341$ $330.0 \quad 3.38 \mathrm{E}-20 \quad 0.310$ $331.0 \quad 9.95 \mathrm{E}-21 \quad 0.279$ $332.0 \quad 2.41 \mathrm{E}-21 \quad 0.248$ $333.01 .17 \mathrm{E}-21 \quad 0.217$ $334.01 .46 \mathrm{E}-21 \quad 0.186$ $335.0 \quad 4.84 \mathrm{E}-22 \quad 0.155$ $336.04 .47 \mathrm{E}-22 \quad 0.12$ $337.0 \quad 3.07 \mathrm{E}-21 \quad 0.093$ $338.0 \quad 1.82 \mathrm{E}-20 \quad 0.062$ $\begin{array}{lll}338.0 & 1.82 \mathrm{E}-20 & 0.062 \\ 339.0 & 5.85 \mathrm{E}-20 & 0.031\end{array}$ $\begin{array}{lll}339.0 & 5.85 \mathrm{E}-20 & 0.031 \\ 340.0 & 2.72 \mathrm{E}-20 & 0.000\end{array}$
$281.5 \quad 1.32 \mathrm{E}-20 \quad 0.336$ $\begin{array}{lll}284.0 & 3.71 \mathrm{E}-20 & 0.314 \\ 286.5 & 1.74 \mathrm{E}-20 & 0.291\end{array}$ $\begin{array}{lll}286.5 & 1.74 \mathrm{E}-20 & 0.291\end{array}$ $\begin{array}{lll}289.0 & 3.55 \mathrm{E}-20 & 0.269\end{array}$ $\begin{array}{lll}291.5 & 1.56 \mathrm{E}-20 & 0.254 \\ 294.0 & 7.40 \mathrm{E}-20 & 0.244\end{array}$ $296.51 .75 \mathrm{E}-20 \quad 0.234$ $\begin{array}{lll}296.5 & 1.75 \mathrm{E}-20 & 0.234 \\ 299.0 & 3.44 \mathrm{E}-20 & 0.224\end{array}$ $\begin{array}{lll}299.0 & 3.44 \mathrm{E}-20 & 0.224\end{array}$ $\begin{array}{lll}300.8 & 1.47 \mathrm{E}-20 & 0.221 \\ 301.8 & 1.26 \mathrm{E}-20 & 0.222\end{array}$ $301.8 \quad 1.26 \mathrm{E}-20 \quad 0.222$ $302.8 \quad 1.44 \mathrm{E}-20 \quad 0.223$ $303.8 \quad 6.58 \mathrm{E}-20 \quad 0.224$ $304.8 \quad 3.28 \mathrm{E}-20 \quad 0.225$ $305.8 \quad 4.60 \mathrm{E}-20 \quad 0.226$ $306.8 \quad 1.95 \mathrm{E}-20 \quad 0.227$ 307.8 9.01E-21 0.228 308.8 3.39E-20 0.229 $309.8 \quad 1.95 \mathrm{E}-20 \quad 0.230$ $310.8 \quad 6.05 \mathrm{E}-21 \quad 0.242$ $311.8 \quad 1.04 \mathrm{E}-20 \quad 0.257$ $311.8 \quad 1.04 \mathrm{E}-20 \quad 0.257$ $\begin{array}{lll}312.8 & 9.86 \mathrm{E}-21 & 0.272\end{array}$ $\begin{array}{lll}313.8 & 3.80 \mathrm{E}-20 & 0.287\end{array}$ $\begin{array}{lll}314.8 & 5.59 \mathrm{E}-20 & 0.302 \\ 315.8 & 2.82 \mathrm{E}-20 & 0.317\end{array}$ $\begin{array}{lll}315.8 & 2.82 \mathrm{E}-20 & 0.317\end{array}$ $\begin{array}{lll}316.8 & 5.86 \mathrm{E}-20 & 0.332 \\ 317.8 & 3.11 \mathrm{E}-20 & 0.347\end{array}$ $318.8 \quad 1.11 \mathrm{E}-20 \quad 0.362$
$282.0 \quad 9.73 \mathrm{E}-21 \quad 0.332$ $284.5 \quad 4.81 \mathrm{E}-20 \quad 0.309$ $287.01 .13 \mathrm{E}-20 \quad 0.28$ $289.52 .12 \mathrm{E}-200.264$ $292.0 \quad 8.65 \mathrm{E}-21 \quad 0.252$ $294.5 \quad 5.36 \mathrm{E}-20 \quad 0.242$ $297.0 \quad 1.16 \mathrm{E}-20 \quad 0.232$ $299.5 \quad 2.02 \mathrm{E}-20 \quad 0.222$ $299.52 .02 \mathrm{E}-20$ 0.222 302.0 1.03E-20 0.222 $\begin{array}{lll}302.0 & 1.03 \mathrm{E}-20 & 0.222 \\ 303.0 & 3.18 \mathrm{E}-20 & 0.223\end{array}$ $304.0 \quad 6.96 \mathrm{E}-20 \quad 0.224$ $305.0 \quad 3.60 \mathrm{E}-20 \quad 0.225$ $306.0 \quad 4.01 \mathrm{E}-20 \quad 0.226$ $307.0 \quad 1.58 \mathrm{E}-20 \quad 0.227$ $308.0 \quad 8.84 \mathrm{E}-21 \quad 0.228$ $309.0 \quad 3.18 \mathrm{E}-20 \quad 0.229$ $310.0 \quad 1.57 \mathrm{E}-20 \quad 0.230$ $311.0 \quad 5.13 \mathrm{E}-21 \quad 0.245$ $312.0 \quad 1.43 \mathrm{E}-200.260$ $313.0 \quad 7.82 \mathrm{E}-21 \quad 0.27$ $314.05 .76 \mathrm{E}-20 \quad 0.290$ $315.0 \quad 4.91 \mathrm{E}-20 \quad 0.305$ $\begin{array}{lll}316.0 & 2.10 \mathrm{E}-20 & 0.320 \\ 317.0 & 6.28 \mathrm{E}-20 & 0.335\end{array}$ $\begin{array}{lll}317.0 & 6.28 \mathrm{E}-20 & 0.335 \\ 318.0 & 2.64 \mathrm{E}-20 & 0.350\end{array}$ $319.0 \quad 7.70 \mathrm{E}-21 \quad 0.365$

Table 3. (continued)

$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \mathrm{Abs} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	QY	$\begin{gathered} \text { WL } \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{gathered} \text { WL } \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{gathered} \text { WL } \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY

319.2	$6.36 \mathrm{E}-21$	0.368
320.2	$1.47 \mathrm{E}-20$	0.386
321.2	$1.17 \mathrm{E}-20$	0.417
322.2	$4.13 \mathrm{E}-21$	0.448
323.2	$2.82 \mathrm{E}-21$	0.479
324.2	$6.59 \mathrm{E}-21$	0.510
325.2	$2.15 \mathrm{E}-20$	0.541
326.2	$6.51 \mathrm{E}-20$	0.572
327.2	$3.22 \mathrm{E}-20$	0.603
328.2	$6.79 \mathrm{E}-21$	0.634
329.2	$3.99 \mathrm{E}-20$	0.665
330.2	$3.08 \mathrm{E}-20$	0.694
331.2	$7.76 \mathrm{E}-21$	0.717
332.2	$1.74 \mathrm{E}-21$	0.739
333.2	$9.84 \mathrm{E}-22$	0.762
334.2	$1.80 \mathrm{E}-21$	0.784
335.2	$2.73 \mathrm{E}-22$	0.798
336.2	$1.23 \mathrm{E}-21$	0.778
337.2	$2.29 \mathrm{E}-21$	0.754
338.2	$3.10 \mathrm{E}-20$	0.729
339.2	$4.33 \mathrm{E}-20$	0.703
340.2	$1.99 \mathrm{E}-20$	0.676
341.2	$4.83 \mathrm{E}-21$	0.649
342.2	$4.64 \mathrm{E}-21$	0.621
343.2	$1.72 \mathrm{E}-20$	0.593
344.2	$8.26 \mathrm{E}-21$	0.565
345.2	$1.60 \mathrm{E}-21$	0.537
346.2	$5.15 \mathrm{E}-22$	0.508
347.2	$3.34 \mathrm{E}-22$	0.480
348.2	$7.60 \mathrm{E}-22$	0.451
349.2	$1.64 \mathrm{E}-22$	0.423
350.2	$0.00 \mathrm{E}+00$	0.394
351.2	$3.45 \mathrm{E}-23$	0.366
352.2	$8.38 \mathrm{E}-21$	0.337
353.2	$1.96 \mathrm{E}-20$	0.309
354.2	$1.07 \mathrm{E}-20$	0.280
355.2	$3.49 \mathrm{E}-21$	0.251
356.2	$4.17 \mathrm{E}-22$	0.223

$319.2 \quad 6.36 \mathrm{E}-21 \quad 0.368$ $320.2 \quad 1.47 \mathrm{E}-20 \quad 0.386$ $\begin{array}{lll}321.2 & 1.17 \mathrm{E}-20 & 0.417 \\ 322.2 & 4.13 \mathrm{E}-21 & 0.448\end{array}$ 323.2 2.82E-21 0.479 $324.2 \quad 6.59 \mathrm{E}-21 \quad 0.510$ $325.2 \quad 2.15 \mathrm{E}-20 \quad 0.541$ $327.2 \quad 3.22 \mathrm{E}-20 \quad 0.603$ $328.2 \quad 6.79 \mathrm{E}-21 \quad 0.634$ $329.2 \quad 3.99 \mathrm{E}-20 \quad 0.665$ $\begin{array}{lll}330.2 & 3.08 \mathrm{E}-20 & 0.694 \\ 331.2 & 7.76 \mathrm{E}-21 & 0.717\end{array}$ $\begin{array}{lll}331.2 & 7.76 \mathrm{E}-21 & 0.717 \\ 332.2 & 1.74 \mathrm{E}-21 & 0.739\end{array}$ $333.2 \quad 9.84 \mathrm{E}-22 \quad 0.762$ $334.2 \quad 1.80 \mathrm{E}-21 \quad 0.784$ $335.2 \quad 2.73 \mathrm{E}-22 \quad 0.798$ $336.21 .23 \mathrm{E}-21 \quad 0.778$ $337.2 \quad 2.29 \mathrm{E}-21 \quad 0.754$ 339.2 4.33E-20 0.703 340.2 1.99E-20 0.676 $\begin{array}{lll}341.2 & 4.83 \mathrm{E}-21 & 0.649 \\ 342.2 & 4.64 \mathrm{E}-21 & 0.621\end{array}$ $343.2 \quad 1.72 \mathrm{E}-20 \quad 0.593$ $344.28 .26 \mathrm{E}-210.565$ $\begin{array}{lll}345.2 & 1.60 \mathrm{E}-21 & 0.537 \\ 346.2 & 5.15 \mathrm{E}-22 & 0.508\end{array}$ $347.2 \quad 3.34 \mathrm{E}-22 \quad 0.480$ $348.2 \quad 7.60 \mathrm{E}-22 \quad 0.451$ $350.2 \quad 0.00 \mathrm{E}+000.394$ $351.2 \quad 3.45 \mathrm{E}-23 \quad 0.366$ 353.2 1.96E-20 0.309 $355.2 \quad 3.49 \mathrm{E}-21 \quad 0.251$
$356.24 .17 \mathrm{E}-22 \quad 0.223$

$\begin{array}{lll}320.4 & 1.36 \mathrm{E}-20 & 0.392\end{array}$ $321.41 .15 \mathrm{E}-20 \quad 0.423$ $322.4 \quad 3.36 \mathrm{E}-21 \quad 0.454$ $323.4 \quad 4.65 \mathrm{E}-21 \quad 0.485$ $324.4 \quad 5.60 \mathrm{E}-210.516$ $325.4 \quad 3.75 \mathrm{E}-20 \quad 0.547$ $326.4 \quad 5.53 \mathrm{E}-20 \quad 0.578$ $327.4 \quad 2.13 \mathrm{E}-20 \quad 0.609$ 328.4 4.99E-21 0.640 $329.4 \quad 5.13 \mathrm{E}-20 \quad 0.671$ $330.4 \quad 2.16 \mathrm{E}-20 \quad 0.699$ $331.4 \quad 6.16 \mathrm{E}-21 \quad 0.721$ $332.41 .33 \mathrm{E}-210.744$ $\begin{array}{llll}333.4 & 8.52 \mathrm{E}-22 & 0.766\end{array}$ $334.4 \quad 1.43 \mathrm{E}-21 \quad 0.789$ $335.4 \quad 1.34 \mathrm{E}-22 \quad 0.794$ $336.4 \quad 2.02 \mathrm{E}-21 \quad 0.773$ $337.42 .46 \mathrm{E}-210.749$ $338.4 \quad 3.24 \mathrm{E}-20 \quad 0.724$ $339.4 \quad 4.20 \mathrm{E}-20 \quad 0.698$ $340.4 \quad 1.76 \mathrm{E}-20 \quad 0.671$ $\begin{array}{lll}341.4 & 3.47 \mathrm{E}-21 & 0.643 \\ 342.4 & 1.08 \mathrm{E}-20 & 0.616\end{array}$ $\begin{array}{lll}342.4 & 1.08 \mathrm{E}-20 & 0.616 \\ 343.4 & 1.55 \mathrm{E}-20 & 0.588\end{array}$ $\begin{array}{lll}343.4 & 1.55 \mathrm{E}-20 & 0.588 \\ 344.4 & 6.32 \mathrm{E}-21 & 0.559\end{array}$ $\begin{array}{lll}344.4 & 6.32 \mathrm{E}-21 & 0.559 \\ 345.4 & 1.15 \mathrm{E}-21 & 0.531\end{array}$ $345.4 \quad 1.15 \mathrm{E}-21 \quad 0.531$ $\begin{array}{lll}346.4 & 3.45 \mathrm{E}-22 & 0.503 \\ 347.4 & 2.88 \mathrm{E}-22 & 0.474\end{array}$ $\begin{array}{lll}347.4 & 2.88 \mathrm{E}-22 & 0.474 \\ 348.4 & 6.24 \mathrm{E}-22 & 0.446\end{array}$ $348.4 \quad 6.24 \mathrm{E}-22 \quad 0.446$ $349.4 \quad 1.49 \mathrm{E}-22 \quad 0.417$ $350.4 \quad 5.16 \mathrm{E}-23 \quad 0.389$ 351.4 1.97E-22 0.360 $352.41 .55 \mathrm{E}-20 \quad 0.331$ $353.41 .67 \mathrm{E}-20 \quad 0.303$ $354.4 \quad 9.82 \mathrm{E}-21 \quad 0.274$ $355.42 .41 \mathrm{E}-210.246$ $356.4 \quad 1.95 \mathrm{E}-22 \quad 0.217$

Photolysis File $=$ CCHOR

$\begin{array}{llllll}260.0 & 2.00 \mathrm{E}-20 & 0.310 & 270.0 & 3.40 \mathrm{E}-20 & 0.390 \\ 300.0 & 4.30 \mathrm{E}-20 & 0.330 & 305.0 & 3.40 \mathrm{E}-20 & 0.370\end{array}$ $300.0 \quad 4.30 \mathrm{E}-20 \quad 0.430$ $305.0 \quad 3.40 \mathrm{E}-20 \quad 0.370$ $330.0 \quad 6.90 \mathrm{E}-21 \quad 0.000$

Photolysis File = RCHO
$280.05 .26 \mathrm{E}-200.960$ $330.06 .49 \mathrm{E}-21 \quad 0.200$
Photolysis File $=$ ACET-93C

250.0	$2.37 \mathrm{E}-20$	0.760	260.0	$3.66 \mathrm{E}-20$	0.800
300.0	$2.78 \mathrm{E}-20$	0.150	310.0	$1.44 \mathrm{E}-20$	0.050

Photolysis File $=$ KETONE				
210.0	$1.10 \mathrm{E}-21$	1.000	220.0	$1.20 \mathrm{E}-21$
1.000				
260.0	$4.21 \mathrm{E}-20$	1.000	270.0	$5.54 \mathrm{E}-20$
1.000				
310.0	$1.53 \mathrm{E}-20$	1.000	320.0	$4.60 \mathrm{E}-21$

Photolysis File $=$ GLYOXAL

230.0	$2.87 \mathrm{E}-21$	1.000	235.0	$2.87 \mathrm{E}-21$	1.000
255.0	$1.15 \mathrm{E}-20$	1.000	260.0	$1.43 \mathrm{E}-20$	1.000
280.0	$2.87 \mathrm{E}-20$	1.000	285.0	$3.30 \mathrm{E}-20$	1.000
305.0	$2.72 \mathrm{E}-20$	1.000	310.0	$2.72 \mathrm{E}-20$	1.000

$319.64 .79 \mathrm{E}-21 \quad 0.374$ $320.6 \quad 1.69 \mathrm{E}-20 \quad 0.399$ $321.6 \quad 9.64 \mathrm{E}-21 \quad 0.430$ $322.6 \quad 2.39 \mathrm{E}-21 \quad 0.461$ 323.6 7.00E-21 0.492 $324.6 \quad 4.66 \mathrm{E}-21 \quad 0.523$ $325.64 .10 \mathrm{E}-20 \quad 0.554$ $326.65 .76 \mathrm{E}-200.585$ $327.61 .91 \mathrm{E}-20 \quad 0.616$ $328.6 \quad 4.77 \mathrm{E}-21 \quad 0.647$ $329.64 .00 \mathrm{E}-20 \quad 0.678$ $329.64 .00 \mathrm{E}-200.678$ $330.62 .09 \mathrm{E}-200.703$ $331.6 \quad 4.06 \mathrm{E}-21 \quad 0.726$ $\begin{array}{lll}332.6 & 2.70 \mathrm{E}-21 & 0.748 \\ 333.6 & 6.32 \mathrm{E}-22 & 0.771\end{array}$ $\begin{array}{lll}333.6 & 6.32 \mathrm{E}-22 & 0.771 \\ 334.6 & 1.03 \mathrm{E}-21 & 0.793\end{array}$ $335.6 \quad 0.00 \mathrm{E}+00 \quad 0.790$ $336.6 \quad 3.00 \mathrm{E}-21 \quad 0.769$ $337.6 \quad 2.92 \mathrm{E}-210.745$ $338.64 .79 \mathrm{E}-200.719$ $339.63 .99 \mathrm{E}-200.693$ $340.61 .39 \mathrm{E}-200.666$ $341.6 \quad 2.23 \mathrm{E}-21 \quad 0.638$ $342.6 \quad 1.14 \mathrm{E}-20 \quad 0.610$ $343.61 .46 \mathrm{E}-20 \quad 0.582$ 343.6 1.46E-20 $4.28 \mathrm{E}-21 \quad 0.554$ $\begin{array}{lll}344.6 & 4.28 \mathrm{E}-21 & 0.554 \\ 345.6 & 8.90 \mathrm{E}-22 & 0.525\end{array}$ $\begin{array}{lll}345.6 & 8.90 \mathrm{E}-22 & 0.525 \\ 346.6 & 3.18 \mathrm{E}-22 & 0.497\end{array}$ $\begin{array}{lll}346.6 & 3.18 \mathrm{E}-22 & 0.497 \\ 347.6 & 2.84 \mathrm{E}-22 & 0.468\end{array}$ $\begin{array}{lll}347.6 & 2.84 \mathrm{E}-22 & 0.468 \\ 348.6 & 4.99 \mathrm{E}-22 & 0.440\end{array}$ $349.6 \quad 8.30 \mathrm{E}-23 \quad 0.411$ $350.6 \quad 0.00 \mathrm{E}+00 \quad 0.383$ $351.64 .80 \mathrm{E}-220.354$ $352.61 .86 \mathrm{E}-20 \quad 0.326$ $353.61 .75 \mathrm{E}-200.297$ $354.6 \quad 8.66 \mathrm{E}-21 \quad 0.269$ $355.6 \quad 1.74 \mathrm{E}-21 \quad 0.240$ $356.61 .50 \mathrm{E}-22 \quad 0.211$
$280.0 \quad 4.50 \mathrm{E}-20 \quad 0.580$ $315.0 \quad 2.10 \mathrm{E}-20 \quad 0.170$
$300.0 \quad 5.05 \mathrm{E}-20 \quad 0.860$ $345.00 .00 \mathrm{E}+000.020$
$270.04 .63 \mathrm{E}-20 \quad 0.640$ $320.04 .80 \mathrm{E}-210.026$
$230.0 \quad 4.60 \mathrm{E}-21 \quad 1.000$ $280.0 \quad 5.92 \mathrm{E}-20 \quad 1.000$ $330.01 .10 \mathrm{E}-211.000$
$240.04 .30 \mathrm{E}-211.000$ $265.0 \quad 1.86 \mathrm{E}-201.000$ $290.0 \quad 3.15 \mathrm{E}-20 \quad 1.000$ $312.52 .87 \mathrm{E}-201.000$ $330.01 .15 \mathrm{E}-201.000$
$365.0 \quad 2.87 \mathrm{E}-21 \quad 1.000$ $384.01 .49 \mathrm{E}-201.000$ $\begin{array}{lll}384.0 & 1.49 \mathrm{E}-20 & 1.000 \\ 392.0 & 3.04 \mathrm{E}-20 & 1.000\end{array}$ $\begin{array}{lll}392.0 & 3.04 \mathrm{E}-20 & 1.000 \\ 397.0 & 2.43 \mathrm{E}-20 & 1.000\end{array}$ $\begin{array}{lll}397.0 & 2.43 \mathrm{E}-20 & 1.000 \\ 402.0 & 4.46 \mathrm{E}-20 & 1.000\end{array}$ $407.02 .84 \mathrm{E}-201.000$ $411.56 .08 \mathrm{E}-201.000$ $414.58 .11 \mathrm{E}-201.000$ $418.0 \quad 5.88 \mathrm{E}-201.000$ $422.05 .27 \mathrm{E}-20 \quad 1.000$ $426.01 .18 \mathrm{E}-191.000$ $430.05 .18 \mathrm{E}-191.000$ $434.56 .08 \mathrm{E}-201.000$ $434.51 .08 \mathrm{E}-201.000$ $438.0 \quad 1.01 \mathrm{E}-191.000$ $442.0 \quad 6.08 \mathrm{E}-20 \quad 1.000$ $447.02 .43 \mathrm{E}-201.000$ $451.59 .32 \mathrm{E}-201.000$ $455.54 .05 \mathrm{E}-191.000$

$290.0 \quad 4.90 \mathrm{E}-20 \quad 0.530$ $320.0 \quad 1.80 \mathrm{E}-20 \quad 0.100$
$310.03 .68 \mathrm{E}-20 \quad 0.600$
$280.05 .05 \mathrm{E}-200.550$ $330.08 .00 \mathrm{E}-22 \quad 0.017$
$\begin{array}{lll}240.0 & 1.30 \mathrm{E}-20 & 1.000 \\ 290.0 & 5.16 \mathrm{E}-20 & 1.000\end{array}$ $\begin{array}{lll}290.0 & 5.16 \mathrm{E}-20 & 1.000 \\ 340.0 & 0.00 \mathrm{E}+00 & 1.000\end{array}$
$245.0 \quad 5.73 \mathrm{E}-211.000$ $270.02 .29 \mathrm{E}-201.000$ 295.0 3.30E-20 1.000 $315.02 .29 \mathrm{E}-201.000$ $335.02 .87 \mathrm{E}-211.000$

$320.0 \quad 1.48 \mathrm{E}-20 \quad 0.380$ $321.0 \quad 1.49 \mathrm{E}-20 \quad 0.411$ $322.0 \quad 5.94 \mathrm{E}-21 \quad 0.44$ $323.01 .76 \mathrm{E}-21 \quad 0.473$ $324.0 \quad 7.87 \mathrm{E}-21 \quad 0.504$ $325.0 \quad 7.77 \mathrm{E}-21 \quad 0.535$ $326.0 \quad 7.59 \mathrm{E}-20 \quad 0.566$ $327.03 .44 \mathrm{E}-20 \quad 0.59$ $328.0 \quad 9.15 \mathrm{E}-21 \quad 0.628$ $329.0 \quad 3.27 \mathrm{E}-20 \quad 0.659$ $330.0 \quad 3.38 \mathrm{E}-20 \quad 0.690$ $331.0 \quad 9.95 \mathrm{E}-21 \quad 0.712$ $331.09 .95 \mathrm{E}-210.712$ $332.02 .41 \mathrm{E}-210.735$ $\begin{array}{lll}333.0 & 1.17 \mathrm{E}-21 & 0.757 \\ 334.0 & 1.46 \mathrm{E}-21 & 0.780\end{array}$ $\begin{array}{lll}334.0 & 1.46 \mathrm{E}-21 & 0.780 \\ 335.0 & 4.84 \mathrm{E}-22 & 0.802\end{array}$ $\begin{array}{lll}335.0 & 4.84 \mathrm{E}-22 & 0.802 \\ 336.0 & 4.47 \mathrm{E}-22 & 0.782\end{array}$ $\begin{array}{lll}336.0 & 4.47 \mathrm{E}-22 & 0.782 \\ 337.0 & 3.07 \mathrm{E}-21 & 0.759\end{array}$ $338.0 \quad 1.82 \mathrm{E}-20 \quad 0.734$ $339.05 .85 \mathrm{E}-20 \quad 0.709$ $340.0 \quad 2.72 \mathrm{E}-20 \quad 0.682$ $341.0 \quad 6.57 \mathrm{E}-21 \quad 0.655$ $342.0 \quad 3.70 \mathrm{E}-21 \quad 0.627$ $343.0 \quad 2.33 \mathrm{E}-20 \quad 0.599$ $344.0 \quad 1.00 \mathrm{E}-20 \quad 0.571$ $345.0 \quad 2.54 \mathrm{E}-21 \quad 0.542$ $346.0 \quad 5.09 \mathrm{E}-22 \quad 0.51$ $347.0 \quad 3.24 \mathrm{E}-22 \quad 0.485$ $348.0 \quad 9.70 \mathrm{E}-22 \quad 0.457$ $349.0 \quad 3.39 \mathrm{E}-22 \quad 0.428$ $350.0 \quad 2.57 \mathrm{E}-23 \quad 0.400$ $351.0 \quad 7.07 \mathrm{E}-23 \quad 0.371$ $352.0 \quad 6.41 \mathrm{E}-21 \quad 0.343$ $353.0 \quad 2.78 \mathrm{E}-20 \quad 0.314$ $354.0 \quad 1.36 \mathrm{E}-20 \quad 0.286$ $\begin{array}{lll}355.0 & 4.84 \mathrm{E}-21 & 0.25 \\ 356.0 & 7.37 \mathrm{E}-22 & 0.229\end{array}$ $357.0 \quad 0.00 \mathrm{E}+00 \quad 0.200$
$295.0 \quad 4.50 \mathrm{E}-20 \quad 0.480$ $325.0 \quad 1.10 \mathrm{E}-20 \quad 0.040$
$320.0 \quad 1.66 \mathrm{E}-20 \quad 0.360$
$290.04 .21 \mathrm{E}-20 \quad 0.300$ $340.01 .00 \mathrm{E}-220.000$
$250.0 \quad 2.68 \mathrm{E}-20 \quad 1.000$ $300.0 \quad 3.44 \mathrm{E}-20 \quad 1.000$
$250.08 .60 \mathrm{E}-211.000$ $275.0 \quad 2.58 \mathrm{E}-201.000$ $300.0 \quad 3.58 \mathrm{E}-201.000$ $320.01 .43 \mathrm{E}-20 \quad 1.00$ $340.0 \quad 0.00 \mathrm{E}+001.000$
$375.0 \quad 1.00 \mathrm{E}-20 \quad 1.000$ $388.02 .87 \mathrm{E}-201.000$ $394.0 \quad 2.63 \mathrm{E}-20 \quad 1.000$ $399.0 \quad 3.04 \mathrm{E}-20 \quad 1.000$ $404.04 .26 \mathrm{E}-201.000$ $409.0 \quad 2.84 \mathrm{E}-201.000$ $413.08 .31 \mathrm{E}-201.000$ $415.56 .89 \mathrm{E}-201.000$ $420.0 \quad 3.85 \mathrm{E}-20 \quad 1.000$ $423.0 \quad 8.51 \mathrm{E}-20 \quad 1.000$ $427.01 .07 \mathrm{E}-191.000$ $432.0 \quad 4.05 \mathrm{E}-20 \quad 1.000$ $436.08 .11 \mathrm{E}-201.000$ $\begin{array}{lll}439.0 & 7.70 \mathrm{E}-20 & 1.000 \\ 444.0 & 9.32 \mathrm{E}-20 & 1.000\end{array}$ $\begin{array}{lll}444.0 & 9.32 \mathrm{E}-20 & 1.000 \\ 449.0 & 3.85 \mathrm{E}-20 & 1.000\end{array}$ $\begin{array}{lll}449.0 & 3.85 \mathrm{E}-20 & 1.000 \\ 453.0 & 2.39 \mathrm{E}-19 & 1.000\end{array}$ $457.01 .62 \mathrm{E}-201.000$

Table 3. (continued)

$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \mathrm{Abs} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \mathrm{Abs} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{aligned} & \text { WL } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY	$\begin{gathered} \text { WL } \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \mathrm{Abs} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	QY

458.0	$1.22 \mathrm{E}-20$	1.000	458.5	$1.42 \mathrm{E}-20$	1.000
461.0	$2.03 \mathrm{E}-21$	1.000	462.0	$0.00 \mathrm{E}+00$	1.000

Photolysis File $=$ MEGLYOX1
$220.0 \quad 2.10 \mathrm{E}-211.000 \quad 225.0 \quad 2.10 \mathrm{E}-211.000$ $245.08 .41 \mathrm{E}-211.000 \quad 250.0 \quad 9.25 \mathrm{E}-211.000$ $\begin{array}{llll}270.0 & 1.26 \mathrm{E}-20 & 1.000 & 275.0 \\ 1.43 \mathrm{E}-20 & 1.000\end{array}$ $\begin{array}{llllll}295.0 & 1.18 \mathrm{E}-20 & 1.000 & 300.0 & 1.14 \mathrm{E}-20 & 1.000 \\ 320.0 & 3.36 \mathrm{E}-21 & 1.000 & 325.0 & 1.68 \mathrm{E}-21 & 1.000\end{array}$
$230.0 \quad 4.21 \mathrm{E}-21 \quad 1.000$ 255.0 9.25E-21 1.000 280.0 1.51E-20 1.000
305.0 9.25E-21 1.000
$330.08 .41 \mathrm{E}-221.000$
Photolysis File $=$ MEGLYOX2
$350.0 \quad 0.00 \mathrm{E}+001.000 \quad 354.0 \quad 4.21 \mathrm{E}-22 \quad 1.000$ $364.02 .94 \mathrm{E}-21 \quad 1.000$ $374.07 .57 \mathrm{E}-211.000$ $384.0 \quad 1.35 \mathrm{E}-201.000$ $394.02 .31 \mathrm{E}-201.000$ $404.0 \quad 3.20 \mathrm{E}-20 \quad 1.000$ $414.04 .79 \mathrm{E}-20 \quad 1.000$ $424.0 \quad 5.17 \mathrm{E}-201.000$ $434.05 .68 \mathrm{E}-201.000$ $442.05 .47 \mathrm{E}-201.000$ $446.04 .88 \mathrm{E}-201.000$ $451.0 \quad 3.03 \mathrm{E}-20 \quad 1.000$ $458.08 .41 \mathrm{E}-211.000$
$458.08 .41 \mathrm{E}-211.000$

Photolysis File $=$ BZCHO					
299.0	$1.78 \mathrm{E}-19$	1.000	304.0	$7.40 \mathrm{E}-20$	1.000
314.0	$6.91 \mathrm{E}-20$	1.000	318.0	$6.41 \mathrm{E}-20$	1.000
342.0	$8.88 \mathrm{E}-20$	1.000	346.0	$7.89 \mathrm{E}-20$	1.000
364.0	$5.67 \mathrm{E}-20$	1.000	368.0	$6.66 \mathrm{E}-20$	1.000
374.0	$3.21 \mathrm{E}-20$	1.000	376.0	$2.47 \mathrm{E}-20$	1.000

$386.0 \quad 0.00 \mathrm{E}+00 \quad 1.000$
Photolysis File = ACROLEIN

250.0	$1.80 \mathrm{E}-21$	1.000	252.0	$2.05 \mathrm{E}-21$	1.000
256.0	$2.56 \mathrm{E}-21$	1.000	257.0	$2.65 \mathrm{E}-21$	1.000
261.0	$3.24 \mathrm{E}-21$	1.000	262.0	$3.47 \mathrm{E}-21$	1.000
266.0	$5.10 \mathrm{E}-21$	1.000	267.0	$5.38 \mathrm{E}-21$	1.000
271.0	$7.20 \mathrm{E}-21$	1.000	272.0	$7.77 \mathrm{E}-21$	1.000
276.0	$1.04 \mathrm{E}-20$	1.000	277.0	$1.12 \mathrm{E}-20$	1.000
281.0	$1.26 \mathrm{E}-20$	1.000	282.0	$1.26 \mathrm{E}-20$	1.000
286.0	$1.44 \mathrm{E}-20$	1.000	287.0	$1.50 \mathrm{E}-20$	1.000
291.0	$1.78 \mathrm{E}-20$	1.000	292.0	$1.86 \mathrm{E}-20$	1.000
296.0	$2.26 \mathrm{E}-20$	1.000	297.0	$2.37 \mathrm{E}-20$	1.000
301.0	$2.85 \mathrm{E}-20$	1.000	302.0	$2.99 \mathrm{E}-20$	1.000
306.0	$3.51 \mathrm{E}-20$	1.000	307.0	$3.63 \mathrm{E}-20$	1.000
311.0	$4.25 \mathrm{E}-20$	1.000	312.0	$4.39 \mathrm{E}-20$	1.000
316.0	$4.75 \mathrm{E}-20$	1.000	317.0	$4.90 \mathrm{E}-20$	1.000
321.0	$5.43 \mathrm{E}-20$	1.000	322.0	$5.52 \mathrm{E}-20$	1.000
326.0	$5.62 \mathrm{E}-20$	1.000	327.0	$5.63 \mathrm{E}-20$	1.000
331.0	$5.95 \mathrm{E}-20$	1.000	332.0	$6.23 \mathrm{E}-20$	1.000
336.0	$6.01 \mathrm{E}-20$	1.000	337.0	$5.79 \mathrm{E}-20$	1.000
341.0	$5.54 \mathrm{E}-20$	1.000	342.0	$5.53 \mathrm{E}-20$	1.000
346.0	$5.48 \mathrm{E}-20$	1.000	347.0	$5.90 \mathrm{E}-20$	1.000
351.0	$5.03 \mathrm{E}-20$	1.000	352.0	$4.50 \mathrm{E}-20$	1.000
356.0	$3.45 \mathrm{E}-20$	1.000	357.0	$3.46 \mathrm{E}-20$	1.000
361.0	$2.95 \mathrm{E}-20$	1.000	362.0	$2.81 \mathrm{E}-20$	1.000
366.0	$3.30 \mathrm{E}-20$	1.000	367.0	$2.78 \mathrm{E}-20$	1.000
371.0	$8.99 \mathrm{E}-21$	1.000	372.0	$7.22 \mathrm{E}-21$	1.000
376.0	$3.57 \mathrm{E}-21$	1.000	377.0	$3.55 \mathrm{E}-21$	1.000

358.0	$1.26 \mathrm{E}-21$	1.000
368.0	$4.21 \mathrm{E}-21$	1.000
378.0	$8.83 \mathrm{E}-21$	1.000
388.0	$1.72 \mathrm{E}-20$	1.000
398.0	$2.61 \mathrm{E}-20$	1.000
408.0	$3.95 \mathrm{E}-20$	1.000
418.0	$5.05 \mathrm{E}-20$	1.000
428.0	$5.21 \mathrm{E}-20$	1.000
438.0	$6.06 \mathrm{E}-20$	1.000
443.5	$6.81 \mathrm{E}-20$	1.000
448.0	$5.47 \mathrm{E}-20$	1.000
453.0	$2.78 \mathrm{E}-20$	1.000
464.0	$1.68 \mathrm{E}-21$	1.000

$306.0 \quad 6.91 \mathrm{E}-20 \quad 1.000$ 325.0 8.39E-20 1.000 $349.07 .89 \mathrm{E}-201.000$ $369.0 \quad 8.39 \mathrm{E}-201.000$ $377.02 .47 \mathrm{E}-201.000$
464.0 . $68 \mathrm{E}-21$

306.0	$6.91 \mathrm{E}-20$	1.000
325.0	$8.39 \mathrm{E}-20$	1.000
349.0	$7.89 \mathrm{E}-20$	1.000
369.0	$8.39 \mathrm{E}-20$	1.000
377.0	$2.47 \mathrm{E}-20$	1.000

$253.02 .20 \mathrm{E}-211.000$ $258.02 .74 \mathrm{E}-211.000$ $263.03 .58 \mathrm{E}-211.000$ $268.05 .58 \mathrm{E}-211.000$ $268.05 .73 \mathrm{E}-211.000$ $273.08 .37 \mathrm{E}-211.000$ $278.01 .19 \mathrm{E}-201.000$ $283.0 \quad 1.28 \mathrm{E}-201.000$ $288.01 .57 \mathrm{E}-201.000$ $293.0 \quad 1.95 \mathrm{E}-201.000$ $298.0 \quad 2.48 \mathrm{E}-20 \quad 1.000$ $303.0 \quad 3.13 \mathrm{E}-201.000$ $308.0 \quad 3.77 \mathrm{E}-201.000$ $313.04 .44 \mathrm{E}-201.000$
$318.05 .05 \mathrm{E}-201.000$
$323.0 \quad 5.60 \mathrm{E}-20 \quad 1.000$ 328.0 5.71E-20 1.000 $333.06 .39 \mathrm{~F}-201.000$ $338.05 .63 \mathrm{E}-201.000$ $338.0 \quad 5.63 \mathrm{E}-20 \quad 1.000$ 348.0 5.47E-20 1.000 348.0 6.08E-20 1.000 $353.0 \quad 4.03 \mathrm{E}-20 \quad 1.000$ $358.0 \quad 3.49 \mathrm{E}-201.000$ $363.02 .91 \mathrm{E}-201.000$ $368.02 .15 \mathrm{E}-201.000$
$373.05 .86 \mathrm{E}-211.000$
$378.02 .83 \mathrm{E}-211.000$

235.0	$7.57 \mathrm{E}-21$	1.000	240.0	$9.25 \mathrm{E}-21$	1.000
260.0	$9.67 \mathrm{E}-21$	1.000	265.0	$1.05 \mathrm{E}-20$	1.000
285.0	$1.43 \mathrm{E}-20$	1.000	290.0	$1.47 \mathrm{E}-20$	1.000
310.0	$6.31 \mathrm{E}-21$	1.000	315.0	$5.47 \mathrm{E}-21$	1.000
335.0	$0.00 \mathrm{E}+00$	1.000			

$360.02 .10 \mathrm{E}-211.000$

 $370.0 \quad 5.47 \mathrm{E}-211.000$ $380.0 \quad 1.01 \mathrm{E}-20 \quad 1.000$ $390.0 \quad 2.06 \mathrm{E}-20 \quad 1.000$ $400.0 \quad 2.78 \mathrm{E}-20 \quad 1.000$ $410.0 \quad 4.33 \mathrm{E}-20 \quad 1.000$ $420.0 \quad 5.21 \mathrm{E}-20 \quad 1.000$ $430.0 \quad 5.55 \mathrm{E}-20 \quad 1.000$ $40.0 \quad 5.47 \mathrm{E}-201.000$ $444.05 .97 \mathrm{E}-201.000$$449.06 .56 \mathrm{E}-201.000$
$454.02 .27 \mathrm{E}-201.000$
$468.0 \quad 0.00 \mathrm{E}+001.000$
$309.0 \quad 6.41 \mathrm{E}-20 \quad 1.000$
$332.0 \quad 7.65 \mathrm{E}-20 \quad 1.000$
$354.0 \quad 9.13 \mathrm{E}-20 \quad 1.000$
$370.0 \quad 8.39 \mathrm{E}-20 \quad 1.000$
$380.03 .58 \mathrm{E}-201.000$
$362.0 \quad 2.10 \mathrm{E}-211.000$ $372.0 \quad 5.89 \mathrm{E}-211.000$ $382.0 \quad 1.09 \mathrm{E}-20 \quad 1.000$ $392.02 .10 \mathrm{E}-201.000$ $402.02 .99 \mathrm{E}-201.000$ $412.0 \quad 4.71 \mathrm{E}-20 \quad 1.000$ $422.05 .30 \mathrm{E}-201.000$ $432.0 \quad 5.13 \mathrm{E}-20 \quad 1.000$ $441.0 \quad 6.14 \mathrm{E}-20 \quad 1.000$ $445.05 .13 \mathrm{E}-201.000$ $450.05 .05 \mathrm{E}-201.000$ $456.01 .77 \mathrm{E}-201.000$
$313.0 \quad 6.91 \mathrm{E}-20 \quad 1.000$ $338.0 \quad 8.88 \mathrm{E}-20 \quad 1.000$ $355.0 \quad 8.14 \mathrm{E}-20 \quad 1.000$ $372.0 \quad 3.45 \mathrm{E}-20 \quad 1.000$ 382.0 9.90E-21 1.000
$254.02 .32 \mathrm{E}-211.000$ 259.0 2.83E-21 1.000 $264.0 \quad 3.93 \mathrm{E}-211.000$ $269.06 .13 \mathrm{E}-211.000$ $269.06 .13 \mathrm{E}-211.000$ $279.0 .94 \mathrm{E}-211.000$ 19.0 1.27E-20 1.000 $284.0 \quad 1.33 \mathrm{E}-201.000$ $289.0 \quad 1.63 \mathrm{E}-20 \quad 1.000$ $294.0 \quad 2.05 \mathrm{E}-20 \quad 1.000$ $299.0 \quad 2.60 \mathrm{E}-201.000$ $304.0 \quad 3.27 \mathrm{E}-20 \quad 1.000$ $309.0 \quad 3.91 \mathrm{E}-20 \quad 1.000$ $314.04 .50 \mathrm{E}-201.000$
$319.05 .19 \mathrm{E}-201.000$
$324.0 \quad 5.67 \mathrm{E}-20 \quad 1.000$
$329.0 \quad 5.76 \mathrm{E}-20 \quad 1.000$
$334.0 \quad 6.38 \mathrm{E}-20 \quad 1.000$ $339.0 \quad 5.56 \mathrm{E}-201.000$ $344.05 .41 \mathrm{E}-201.000$ $344.0 \quad 5.41 \mathrm{E}-20 \quad 1.000$ $349.06 .00 \mathrm{E}-201.000$
$354.0 \quad 3.75 \mathrm{E}-20 \quad 1.000$
$359.0 \quad 3.41 \mathrm{E}-20 \quad 1.000$
$364.0 \quad 3.25 \mathrm{E}-201.000$
$369.01 .59 \mathrm{E}-201.000$
$374.04 .69 \mathrm{E}-211.000$
$379.01 .69 \mathrm{E}-211.000$
$255.02 .45 \mathrm{E}-211.000$ $260.02 .98 \mathrm{E}-211.000$ $265.04 .67 \mathrm{E}-211.000$ 270.0 6. 64E-21 1.000 $270.06 .64 \mathrm{E}-21 \quad 1.000$ $275.09 .55 \mathrm{E}-211.000$ $280.0 \quad 1.27 \mathrm{E}-20 \quad 1.000$ $285.01 .38 \mathrm{E}-201.000$ $290.0 \quad 1.71 \mathrm{E}-20 \quad 1.000$ $295.0 \quad 2.15 \mathrm{E}-20 \quad 1.000$ $300.02 .73 \mathrm{E}-20 \quad 1.000$ $305.0 \quad 3.39 \mathrm{E}-20 \quad 1.000$ $310.0 \quad 4.07 \mathrm{E}-20 \quad 1.000$ $315.0 \quad 4.59 \mathrm{E}-201.000$ $320.0 \quad 5.31 \mathrm{E}-20 \quad 1.000$ $325.0 \quad 5.67 \mathrm{E}-20 \quad 1.000$ $330.0 \quad 5.80 \mathrm{E}-20 \quad 1.000$ $335.0 \quad 6.24 \mathrm{E}-20 \quad 1.000$ $340.0 \quad 5.52 \mathrm{E}-201.000$ $345.0 \quad 5.40 \mathrm{E}-20 \quad 1.000$ $350.0 \quad 5.53 \mathrm{E}-20 \quad 1.000$ $355.0 \quad 3.55 \mathrm{E}-201.000$ $360.0 \quad 3.23 \mathrm{E}-20 \quad 1.000$ $365.0 \quad 3.54 \mathrm{E}-20 \quad 1.000$ $370.01 .19 \mathrm{E}-201.000$ $375.0 \quad 3.72 \mathrm{E}-211.000$ $380.08 .29 \mathrm{E}-241.000$

Table A-4. Values for chamber wall and contaminant effects parameters used in modeling the chamber experiments for this study.

Parm. [a]	Value(s)
$\mathrm{k}(1)$	$0.190-0.193 \mathrm{~min}^{-1}$
$\mathrm{k}(\mathrm{O} 3 \mathrm{~W})$	$1.5 \times 10^{-4} \mathrm{~min}^{-1}$
$\mathrm{k}(\mathrm{N} 25 \mathrm{I})$	$2.8 \times 10^{-3} \mathrm{~min}^{-1}$,
$\mathrm{k}(\mathrm{N} 25 \mathrm{~S})$	$1.5 \times 10^{-6}-\mathrm{k}_{\mathrm{g}} \mathrm{ppm}^{-1} \mathrm{~min}^{-1}$

$\mathrm{k}(\mathrm{NO} 2 \mathrm{~W})$ $1.6 \times 10^{-4} \mathrm{~min}^{-1}$ yHONO 0.2	
k(XSHC)	$250 \mathrm{~min}^{-1}$
RS/K1	$3.54 \times 10^{6} \mathrm{e}^{-7297 / \mathrm{T}} \mathrm{ppm}$

E-NO2/K1 0.03 ppb
[a] See Table A-2 for definition of parameters.

[^0]: [a] Percent reduction of the alkane or m-xylene concentration during the time period indicated. Alkane refers either to the alkane in the "other reactants" column, n -heane for the mini-surrogate experiments, or n -butane for the full surrogate runs..
 ${ }^{[b]}$ In these experiments, equal amounts of all the reactants except chloropicrin were injected into both of the dual chambers, and clhoropicrin was injected into one but not the other.
 [c] The mini-surrogate components, and their average concentrations in these experiments, were as follows: n-hexane: 0.43 ppm ; ethylene: 0.67 ppm ; and m-xylene: 0.13 ppm .
 ${ }^{[d]}$ The full surrogate components, and their average concentrations in these experiments, were as follows: n -butane: 0.47 ppm ; n-octane: 0.13 ppm ; ethene: 0.092 ppm ; propene: 0.065 ppm ; trans-2-butene: 0.061 ppm ; toluene: 0.12 ppm; m-xylene: 0.12 ppm ; formaldehyde: 0.10 ppm .

[^1]: $65.04 .20 \mathrm{E}-201.000$ $290.01 .13 \mathrm{E}-201.000$ $315.02 .80 \mathrm{E}-211.000$ $340.07 .00 \mathrm{E}-221.000$

